
Mathematical Structuralism, S02

Amir Tabatabai

December 10, 2020

1 Category Theory

Definition 1.1. A category C is the following data:

• a colection of objects, denoted by ob(C),

• a collection of morphisms, denoted by Mor(C),

• for any morphism f ∈Mor(C), an object s(f) called the source of f ,

• for any morphism f ∈Mor(C), an object t(f) called the target of f ,

• for any object A ∈ ob(C), a morphism idA,

• for any two morphisms f, g ∈ Mor(C) such that s(f) = t(g), a mor-
phism f ◦ g,

satisfying the following properties:

• s(idA) = t(idA) = A,

• s(f ◦ g) = s(g) and t(f ◦ g) = t(f),

• f ◦ idA = f = idB ◦ f , if s(f) = A and t(f) = B,

• f ◦ (g ◦ h) = (f ◦ g) ◦ h.

For any f ∈ Mor(C), we summarize the data s(f) = A and t(f) = B by
f : A → B. For any two objects A,B ∈ ob(C) by C(A,B) or HomC(A,B),
we mean the collection of all morphisms f : A → B. A category is called
small if Mor(C) is a set. It is called locally small if HomC(A,B) is a set, for
any two objects A,B.
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Philosophical Note 1.2. To have some informal interpretation in mind,
read objects as the entities of a given discourse and maps as the transforma-
tions between them, composition as the composition of the transformations
and the identity as the do-nothing transformation. Note that in a category,
an object is just an abstract node that bears no information except what is
encoded in the maps starting from or ending in the object itself. In this sense,
the only way to inspect an object is by using its behaviour in the context of
the other objects, other than that, it is just one abstract node.

Example 1.3. The collection of all sets as the objects and the usual func-
tions as the morphisms with the usual composition and identity constitutes
a category. This category is denoted by Set. If we restrict ourselves to the
finite sets, then the result is the category FinSet.

Example 1.4. The collection of all sets as the objects and the binary rela-
tions R ⊆ A× B as the morphisms from A to B, together with the relation
composition as the composition and equality as the identity constitutes a
category. This category is denoted by Rel.

Example 1.5. (Discrete Categories) A category C is called discrete if it
only has the identity maps. Therefore, any set can be considered as a small
discrete category.

A B C

idA idB idC

Example 1.6. (Some Finite Categories) These are some finite categories:

0 :
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1 : •

2 : • •

3 : • • •

Example 1.7. (Preorders) A small category C is called a preorder if for
any two objects A,B ∈ ob(C), the collection HomC(A,B) has at most one
element. Spelling out the definition of a category in this special case, a
preorder is actually a set, usually denoted by P with a binary relation ≤
⊆ P × P such that x ≤ x, for any x ∈ P and if x ≤ y and y ≤ z then
x ≤ z. There are many concrete examples of preorders. For instance, the set
of integers Z with its usual order is a preorder. This set with the divisibility
relation is another preorder. The prototype example of preorders is a set of
subsets of some set X with inclusion as the order.

•

• • •

• •

•

• • •

• • •

Remark 1.8. It is useful to think of preorders as the shadow of the usual cat-
egories, reducing all transformations between two objects to just one trans-
formability between them. In the logical reading, this means that we collapse
all the proofs between two statements to one provability map. Hence, in this
sense logic can be considered as a special case of categories.

Example 1.9. (Monoids) A small category C is called a monoid if it has
exactly one object. Spelling out the definition of a category in this special
case, a monoid is actually a set, usually denoted by M with a binary operation
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· : M ×M → M and an element e ∈ M such that e · x = x · e = x, for any
x ∈ M and x · (y · z) = (x · y) · z, for any x, y, z ∈ M . There are many
concrete examples of monoids. For instance, the set of natural numbers N or
R+ with their usual products are monoids. Moreover, any sets of endomaps
of some set X that includes the identity and is also closed under composition
is a monoid. This example is the prototype example of monoids.

Philosophical Note 1.10. A category is a combination of the two afore-
mentioned extreme cases, a preorder and a monoid. The first handles the
existence of different objects in a category and the second addresses different
maps between any two objects.

Exercise 1.11. Check with all the details that all the previously claimed
categories are actually categories.

Exercise 1.12. Show that the identity map of a given object is unique.

Now, it is reasonable to see the categorical formalization of some of the
notions we talked about in the first session.

Example 1.13. (Euclidean Geometry of the Plane) The collection of all
polygons P in R2 as the objects and fT : P → Q as maps, where fT is some
formal map assigned to a distance preserving function T : R2 → R2 such that
T [P ] = Q, together with the usual composition and identity is a category.

Example 1.14. (The Geometry of Maxwell’s equations) The collection of all
the subsets U of the set of the lines going through the origin in R5 as objects
and fT : U → V , where fT is some formal map assigned to the function
T : R5 → R5 that preserves [x,y] = x0y0 + x1y1 + x2y2 − x3y3 − x4y4 and
T [U ] = V , together with the usual composition and identity is a category.

Example 1.15. (Vectors and tensors) The collection {v}v∈Rn as the objects
and A : v → w as maps, where A is an n × n invertible matrix such that
Av = w, together the usual composition and identity is a category. More
generally, for any pair (p, q), the collection {T}T∈Rnp+q as the objects and
R : T → S as maps, where R is an invertible n× n matrix R such that

S
i′1,··· ,i′p
j′1,··· ,j′q

=
∑

i1,··· ,ip,j1,··· ,jq

(R−1)
i′1
i1
· · · (R−1)i

′
p

ip
T

i1,··· ,ip
j1,··· ,jq Rj1

j′1
Rj1

j′1
· · ·Rjq

j′q
.

together with the usual composition and identity is a category.

Philosophical Note 1.16. A category can be interpreted in two different
ways. In its face, any category is just a structured graph interpretable as
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a syntactic algebraic theory describing the behaviour of some arrows. How-
ever, it is also possible to interpret it in a more semantical and geometrical
manner. Here, there are two general approaches. The petit and the gros
interpretations. In the first interpretation, we read the objects as an admis-
sible family of models and maps as the structure preserving transformations.
This covers the following more specific interpretations:

• (Logical interpretation) Objects as the statements and maps as the
conditional proofs, i.e., the map f : A→ B is a proof for B, using the
assumption A,

• (Bourbaki interpretation) Objects as the structures of a given type and
morphisms as the structure preserving transformations,

• (Computer science interpretation) Objects as the data types and mor-
phisms as the computable transformations.

It is also possible to read the category itself as one huge model whose objects
are the admissible parts of the model that are small enough to get observed
and its maps are the admissible transformations between the parts. The
following is a specific example of such interpretation:

• Objects as the points of a space and maps as the paths between them,
i.e., a map f : A→ B is interpreted as a path from A to B.

• Objects as the subspaces of a space and morphisms as the spatial maps
between them.

• Objects as the linear subspaces of a linear space and morphisms as the
linear maps between them.

Example 1.17. For instance, a monoid is just a syntactical entity consisting
of a set together with a fixed element and a binary product satisfying some
properties. The interpretation reads the one object of the category as a
concrete set X, the morphisms as a set of concrete functions over X and
the identity and composition as their usual concrete counterparts. In this
sense, the interpretation tries to realize the abstract graph-like category by
concrete notions.
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