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1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. Let G be a group. Recall that a G-action is a group homo-
morphism from G to Aut(X), where Aut(X) is the group of all bijections on
the set X. A morphism between two G-actions is a function φ : X → Y such
that φ(F (g)(x)) = F ′(g)(φ(x)), for any g ∈ G and x ∈ X. Then, any G-
action is just a functor G→ Set and any morphism between two G-actions
is a natural transformation:

X = F (∗) F ′(∗) = Y

X = F (∗) F ′(∗) = Y

φ

φ

F (g) F ′(g)

Example 1.2. Let (−)∗ : VecR → VecopR be the functor mapping V to
V ∗ = {T : V → R | T is linear} and S : V → W to (−) ◦ S : W ∗ → V ∗.
Then, the assignment i : idVecR ⇒ ((−)∗)∗ defined by iV (v) : Hom(V,R)→ R
as iV (v)(T ) = T (v) is a natural transformation:

V V ∗∗ v [S 7→ S(v)]

W W ∗∗ T (v) [R 7→ R(T (v))]

T T ∗∗

iV

iV

T

iV

iW

T ∗∗

because, if we spell out the definition of T ∗∗ : V ∗∗ → W ∗∗, we see T ∗∗(F )(f) =
F (f ◦ T ), where F ∈ Hom(V,R)→ R and f ∈ Hom(W,R).
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Remark 1.3. It is well-known that any finite-dimensional vector space V is
isomorphic to its dual V ∗, using the map αV (v) = v̂, where v̂(w) = 〈w, v〉 in
which 〈−,−〉 is the usual inner product. This transformation is not natural,
simply because the functors idVecR : VecR → VecR and (−)∗ : VecR → VecopR
don’t have the same codomain. One may find this reason quite artificial, as
the map iV seems quite natural, indeed. To address this issue, let us restrict
ourselves to the subcategory of VecR, where all morphism are isomorphisms.
Denote this subcategory by iVecR. Then, it is possible to make the directions
right, using the functor inv : iVecR → iVecopR that fixes the objects and maps
any isomorphism to its inverse. Now, we have the following possibly natural
transformation:

iVecR iVecopR

(−)∗

inv

α

However, it is still not natural, as if we check the naturality condition, it
requires:

W W ∗ w [u 7→ 〈u,w〉]

V V ∗ T−1(w) [v 7→ 〈v, T−1(w)〉]

T−1 (−)◦T

αW

αV

αW

αV

T−1 (−)◦T

meaning, 〈T (v), w〉 = 〈v, T−1(w)〉, which is not the case. One can easily check
that this equation holds for any T : V → W that preserves the inner product.
Therefore, if we restrict the categories more to invertible linear maps that
preserve inner product (orthogonal transformations), then our assignment α
finally will be a natural transformation. Note that this restricted category
actually captures the Euclidean geometry as it works with maps that respect
distance and angle. Therefore, we can read the naturality of α as “angles are
natural in Euclidean geometry, while they are not in linear world”.

Example 1.4. (No-deleting theorem) There is only one natural transforma-
tion α : (−)×(−)→ pr1. This natural transformation is the trivial αB,A = ∅.
First, it is clear that this assignment is a natural transformation. Conversely,
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assume such an α exists. Then, we have the following commutative diagram:

B × A A

B × A A

αB,A

αB,A

S×R R

for any set A and B and any relations R ⊆ A2 and S ⊆ B2. Set R = {(a, a) |
a ∈ A} and S = ∅. Then, αB,A must be empty. It is useful to check why the
usual projection function does not work in this case. If we spell out all the
details, the reason boils down to the fact that the relations can be partial.

Example 1.5. (No-cloning theorem) There is only one natural transforma-
tion α : idRel → (−)2, where (−)2 : Rel → Rel is defined by A 7→ A2 on
objects and R 7→ R × R on morphisms. This natural transformation is the
trivial αA = ∅. First, it is clear that this assignment is a natural transforma-
tion. Conversely, assume that α : idRel → (−)2 is a natural transformation.
Then, we have the following commutative diagram:

{0} {0}2

A A2

α{0}

αA

R R2

for any set A and any relationR ⊆ A×{0}. First, note that α{0} ⊆ {0}×{0}2.
As {0}×{0}2 has just one element, then either α{0} = ∅ or α{0} = {0}×{0}2.
The first case implies that αA = ∅, for every A. If RA is non-empty, then
there exists (a, (b, c)) ∈ αA for some a, b, c ∈ A. Define R = {(0, a)}. Then,
(0, (b, c)) ∈ αa ◦ R, while R2 ◦ α{0} is empty. Hence, αA = ∅. For the second
case, we prove that α{0} = {0} × {0}2 is impossible. First, set R = {(0, a)}.
Then, R2 ◦ α{0} = {(0, (a, a))}. Therefore, αA ◦ R = {(0, (a, a))} which
means (a, (a, a)) ∈ αA. Therefore, {(a, (a, a)) | a ∈ A} ⊆ αA. It is easy to
prove that αA can not have any other element and hence αA = {(a, (a, a)) |
a ∈ A}. Now, set A = {0, 1} and R = {0} × A. We have αA ◦ R =
{(0, (0, 0)), (0, (1, 1))}. But, R2 ◦ α{0} = {0} × A2 which is a contradiction.
It is useful to check why the usual function a 7→ (a, a) does not work. If we
spell out all the details, the reason boils down to the fact that the relations
can be multi-valued.
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Philosophical Note 1.6. The simplest category that encodes the quantum
behavior is Rel, in which sets encode the set of states and relations encode
the non-deterministic processes that change one state to another. In this
sense, the previous two theorems are the baby version of the entanglement
phenomenon in quantum theory by which we know it is impossible to clone or
delete a quantum bit of information. The reason for the simplest case of Rel
may be explained by the fact that relations can be partial or multi-valued
and this makes the elements of the set somewhat entangled to each other.
The more advanced version states that there is no natural transformation
αV : V → V

⊗
V or βV,W : V

⊗
W → V on vector spaces. For the real

version, replace vector spaces by Hilbert spaces and linear maps by bounded
linear maps.

Exercise 1.7. Let List : Set → Set be the functor mapping any set X to
the set of all finite sequences of the elements of X and mapping any func-
tion f : X → Y to the function List(f) : List(X) → List(Y ) defined by
List(f)(σ0 · · ·σn) = f(σ0) · · · f(σn). Show that the assignment i : ∆1 → List
defined by iX : {0} → List(X) as iX(0) = ε is a natural transformation,
where ε is the sequence with the length zero. Moreover, show that the assign-
ment m : List×List→ List defined by mX : List(X)×List(X)→ List(X)
as the concatenation operation is a natural transformation.

Example 1.8. Let B be the groupoid of finite sets and bijections. De-
fine Aut : B → Set as the functor mapping any set X to the set of all
bijections on X and mapping a bijection f : X → Y to the function
f ◦ (−) ◦ f−1 : Aut(X) → Aut(Y ). Moreover, define Ord : B → Set as the
functor mapping any set X to the set of all finite sequences of the elements
of X in which any element of X occurs exactly once. For the morphisms,
map a bijection f : X → Y to the function Ord(f) : Ord(X) → Ord(Y )
defined as Ord(f)(σ0 · · ·σn) = f(σ0) · · · f(σn). Then, there is no natural
transformation α : Aut → Ord. Because, if there is such a transformation,
then:

Aut(X) Ord(X)

Aut(X) Ord(X)

Ord(f)f◦(−)◦f−1

αX

αX

for any set X and any bijection f : X → X. Set X as a set with at least
two elements and f : X → X as a non-identity bijection. Now, apply the
diagram on idX ∈ Aut(X). We have αX(fidXf

−1) = Ord(f)(αX(idX))
which means αX(idX) = Ord(f)(αX(idX)). This implies that αX(idX) is a
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list of all the elements of X that does not change under the application of f .
Hence, f must be the identity function which is a contradiction. Note that
in this example, although for any finite set X, the sets Ord(X) and Aut(X)
are isomorphic, there is no natural transformation between Aut and Ord as
construction methods. Specially, it means that the isomorphisms between
Ord(X) and Aut(X) is not natural in X.

Example 1.9. Let Rin be the category R of Example ??, restricted to
injective homomorphism. Let GLn : Rin → Grp be the functor mapping
any object R to the group of all invertible n× n matrices with entries in R
and any morphism f : R → S to GLn(f) : GLn(R) → GLn(S) defined as
GLn(f)(A) = f [A], where f [A] is the result of the application of f on all the
entries of A. Note that GLn(f)(A) is well-defined, because, if A is invertible,
then so is f [A]. The reason is that if f(det(A)) = det(f [A]) = 0 = f(0), then
det(A) = 0, as f is injective which implies that A is not invertible. Moreover,
note that the assignment det : GLn ⇒ GL1 is a natural transformation. The
reason is that the determinant of a matrix is a polynomial in the entries of
the matrix and hence it is preserved by the morphisms of R:

GLn(R) R

GLn(S) S

fGLn(f)

detR

detS

Example 1.10. Let U : Mon→ Set and F : Set→Mon be the forgetful
and the free functors, respectively. Then, the assignments i : idSet ⇒ UF
mapping a set A to the function iA : X → UF (X) defined by iA(x) = x
is a natural transformation. Similarly, the assignments p : FU ⇒ idMon

mapping a monoid M to the homomorphism pM : FU(M)→ M defined by
pM(σ0 · · ·σn) = σ0 × · · · × σn is a natural transformation.

Example 1.11. Let C be a category and f : A → B be a map. Then, the
assignment yf : Hom(−, A) → Hom(−, B) defined by (yf )C = f ◦ (−) is a
natural transformation:

Hom(D,A) Hom(D,B)

Hom(C,A) Hom(C,B)

f◦(−)

f◦(−)

(−)◦g (−)◦g
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