
Mathematical Structuralism, S08

Amir Tabatabai

January 21, 2021

1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. (Application of the Fundamental Groups) We want to prove
Brouwer’s fixed point theorem for 2-ball B2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}
that states that any continuous function f : B2 → B2 has a fixed point. For
the sake of contradiction, assume f does not have a fixed point. Then, for
any (x, y) ∈ B2, we have f(x, y) 6= (x, y). Define r : B2 → S1 in the following
way: Take the directed line L, connecting f(x, y) to (x, y) and define r(x, y)
as the intersection of L and the border of B2 which is S1. By definition,
the restriction r to S1 is the identity function. Therefore, if we denote the
inclusion of S1 in B2 by i : S1 → B2, we have:

S1 B2 S1i r

idS1

Since π1 : Top∗ → Grp is a functor, if we pick an arbitrary a ∈ S1, we have:

π1(S1, a) π1(B2, a) π1(S1, a)
π1(i) π1(r)

idπ1(S1,a)

which is impossible, as π1(S1, a) is isomorphic to Z, while π1(B2, a) is a
singleton group.

Remark 1.2. In almost all the applications of the fuctors we have seen so far,
except maybe the previous example, the only thing we used was the fact that
the functors from one discourse to the other preserve isomorphisms, as they

1

are expected to preserve the corresponding notion of “sameness”. Following
such observations, one may find it tempting to restrict category theory to
groupoids as the formalization of a discourse equipped with its notion of
sameness. The previous example is just a simple instance to show that this
temptation is somewhat naive. Morphisms and not just isomorphisms are
important to capture the behavior of an object and it is useful if we know
how to transfer them from one discourse to another.

Definition 1.3. (Natural Transformations) Let C and D be two categories
and F,G : C → D be two functors. By a natural transformation α : F ⇒ G,
depicted as

C D

G

F

α

we mean an assignment mapping any object of C to a morphism αC : F (C)→
G(C) in D such that for any morphism f : A→ B in C, the following diagram
commutes:

F (A) G(A)

F (B) G(B)

αA

F (f) G(f)

αB

Philosophical Note 1.4. If we read functors F,G : C → D as two C-
variable objects in D, then any natural transformation α : F ⇒ G is a
transformation between these variable objects. Naturally, any transformation
between variable objects must specify the way we change the object F (C)
to the object G(C) in D, for each parameter C ∈ ob(C). These changes can

2

not be arbitrary. They must respect the changes in parameter in C:

F (B)

B F (A) F (C)

A C G(B)

G(A) G(C)

f g

F (f) F (g)

G(f) G(g)

αA

αB

αC

F

G

Philosophical Note 1.5. Let us read two functors F,G : C → D as two
construction methods that read an object in C and transform it to an object
in D. When can we call F and G “equal” as two methods of construction?
Of course we do not want to restrict ourselves to the very strict equality that
demands the functors to be equal both on the objects and the morphisms.
This is just too restrictive. For instance, consider F,G : Set → Set as
F (A) = A×{0} and G(A) = A×{1}. In this case, although F and G are not
strictly equal, they must be considered as the same methods of construction,
as they are only different up to an isomorphism. Using this criterion, one
natural candidate for the intended equality between F and G is the existence
of an isomorphism between F (A) and G(A), for any object A in C. However,
it is clear that any random assignment of isomorphisms between F (A) and
G(A) does not work. The isomorphisms must be assigned in a uniform way,
as we want F and G to be equal as two methods of constructions not two mere
structureless assignments. This uniformity demands the isomorphisms to be
somewhat independent of the choice of the object A. Of course, one may
object that the isomorphisms clearly depend on the object A (the source and
the target of the isomorphism, for instance), but at same time it is intuitively
meaningful to talk about the constructions that apply the same method
to different objects. An example may be more illuminating. Consider the
canonical isomorphism sA,B : A × B → B × A defined by sA,B(a, b) = (b, a)
that shows the order in the product of two sets is not important. This map
clearly depends on the choice of A and B, but at the same time it is defined
in a uniform way of “swapping the elements in a pair” which dos not use the
sets in an essential way. Natural transformations is historically developed for
the sole purpose of capturing this very intuition of uniformity.

Example 1.6. The assignment s : idSet ⇒ P defined by sA : A → P (A)
as sA(a) = {a} is a natural transformation. It is natural simply because if
f : A→ B maps a ∈ A to f(a) ∈ B, then P (f) maps {a} to f [{a}] = {f(a)}.

3

A P (A) a {a}

B P (B) f(a) {f(a)}

f f [−]

{−}

{−}

f

{−}

{−}

f [−]

Example 1.7. The assignment i : idSet ⇒ (P ◦)◦ defined by iA : A→ PP (A)
as iA(a) = {S ⊆ A | a ∈ S} is a natural transformation:

A P (P (A)) a {S ⊆ A | a ∈ S}

B P (P (B)) f(a) {T ⊆ B | f(a) ∈ T}

f P ◦(P ◦(f))

iA

iB

f

iA

iB

P ◦(P ◦(f))

Note that P ◦(P ◦(f))(S) = (P ◦(f))−1(S) = {T ⊆ B | f−1(T) ∈ S} which
maps {S ⊆ A | a ∈ S} to {T ⊆ B | f(a) ∈ T}.

Example 1.8. Let Ex : Set×Set→ Set×Set be the exchange functor, i.e,
Ex(A,B) = (B,A) and Ex(f, g) = (g, f) and (−)×(−) : Set×Set→ Set be
the product functor. Then, the assignment s : (−)× (−)⇒ [(−)× (−)] ◦Ex
defined by s(A,B) : A × B → B × A as sA×B(a, b) = (b, a) is a natural
transformation:

A×B B × A (a, b) (b, a)

C ×D D × C (f(a), g(b)) (g(b), f(a))

f×g g×f

s(A,B)

s(C,D)

f×g

s(A,B)

s(C,D)

g×f

Exercise 1.9. Prove that α : ((−)× (−))× (−)⇒ (−)× ((−)× (−)) defined
by αA,B,C : (A×B)×C → A×(B×C) such that αA,B,C((a, b), c) = (a, (b, c))
is a natural transformation.

Example 1.10. The assignment (−)−1(1) : Hom(−, 2)⇒ P ◦(−) defined by

4

f 7→ f−1 is a natural transformation:

Hom(B, 2) P (B) g g−1(1)

Hom(A, 2) P (A) gf (gf)−1(1)

(−)◦f f−1(−)

(−)−1(1)

(−)−1(1)

(−)◦f

(−)−1(1)

(−)−1(1)

f−1(−)

Example 1.11. The assignment (−)(0) : Hom(1,−) ⇒ idSet defined by
g 7→ g(0) is a natural transformation:

Hom(1, A) A g g(0)

Hom(1, B) B fg fg(0)

f◦(−) f

(−)(0)

(−)(0)

f◦(−)

(−)(0)

(−)(0)

f

Similarly, for the category of groups, we have:

Hom(Z, G) U(G) g g(1)

Hom(Z, H) U(H) fg fg(1)

f◦(−) f

(−)(1)

(−)(1)

f◦(−)

(−)(1)

(−)(1)

f

where U : Grp → Set is the forgetful functor, (−)(1) : Hom(Z,−) ⇒ U
defined as g 7→ g(1). We also have the same phenomenon in VecR, i.e.,

Hom(R, V) U(V) g g(1)

Hom(R,W) U(W) Tg Tg(1)

f◦(−) T

(−)(1)

(−)(1)

T◦(−)

(−)(1)

(−)(1)

T

5

