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1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. (Fundamental set Π0) Let Quiv be the category of quivers
(directed multi-graphs). For any quiver Q, define the equivalence relation ∼
on V (Q) by v ∼ w iff there exist two paths of edges in E(Q) (including the
paths with length zero), one starting from v and ending in w and one starting
from w and ending in v. (Why is it an equivalence relation?) Define the
assignment Π0 : Quiv → Set on objects by Π0(Q) as the set of equivalence
classes in V (Q) and on quiver morphism f : Q→ Q′ by Π0(f)([v]) = [f(v)].
(Why is it well-defined?) The assignment Π0 is a functor. It measures how
connected the quiver is. It is also possible to use a more refined version in
which the functor returns not only the set Π0(Q) but also its underlying
order, defined by [v] ≤ [w] iff there exists a path from v to w. (Why is it a
well-define poset order?) It is not hard to see that Π0(f) also respects this
order. Denote this functor by Πd

0 : Quiv→ Poset.

Remark 1.2. Note that Π0 is not faithful as it sends any two connected
quivers to a singleton. The same also holds for Πd

0.

Exercise 1.3. Prove that functors preserve isomorphisms, i.e., if F : C → D
is a functor and f : A→ B is an isomorphism in C, then F (f) : F (A)→ F (B)
is an isomorphism in D.

Definition 1.4. A functor F : C → D is called faithful if for any f 6= g :
A→ B, we have F (f) 6= F (g) : F (A)→ F (B). In other words, F is faithful
if F : HomC(A,B) → HomD(F (A), F (B)) is one-to-one. It is called full if
any h : F (A)→ F (B) is equal to F (f) for some f : A→ B. In other words,
F is full if F : HomC(A,B)→ HomD(F (A), F (B)) is surjective.
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Example 1.5. An order-preserving map f : (P,≤P )→ (Q,≤Q) between two
posets is always faithful. It is full iff it is an order-embedding, i.e., a ≤P b iff
f(a) ≤Q f(b). A homomorphism between two monoids is faithful iff it is one-
to-one and it is full iff it is surjective. The forgetful functor U : Grp→ Set
is faithful but not full.

Exercise 1.6. The product functor (−)× (−) : Set× Set→ Set is faithful
but not full.

Exercise 1.7. Let f : A → B be a morphism in a category C. When is
f∗ : C/A→ C/B faithful? When is it full?

Exercise 1.8. Let C be a locally small category. Is HomC(−,−) : Cop×C →
Set full or faithful?

Philosophical Note 1.9. Non-faithful functors provide some room to sim-
plify the original object A in a discourse C to a simpler object F (A) in D.
When F (A) is “computable” in a relatively easy way, F can be useful in
showing that two given objects in C are not isomorphic. The strategy is as
follows: Assume that an isomorphism f : A → B exists between two given
objects A and B. Then, by the application of the functor F , we must have
an isomorphism between F (A) and F (B) in D. Now, compute both F (A)
and F (B) and show that they can not be isomorphic. The basic version
of this argument is when we find an “easy-to-check” property P such that
it is invariant under the given isomorphisms and A and B disagree on this
property P . For instance, to prove that the two groups (Z,+) and (Q,+)
are not isomorphic, it is enough to observe that the latter has the property
P = ∀x∃y(y = x+x), while the former lacks it. Note also that P is a group-
theoretic property, meaning it is invariant under all group isomorphisms.
This argument is a special kind of the argument above, using a groupoid C
of objects together with their isomorphisms and the functor P : C → {0, 1}
to capture the invariant-under-isomorphism property P , where {0, 1} is a
discrete category encoding true and false values.
It is also possible to have more complex examples, using more sophisticated
categories for D. For instance, consider the following quivers:

• • •

Q : Q′ :

• • • •
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They are not isomorphic, since the forgetful functor V : Quiv → Set maps
Q to a three element set (the set of vertices) and Q′ to a four element set.
These two sets can not be isomorphic in Set. Hence, Q and Q′ are not
isomorphic as quivers. Note that the functor V is easy to compute and
this is the key element that makes it useful here. Moreover, it is important
to observe that showing two sets are not isomorphic boils down to an easy
cardinality argument. However, as the functor is not faithful, it has its own
blind spots. For instance, in the following situation

• •

P : P ′ :

• • • •

both functors V and E are blind to the difference. In such cases, it is reason-
able to use more sophisticated functors. But, remember, they must remain
relatively easier to handle than the original object. In this case, we use the
functor Π0. Since, Π0(P ) is a three element set while Π0(P

′) is just a single-
ton, P and P ′ are not isomorphic as quivers. As the last example, consider
the following two quivers:

• • • •

R : R′ :

• • • •

Here, all the three functors V , E and Π0 agree. However, Πd
0(R) is a lozenge

while Πd
0(R

′) is just a line.
As another example, consider the category R of Example ??. To show that
Q and R are not isomorphic in R, it is enough to consider the forgetful
functor F : R → Set, since F (Q) is countable, while F (R) is uncountable
and they can not be isomorphic as sets. However, to show that R and C are
not isomorphic in R, the forgetful functor does not work, as the underlying
sets have equal cardinality. In this case, it is useful to have the more refined
functor VI , for I(x) = {x2 + 1 = 0}. Here, we have VI(R) = ∅, while
VI(C) = {i,−i} and these two sets are not isomorphic.

Example 1.10. (Fundamental Groupoid Π1) Let Top be the category of
all topological spaces with continuous functions. For any topological space
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X, consider the set of paths in X from x to y, i.e., all continuous functions
p : [0, 1] → X such that p(0) = x and p(1) = y, denoted by PathX(x, y).
First, note that it is again possible to define the functor Π0 : Top→ Set by
setting Π0(X) as X up to the equivalence ∼ defined by x ∼ y if there exists
a path in X from x to y. The function Π0(f) is also defined canonically as
before. The functor Π0 measures how connected the space X can be. Now,
to define another functor, lift these considerations one level up, i.e., define
the equivalence relation ∼ on PathX(x, y) by p ∼ q iff there exists a surface
in X filling between p and q, i.e., a continuous function H : [0, 1]× [0, 1]→ X
such that H maps {0} × [0, 1] to x, {1} × [0, 1] to y and the restrictions of
H to [0, 1] × {0} and [0, 1] × {1} becomes p and q, respectively. (Why is it
an equivalence relation?)

•

•

p

q

X

•
•

r

s

z

w x

y

H

In the figure, the image of H is depicted by the green area and hence
p ∼ q, while r and s can not be in the same class as the white hole in
the middle prevents any surface between r and s. Now, define Π0(X) as
the groupoid with the objects as the elements of X, the morphisms from x
to y as PathX(x, y) and composition and identity as the canonical pasting
paths to each other and the class of the constant path. (Why is composition
well-defined? Why is the constant map the identity morphism?) Define the
assignment Π1 : Top → Groupoid on objects by Π1(X) and on a mor-
phism f : X → Y by the functor Π1(f) defined by Π1(f)(x) = f(x) and
Π1(f)([p]) = f [p]. (Why is it well-defined?) The assignment Π1 is a functor.
It is possible to simplify the functor Π1 with some non-canonical choice for
a base point. Let X be a space and x ∈ X be a point in X. Now, restrict
the groupoid Π(X) to the object x and the morphisms over x. This is also a
functor, usually denoted by π1, this time from the category of pointed spaces,
denoted by Top∗ to the category Grp. Both Π1 and π1 measure the 2-holes in
a space X as Π0 measured 1-holes. (1-hole means disconnectedness. Right?)
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For instance, for the space B2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1} and any possible
choice for the base point a ∈ B2, the group π1(B2, a) is just a singleton, as
any path over a in B2 can be filled and B2 (why?) or in other words as B2 has
no holes. At the same time, for the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1},
the group π1(S1, a) for any base point a ∈ S1 is Z, as any path over a in S1

is uniquely determined by the number it goes around S1. (Why?) These are
obvious claims. But intuitively, they are just clear.

Philosophical Note 1.11. It is possible to interpret any topological space
X as a set with multiplicities, any path p : x → y as a proof of equality
between x and y, any surface between two paths p, q : x → y as a proof of
equality between p and q and so on. With this interpretation, while Π0(X)
computes the set of distinct elements of X, the functor Π1(X) computes the
distinct proofs between two equal elements.
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