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1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. Let C be a category, F : C → D be a functor. Then, the
assignment α : F ⇒ F defined by αC = idF (C) is a natural transformation,
because:

F (C) F (C)

F (D) F (D)

F (f)F (f)

idF (C)

idF (D)

Example 1.2. Let C and D be two categories, F,G,H : C → D be three
functors and α : F ⇒ G and β : G ⇒ H be two natural transformations,
then β ◦α : F ⇒ H, defined by (β ◦α)C = βCαC is a natural transformation:

C D

H

F

G

α

β

Because in the following diagram:

F (C) G(C) H(C)

F (D) G(D) H(D)

αC βC

αD βD

F (f) G(f) H(f)
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if both of the squares commute, the bigger rectangular also commutes.

Definition 1.3. Let C and D be two categories. Then, the functors from C to
D as the objects together with the natural transformations as the morphisms
constitutes a category. This category is denoted by DC and is called a functor
category.

Remark 1.4. Note that if C and D are both small categories, then DC is
also small. If C is small and D is locally small, then DC is locally small. But
if C and D are both locally small, there is no reason for DC to be locally
small and it is usually not the case.

Example 1.5. The category of variable sets Set→, the category of dynamical
spaces Set� and the category of G-actions are the functor categories Set2,
SetS and SetG, respectively, where S is the following category:

•

Note that Set� is just Set(N,+). As two other examples, note that C→ is the
functor category C2 and if we consider the set n = {0, · · · , n−1} as a discrete
category, Cn is essentially the same as the category C × C × · · · C, where the
number of C’s is n.

Philosophical Note 1.6. There is a philosophical shift in considering func-
tor categories, as it treats functors or more philosophically “construction
methods” as the objects of the discourse, themselves.

Example 1.7. The category of quivers is the functor category Set⇒. In a
similar way, the category of 2-quivers is Set∆nd

2 , where ∆nd
2 is the following

category:
• • •

Similarly, we can imagine the category of n-quivers as Set∆nd
n , where ∆nd

n is
the following category:

• • • • • •

with n+1 objects and i+1 primitive morphisms between the ith and i+1th
objects, counted from the right. What is the category of ∞-quivers?
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The previous examples lead to a general notion of diagram. Intuitively,
a diagram is a set of objects together with a set of morphisms between them
in a given category C. More formally, though:

Definition 1.8. Let J and C be two categories. Then, a functor D : J → C
is called a diagram in C with shape J or a J -diagram in C. Therefore, the
functor category CJ is called the category of diagrams in C with shape J .

Example 1.9. (Algebra) What is an algebraic construction, only using the
algebraic concepts? It is reasonable to assume that an algebraic construction,
whatever it is, must be available for all the algebras in consideration and it
must respect the algebraic maps. In this sense, if we choose the category R
as the world of algebra, then the functor category SetR can be considered as
the world of all algebraic constructions. In this category we have all VI ’s (the
roots of the polynomial equations in I). In this sense, VI may be considered
as the extension of the set of integers by the roots of the given polynomials
in I. This mindset is the extension of the usual approach of extending the
number systems by adding the solutions of the equations and hence we can
think of SetR as the ultimate completion of the algebra Z. Interestingly,
there are more algebraic notions than what we get by adding the roots of
polynomials. For instance, the functor P : R → Set defined by P(R) = {L ⊆
R2 | L is a line} and P(f)(L) = f(L) is a functor, where by a line L ⊆ R2

we mean the set of the roots of a linear equation ax + by = 0, for a, b ∈ R
and by f(L) we mean the line define by the equation f(a)z+ f(b)w = 0. We
have to check that P is well-defined, as the equation of a line is not uniquely
determined by the line itself. However, it is easy to see that the equations
ax+ by = 0 and cx+ dy = 0 define the same line iff (a, b) = λ(c, d), for some
λ ∈ R. This proves that P is well-defined. The functor P corresponds to the
projective space P(Z), which is again a completion of Z by adding the points
at infinity it lacks.

Example 1.10. (Topology) Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the
unit circle with its usual topology. First, let us show that it is impossible to
find a continuous way to compute the angle between the point a ∈ S1 as a
vector and the positive part of the x-axis. Formally, it means that there is
no continuous function Θ : S1 → R such that:

S1 R S1
Θ p

idS1

where p : R→ S1 is the continuous function p(θ) = (cosθ, sinθ), mapping an
angle to its corresponding point. The reason is again the argument we used
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for Brouwer’s fixed point theorem. Since π1 : Top∗ → Grp is a functor, if
we pick an arbitrary a ∈ S1, we have:

π1(S1, a) π1(R,Θ(a)) π1(S1, a)
π1(Θ) π1(p)

idπ1(S1,a)

which is impossible, as π1(S1, a) is isomorphic to Z, while π1(R,Θ(a)) is a
singleton group.
Although, we just provided a proof, it feels paradoxical that a such continuous
map does not exist. The reason is that if we restrict ourselves to a local
neighborhood U of a point on S1, there is clearly a continuous angle map on
U and since the continuity is a local notion, we expect to have a continuous
map in the end. What is wrong? The problem is that the angle is continuous
as long as we consider it as a multi-valued function. Let us explain why by
Starting from (1, 0) and moving along the circle counterclockwise. If we set
the angle zero at the beginning, then it continuously grows from zero to
2π. Reaching the starting point again, if we want to remain continuous, the
angle should be 2π which is impossible, as it has been set to zero before. The
space is too twisted to have a continuous single-valued angle. To capture the
true nature of the angle function, we must accept that it really is a multi-
valued function, defined as an assignment mapping the point a ∈ S1 to the
set {θ ∈ R | p(θ) = a}. Now, based on the argument we had, we expect Θ
to be continuous. But, what does it mean to have a continuous set-valued
function? Here is an idea. For the usual functions, we can observe that
they are continuous iff their restrictions to the subspaces of the space can
be glued together. We can use the same idea here to say that a set-valued
function is continuous if its restrictions to the subspaces of the space can be
glued together in a reasonable generalized sense. For now, our machinery is
not mature enough to talk about this gluing notion. However, we are ready
to appreciate the fact that this generalized notion of continuity, whatever it
is, needs the set-valued angle function to be defined on all subspaces of the
space S1 and not just on the points. In our case, the natural definition is
Θ : P (S1)op → Set defined by Θ(X) = {f : X → R | pf = id}. This Θ is a
functor, if we map the inclusion function in P (S1) to the restriction function

in Set. Hence, it is reasonable to think of the category SetP (S1)op as the
world of all multi-valued functions inside of which the world of continuous
multi-valued functions exists.

Example 1.11. (Logic) Let Φ = {p ↔ q, q ↔ r, r ↔ s, s ↔ ¬p} be a set
of formulas. Clearly, Φ is inconsistent and has no models. Similar to the
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previous example, here again, the situation is a bit paradoxical. First, the
set is locally consistent in the following sense: for any proper subset X of
the set {p, q, r, s}, the part of Φ that constructed only from the atoms in X,
denoted by ΦX , is consistent. Secondly, if a valuation does not satisfy the
whole set, it must behave inconsistent at some atom, where it must be forced
to both zero and one. Hence, the inconsistency must be a local notion, while
the set is locally consistent. To see how it is similar to the previous example,
let us try to find a model for Φ. If we set the value a ∈ {0, 1} for the atom p,
then to satisfy Φ, the atoms q, r and s must have the same value a. Then,
reaching p again, we can see that it must have the value 1 − a to remain
consistent while the value has been set to a. The set Φ is too twisted to have
a single-valued model:

•

•

•

•

•

•

•

•

•

•
•

•

r
q

p
s

0

1

0

1

1

0
1

0

Again, one can say that Φ has a model, but this model is multi-valued. To
capture that multi-valued nature, we must use functors again. Define the
generalized model, not only on points, but also on all subsets. We have V :
P ({p, q, r, s})op → Set defined by V (X) = {v : X → {0, 1} | v satisfies ΦX}.
This is again a functor. Hence, it is reasonable to think of SetP ({p,q,r,s})op as
the world of all generalized models for the formulas constructing from these
atoms.
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Philosophical Note 1.12. One might object that as joyful as the previous
approach to the inconsistencies is, it is simply empty, as it is actually im-
possible to have a real inconsistency in the real world. First, in our weak
defence, it is worth mentioning that in practice, it usually happens that we
have some local mistakes in some extremely huge database and we obviously
do not want to get rid of the whole dataset because of a local mistake proba-
bly even in some other far way parts of our database. This twisted valuations
is a natural way to handle such locally consistent yet globally inconsistent
database. In our strong defence, though, these inconsistencies really happen
in the nature and even better, the previous example is the logical version of
a real situation. More precisely, assume that p, q, r and s are four quan-
tum bits in a way that {p, q}, {q, r}, {r, s} and {s, p} are co-measurable,
while it is impossible to measure all the quantum bits altogether. One may
object that this does not solve the problem, as we can measure any two co-
measurable bits to see that the value of p must be both zero and one. There
are two ways to explain that. First, that the quantum bits and hence the
physical quantities do not have any objective value, independent from the
context and the measurements we do to observe them. Therefore, in differ-
ent measurements, the quantum bit value may become zero or one. More
provocatively, we can solve the inconsistency by saying that the objective real
world does not exist. The second approach, though is that to accept the new
generalized valuations as some sort of new reality. In this apparently better
scenario, we might say that our usual models for reality are insufficient and
we must simply model the world by these multi-valued quantities. The price
to pay is now the non-locality of the reality, as these new models are global
and twisted.
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