
Mathematical Structuralism, S06

Amir Tabatabai

January 8, 2021

1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. (Exponentiation) Let A be a fixed set. Define the assignment
(−)A : Set → Set, mapping a set B to BA = {f : A → B} and a function
f : B → C to a function fA : BA → CA defined by fA(g) = fg. Then,
(−)A is a functor, generalizing the finite power functor A 7→ An generated
by the iteration of the product functor. Similarly, it is possible to define the
functor A(−) : Setop → Set, mapping a set B to AB = {f : B → A} and a
map f : B → C to a function Af : AC → AB defined by Af (g) = gf . Then,
A(−) is a functor, generalizing the functor P̄ = 2(−). Any combination of the
product, the sum, and the functor (−)A, for different fixed sets A such as
F (X) = A0 × XN0 + A1 × XN1 + · · · + Ak × XNk is a polynomial functor.
The notion of polynomial functor, though, is more general than this.

Remark 1.2. (Algebras) Algebras are sets equipped with some operations
that have some properties. For instance, a monoid is a set M with an element
e and a binary operation such that the latter is associative and the former is
the identity element for the latter. The operational data (not the properties)
can be stored in one function a : Fm(M)→ M , where Fm(X) = 1 +X2 is a
functor, storing the type of the algebra and a(0, ∗) = e and a(1,m, n) = mn,
storing the operations. By type we mean the number and the arity of the
operations (in the monoid case it is one nullary and one binary operations).
Some examples may be helpful here. A group (G, e, (−)−1, ·) is a set G
with a function a : Fg(G) → G, where Fg(X) = 1 + X + X2, a(0, ∗) = e,
a(1,m) = m−1 and a(2,m, n) = mn; the basic structure of natural numbers,
i.e., (N, s, 0) is a function a : Fi(N) → N, where Fi(X) = 1 + X, a(0, ∗) = 0
and a(1, n) = s(n) = n + 1 and the structure (W, s0, s1, ε) of binary strings
can be described by a function a : Fs(W)→W, where Fs(X) = 1 +X +X,

1



a(0, ∗) = ε, a(1, w) = s0(w) = w0 and a(2, w) = s1(w) = w1. To have
a general notion of algebra, we use a functor F : Set → Set to formalize
the type of the algebra and then by an F -algebra, (an algebra of type F ),
we mean a function a : F (A) → A. This also suggest a generalization for
homomorphisms. Generally, a homomorphism is a function that preserves
all the operations in the type of the algebra. With our generalization here,
an F -algebra homomorphism from the F -algebra aA : F (A) → A to the
F -algebra aB : F (B)→ B is a function f : A→ B such that

F (A) A

F (B) B

fF (f)

aA

aB

It is easy to check that in the familiar cases it really captures the notion of
homomorphism.

Example 1.3. (Forgetful Functors) Sometimes, we have a category and we
will forget some of the structures that the objects posses and the maps pre-
serve, to think somewhat loosely about the same data that we originally had.
Let us provide three examples of such phenomenon. First, the forgetful as-
signment mapping any group G and any homomorphism f : G→ H in Grp
to themselves in Set, forgetting that there is the group structure there, is a
functor. For the second example, take the two forgetful functors from Set→

to Set, forgetting that a variable set actually varies, by making two snap-
shots of a variable set in the two possible moments. More precisely, for any
i ∈ {0, 1}, define pi : Set→ → Set, by mapping any f : A0 → A1 to Ai and
any α : f → g to αi : Ai → Bi, where f : A0 → A1 and g : B0 → B1. Both p0
and p1 are functors. Finally, as the third example, define V : Quiv → Set,
by mapping any quiver to its set of elements and any quiver morphism to its
underlying function on vertices. This V is a functor. We can do the same
thing to define the edge functor E.

Example 1.4. (Free Functors) In some cases, we want to put a structure
on an object in a free way, meaning we want it to be free from any unex-
pected relations. For instance, let X be a set. Then, F (X) as the set of all
finite sequences of the elements of X (including the empty sequence) with
concatenation is a free-monoid constructed from X. It is a monoid, since
concatenation is associative and the empty sequence is an identity. It is
free because we add all possible products of the elements of X, and there

2



is no non-trivial relation on the elements of F (X), except what the monoid
structure dictates. This assignment F gives rise to a functor Set → Mon,
mapping any set X to the monoid F (X) and any map f : X → Y to the
homomorphisms F (f) : F (X)→ F (Y ) such that F (f)(σ) = f(σ0) · · · f(σn),
for any finite sequence σ = σ0σ1 · · · σn.

Example 1.5. Let C be a category. Then, the identity functor idC : C → C
mapping any object and morphism to itself is a functor. Moreover, if A is a
fixed object in C, the constant assignment cA : C → C, mapping all objects
to A and all morphisms to identity is another functor.

Example 1.6. Let C be a groupoid. Then, the inverse assignment inv :
C → Cop, defined by inv(A) = A and inv(f) : B → A as inv(f) = f−1, for
f : A→ B, is a functor.

Example 1.7. Let C be a locally small category. The assignment HomC :
Cop × C → Set, defined by HomC(A,B) = {f : A → B | f ∈ Mor(C)} and
HomC(g, h) : HomC(A,B)→ HomC(C,D) as HomC(g, h)(f) = hfg, for any
f : A → B, g : C → A and h : B → D, is a functor. This functor captures
the whole structure of the category C.

Example 1.8. Let C be a locally small category. For any object A in C,
there is a canonical functor HomC(A,−) : C → Set, capturing the behavior
of the maps above A. It is defined by B 7→ HomC(A,B) and Hom(A, f) :
HomC(A,B) → HomC(A,C) as HomC(A, f)(g) = fg, for any f : B →
C. Similarly, there is a canonical functor yA = HomC(−, A) : Cop → Set,
capturing the behavior of the maps below A. It is defined by yA(B) =
HomC(B,A) and yA(f) : HomC(C,A) → HomC(B,A) as yA(f)(g) = gf ,
for any f : B → C. These functors are the localized version of the concrete
representation we have introduced for the small categories, mapping an object
A to A∗ = {g : C → A | g ∈ Mor(C) and f : A → B to f∗ : A∗ → B∗ by
f∗(g) = fg. The current act of localization has no point except to handle the
size issue that in a locally small category the collection A∗ is not necessarily
a set.

Example 1.9. Let C be a category and f : A → B be a morphism. The
assignment mapping an object g : X → A in C/A to the object fg : X → B
in C/B and mapping to themselves is a functor from C/A to C/B. We denote
this functor by f∗ : C/A→ C/B.

Example 1.10. Let C, D and E be some categories and F : D → E and
G : C → D be two functors. Then, the composition FG : C → E with the
canonical definition is also a functor.

3



Note that all small categories with functors as morphisms constitute a
category. We denote this category by Cat.

Example 1.11. Let C be a small category. Then, the assignment mapping
an object A to the category C/A and morphism f : A → B to the functor
f∗ : C/A→ C/B is a functor from C to Cat.

Example 1.12. (Baby Schemes) Let R be the category of all subsets R of
C, including 1 and closed under addition and multiplication with morphisms
as the functions that preserve the element 1 and these two operations. Let
I(~x) = I(x0, . . . , xn) be a set of equations between polynomials in variables
x0 . . . , xn with coefficients in Z. For instance, we can take I(x0, x1) = {x20 +
x21 = 1}. Define the assignment VI : R → Set by mapping R to VI(R) =
{~r ∈ Rn+1 | all equations in I(~x) hold for ~x = ~r} and any f : R → S to the
function VI(f) : VI(R) → VI(S) defined by VI(f)(~x) = (f(x0), . . . , f(xn)).
The function VI(f) is well-defined, because when ~r is the root for an equation,

then so is ~f(r), simply because f preserves 1, addition and multiplication.
This assignment is clearly a functor. It is reasonable to think of VI as a
method to keep track of all the possible realizations (models) of the set of
equations in all possible worlds. It is the semantical way to capture the
syntactic data I(~x).

Remark 1.13. Note that VI is not a faithful semantical apparatus. For
instance, for the different sets of equations I(x) = {x = 0} and J(x) =
{x2 = 0}, we have VI(R) = VJ(R) = {0}.

4


