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1 Category Theory

A digression: the representation theorems and the baby
Erlangen program

Baby Erlangen program

Example 1.1. The trivial example of an action of the group G is the action
of G on itself, defined by F : G→ Aut(G), where F (g) = fg and fg(x) = gx.
For a more sophisticated example, let us do the trivial example in a modular
manner. Let N be a subset of G closed under some operations that we
meet later. Then, we call two elements f, g ∈ G congruent modulo N if
f−1g ∈ N . It is reasonable to expect that the congruence to be an equivalence
relation and if we denote the set of the equivalence classes by G/N , the
function G → Aut(G/N) defined by g[h] = [gh] becomes an action. These
expectations are not automatically true. To make them true, N must be
closed under product, inverse and all the operations in the form x 7→ g−1xg,
for any g ∈ G.

In group theory literature, there is a characterization theorem, stating
that any G-action is the “disjoint union” of the G-actions introduced in
Example 1.1. We will repeat the usual argument here. Let F : G→ Aut(X)
be a G-action. Define the reachability relation R on X by (x, y) ∈ R, if there
exists g ∈ G such that gx = y. It is not hard to prove that the relation R
is an equivalence relation, using the fact that G is actually a group. Each
equivalence class inherits a G-action from the original G-action F . The
reason simply is that if x is an element in the class and g ∈ G, the result of
the action, namely gx, is in the same class as x. Finally, we will show that
each of these restricted G-actions on the equivalence classes is isomorphic to
a G-action of the type introduced in the Example 1.1. Let Y be one of these
classes. Set an arbitrary element o ∈ Y :
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Define N = {g ∈ G | go = o}. It is easy to see that N has the required closure
properties, namely the closure under product, inverse and the operations
x 7→ g−1xg, for any g ∈ G. Define φ : G/N → Y by φ([g]) = go. The
function is well-defined and one-to-one, because φ([g]) = φ([h]) iff go = ho
iff g−1ho = o iff g−1h ∈ N iff [g] = [h]. It is not hard to see that φ is
an isomorphism between the G-actions. The important thing is that the
function is surjective, because any y in the class is reachable from o and
hence go = y, for some g ∈ G.

Remark 1.2. Note that the above construction has some unsatisfactory
elements. First, some of its parts are chosen in a non-canonical manner,
like the element o ∈ Y . These choices do not affect the construction, but
makes the construction tricky at best and resistant to generalizations at
worst. Secondly, although the notion of action is equivalently meaningful for
monoids, the above construction seriously uses the fact that G is a group
and hence it does not suggest any way to handle the monoid case, as well.

To overcome the issues mentioned above, let us provide a characteriza-
tion theorem again. This time, we use the canonical approach consisting of
simple, intuitive and justifiable steps that uses no ingredient except what it
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is essentially required. As a result, this time, everything is more transparent
so much so that we can even address the case of monoids.

Definition 1.3. Let X be a set and End(X) be the monoid of all functions
on X. A homomorphism F : M → End(X) is called an action of M on
X or an M -action, for short. Sometimes, we write mx for F (m)(x), for
simplicity. Two M -actions F : M → End(X) and F ′ : M → End(Y ) are
called isomorphic, if there exists a bijection φ : X → Y such that F (m)φ =
φF ′(m), for any m ∈M .

The trivial example of an M -action is the action of M on itself, defined
by F : M → End(M), where F (m) = fm and fm(x) = mx. To provide
a characterization theorem, we will introduce two methods to construct the
new M -actions from the old. First, the “disjoint union”. Let {Fi : M →
End(Xi)}i∈I be a family of M -actions. Define X =

∑
i∈I Xi = {(i, x) | i ∈

I, x ∈ Xi} with the fibrewise M -action m(i, x) = (i,mx). This is clearly an
M -action:
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The second method, the “quotient” operation, picks one M -action and glue
some of its elements together to get a new one. More precisely, let F :
M → End(X) be an M -action and R ⊆ X ×X be a set of the pairs of the
elements of X that we want to glue to each other. It is possible to provide
the minimal M -action in which these intended equalities are forced to hold.
It is enough to define the equivalence relation ∼ as the least equivalence E,
extending the relation R and respecting the M -action, i.e., if (x, y) ∈ E then
(mx,my) ∈ E, for any m ∈ M . (Why does such an equivalence relation
exist?) Then, define Y as the set of the equivalence classes with respect to
∼ and define m[x] = [mx]. (Why is it well-defined, i.e., independent of the
representative of the classes?)
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To prove that any action is constructible from the basic action via disjoint
union and quotient operations, let F : M → End(X) be an arbitrary M -
action. Then, define Z as the quotient of the disjoint union Y =

∑
x∈X M

by the set {((x,m), (y, n)) ∈ Y 2 | mx = ny} and define φ : Z → X by
φ[(x,m)] = mx. It is clearly well-defined and one-to-one. It is also surjective
since φ([(x, e)]) = x. It will be easy to define the converse function and show
that it is an M -action.

Now, again, it is a natural question that if it is possible to generalize the
aforementioned characterization to any small category. The answer is again
positive. But we first need the right notions of an action (realization) and
isomorphism between these actions (realizations), for categories. The first is
called a functor and the second is natural isomorphism. We will spend some
time on these notions to set the scene to provide a characterization theorem
for the small categories.
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