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1 Category Theory (continued)

Here are two examples of the categories that admit both the petit and gros
interpretations:

Example 1.1. Let X be an infinite set and Fin(X) be the poset of all finite
subsets of X with the inclusion as its partial order. As we have observed,
any preorder including (Fin(X),⊆) can be transformed to a category. Using
the petit interpretation, this category will be read as the category of some
sort of models, here the finite sets, while the gros interpretation reads it as
the category of the finite approximations of the “huge” set X.

Example 1.2. Consider the category FinVect, constituting of Rn, for any
n ∈ N, as the objects and the linear maps as the morphisms with the usual
identity and composition. This category can be interpreted both as the
category of all finite dimensional vector spaces (the models) or as the category
of all finite dimensional approximations of an infinite dimensional vector
space (the “huge” model).

Example 1.3. (Variable Sets) The collection of functions

A1

A0

f

as the objects and the morphisms α ∶ f → g as the pair of functions (α0, α1),
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where α0 ∶ A0 → B0 and α1 ∶ A1 → B1 such that α1f = gα0:

A1 B1

A0 B0

f

α1

α0

g

with the evident composition and identity, constitutes a category denoted
by Set→. Any object of the category can be interpreted as a variable set,
varying over the discrete structure of time {0 ≤ 1}. The set A0 is the set
of all the elements available at the moment t = 0 and the set A1 is the set
of the elements at the moment t = 1. Moving from t = 0 to t = 1, there are
three main possibilities. Either some elements is created or some elements
remain intact (up to some name change) or some of the distinct elements
in A0 become equal. These possible scenarios is formalized by a function f .
The elements outside the range of f are the new elements in t = 1, while the
elements in the range come from t = 0, with the latter two possible changes.
Any map between these variable sets is naturally a pair of two maps, each
for each moment of time, respecting the change of the sets through time.

Remark 1.4. In the previous example, there is nothing special about the
structure {0,1} and it can be replaced by any other preorder or even by
any other small category. Generalizing the variable sets in this way leads
to very interesting conceptions of the incomplete sets growing over different
structures of time. It also leads to some new models of the usual classical set
theory. For that matter, it is enough to pick the variable sets and restrict
ourselves to a subclass of complete ones. It is not easy to define these com-
plete sets in one line. But to have an intuition, think about the variable sets
so complete that in each moment of time, the set in that moment is large
enough to have all the imaginable elements in that moment. For instance,
the Cohen forcing to prove the independence of the axiom of choice is just
the result of such a process: First setting a suitable structure to encode the
growth of time and then letting the sets vary on that structure to finally
harvest all the completed sets as a model of the usual classical set theory.

Example 1.5. (Dynamical Systems) The collection of functions

A

f
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as the objects and the morphisms α ∶ f → g as a function α ∶ A → B such
that αf = gα

A Bα

f g

with the evident composition and identity constitutes a category, denoted by
Setû. Any object of this category can be interpreted as a dynamical system
consisting of a set A and a function f ∶ A → A, encoding the dynamism of
the system. Of course, any map between the dynamic systems must be a
function from the base sets preserving the dynamism.

Example 1.6. (Quivers) Quivers are the directed multi-graphs as in the
following figure:

●

● ●

formalized by

E V
t

s

The set V is the set of vertices, the set E is the set of the edges and the two
maps s, t ∶ E → V are to encode the source and the target of any edge. The
quiver morphisms then are the pairs of two functions mapping the vertices
and the edges of the quivers, respecting the sources and the targets as in:

● ● ●

● ●
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Formally, the quiver morphisms are the pairs of two functions αV ∶ V0 → V1
and αE ∶ E0 → E1 commuting with the source and the target functions, i.e.,
αV s0 = s1αE and αV t0 = t1αE:

E0 V0

E1 V1

s0

t0

s1

t1

αE αV

Example 1.7. (2-quivers) How to formalize the higher-order geometrical
version of quivers as in the following figure?

α

β

A
B

Cqp

r

It is easy to follow the formalization of the quivers again: A set V of the
vertices, a set E of edges, and another set T of triangles with two maps
s, t ∶ E → V to encode the source and the target of any edge and three face
maps f, g, h ∶ T → E, to record the different faces of a triangle.

T E V
h

f

g
t

s

In the figure, V = {A,B,C}, E = {f, g, h}, T = {α,β}, canonical sources and
targets and f(α) = f(β) = p, g(α) = g(β) = q and h(α) = h(β) = r. For
morphisms, it is enough to have a triple (αV , αE, αT ) such that αV ∶ V0 → V1,
αE ∶ E0 → E1 and αT ∶ T0 → T1 commuting with the source, the target and
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the face functions, i.e., the following diagram becomes commutative:

T0 E0 V0

T1 E1 V1

h0

f0

g0
t0

s0

t1

s1

h1

f1

g1

αE αVαT

Leaving the many examples we had, we are ready to introduce the first
categorical notion. We have seen that any map f ∶ A→ B can be interpreted
as a transformation, changing the object A to the object B. Given this inter-
pretation, one natural question is that when this transformation is reversible.
Here is the categorical formulation:

Definition 1.8. A map f ∶ A → B is called an isomorphism, if there exists
a morphism g ∶ B → A such that fg = idB and gf = idA. This g is called an
inverse of f .

Exercise 1.9. Prove that the inverse of a map is unique. Hence, it is well-
defined to denote the inverse of f by f−1.

Exercise 1.10. Prove that idA ∶ A → A is an isomorphism and if f ∶ A → B
and g ∶ B → C are isomorphisms, then so is g ○ f ∶ A→ C.

Exercise 1.11. Prove that in Set, the isomorphisms are the bijective maps.
What are the isomorphisms in posets, monoids, Set→ and Setû?

Definition 1.12. (Groupoids and Groups) A groupoid is a category whose
morphisms are all isomorphisms. A group is a groupoid with just one object.
Spelling out the definition in this special case, a group is a monoid, usually
denoted by G, such that for any x ∈ G, there exists y ∈ G such that x ⋅ y =
y ⋅ x = e.

Example 1.13. The category of all sets and bijective maps as morphisms
with the usual composition and identity is a groupoid.

All the Examples ??, ??, ?? are groupoids.

Example 1.14. The prototype example of groups is a set of invertible func-
tions over some set X that includes the identity and is closed under compo-
sition and inversion.
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Philosophical Note 1.15. Groupoids can be interpreted as the formaliza-
tions of equality, where f ∶ A → B is read as a proof or witness to show
why A is equal to B. With this interpretation, it is easy to see that the
group axioms are the natural conditions the reflexivity, the symmetry and
the transitivity of the equality induce on the witnesses.

Definition 1.16. A function f ∶ G → H is called a group homomorphism
if it preserves the product. The category of groups and homomorphisms is
denoted by Grp.

A digression: the representation theorems and the baby
Erlangen program

1.0.1 Representation theorems

We have explained that how any category can be interpreted as the collection
of the different ways that we can inspect a huge model. Is it possible to make
this interpretation more formal? Let us begin with the two easy cases: the
posets and the monoids. In theses case, we should ask if any poset is a
poset of subsets of a concrete set and if any monoid is a monoid of concrete
functions over a concrete set. The answer in both cases is positive.

Theorem 1.17. (Cayley’s Representation Theorem) Any monoid (group) is
isomorphic to a monoid (group) of concrete functions over a concrete set.

Proof. Let M be a monoid. Define the set X as the monoid itself and consider
N as the set of all functions fm ∶X →X defined by fm(x) =mx, for m ∈M . It
is easy to see that fe = id, since e is the left identity and fmn = fm○fn(x), since
the product is associative. Hence, the map F ∶M → N defined by F (m) = fm
is a homomorphism. By definition, F is clearly onto. It is also one to one,
because if F (m) = F (n), then fm = fn which implies fm(e) = fn(e). Hence,
by the fact that e is also the right identity, we have m = n. For groups, note
that if M is also a group, then fm−1 = f−1m . Therefore, the set N is also a
group.

Theorem 1.18. Any poset is isomorphic to a poset of subsets of a concrete
set.

Proof. Let (P,≤) be a poset. Set X as the set of all the subsets of P of the
form Ia = {x ∈ P ∣ x ≤ a}. Define F ∶ P → X by F (a) = Ia. Note that if
a ≤ b then F (a) ⊆ F (b), because if x ≤ a, then x ≤ b, by the transitivity of
the order. F is clearly onto. It is also one to one, because if F (a) = F (b),
then Ia = Ib. By reflexivity, a ≤ a. Hence, a ∈ Ia = Ib. Therefore, a ≤ b. By a
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similar argument, b ≤ a. Therefore, by anti-symmetry a = b. This means the
inverse function G ∶ X → P sending Ia to a is well-defined. To show that G
preserves the order, we have to show that if F (a) ⊆ F (b), then a ≤ b.

Remark 1.19. It is worth mentioning that the previous theorems need and
also use all the conditions in the definition of a monoid and a poset, respec-
tively. Therefore, they imply that the conditions are necessary and sufficient
to capture the abstract behaviour of a family of functions over a set, includ-
ing the identity and being closed under composition and a set of subsets of
a given set, respectively.

As the next natural step, we generalize the previous two cases to any
category:

Theorem 1.20. Any small category is “isomorphic” to a category of concrete
sets with concrete functions.

Proof. Let C be category. To any object A of C assign the set A∗ = {g ∶ B →
A ∣ g ∈ Morph(C)} and to any map f∗ ∶ A → B, the function f∗ ∶ A∗ → B∗

defined by f∗(g) = fg. Now consider the category D consisting of A∗ as
objects and f∗ ∶ A∗ → B∗ as morphisms. Then, defining F ∶ C → D by sending
A to A∗ and f ∶ A → B to f∗ ∶ A∗ → B∗ we can reach an isomorphism.
It is easy to see that F preserves composition and identity. F is also one-
to-one on objects and morphisms. For objects the claim is obvious. For
morphisms, if f, g ∶ A→ B and f∗ = g∗ ∶ A∗ → B∗, then since idA ∈ A∗ we have
f∗(idA) = g∗(idA), which implies f = g. Now, it is easy to define the converse
of F and check that it the respects identity and the composition.

Now, it is natural to extend the previous representation theorems to all
categories to see if it is possible to represent any category as a category of sets
together with some concrete functions as morphisms? This time the answer
is negative and its proof is beyond the scope of this section. However, it
is worth mentioning that this negative result seriously affects the universal
applicability of Bourbaki’s set-based approach to structures.

1.0.2 Baby Erlangen program

So far, we have seen that any monoid (group) is actually a monoid (group)
of concrete functions over a concrete set. Therefore, any group is a group of
transformations over some set. Now, following Klein’s Erlangen program, it
is reasonable to ask that given the group of transformations, what different
geometries it may be possible.
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Definition 1.21. Let X be a set and Aut(X) be the group of all per-
mutations of X, i.e., the bijections from X to itself. A homomorphism
from F ∶ G → Aut(X) is called an action of G on X. Sometimes, for
simplicity, we write gx for F (g)(x). Two actions F ∶ G → Aut(X) and
F ′ ∶ G → Aut(Y ) are called isomorphic if there exists a bijection φ ∶ X → Y
such that F (g)φ = φF ′(g), for any g ∈ G.

Example 1.22. The trivial example of an action of the group G is the action
of G on itself, defined by F ∶ G → Aut(G), where F (g) = fg and fg(x) = gx.
For a more sophisticated example, let us do the trivial example in a modular
manner. Let N be a subset of G closed under some operations that we
meet later. Then, we call two elements f, g ∈ G congruent modulo N if
f−1g ∈ N . It is reasonable to expect that the congruence to be an equivalence
relation and if we denote the set of the equivalence classes by G/N , the
function G → Aut(G/N) defined by g[h] = [gh] becomes an action. These
expectations are not automatically true. To make them true, N must be
closed under product, inverse and all the operations in the form x↦ g−1(x)g,
for any g ∈ G.
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