
Mathematical Structuralism, S13

Amir Tabatabai

March 11, 2021

1 Category Theory (continued)

1.1 Functors and Natural Transformations

Example 1.1. (Set Theory) One of the prominent foundational paradigms
in mathematics is Brouwerian intuitionism. Among many other things, the
paradigm believes that mathematics is just a mental story told by a cre-
ative subject to herself and like any other story, this story is also changing
through time by adding new constructions and proving new properties. In
this sense, the truth in mathematics is temporal and dynamic and hence can
be characterized by our variable sets in SetC, where C is a suitable category
that encodes the growth of time. There are many valid formalizations of this
notion of time. For instance, the simplest formalization that comes to mind
is the set of all natural numbers and its usual order encoding the instances
and the arrow of time. However, in this example we focus on Brouwer’s own
understanding of time:

This perception of a move of time may be described as the falling
apart of a life moment into two distinct things, one of which gives
way to the other, but is retained by memory. If the twoity thus
born is divested of all quality, it passes into the empty form of
the common substratum of all twoities. And it is this common
substratum, this empty form, which is the basic intuition of math-
ematics. [?]

To formalize this notion of time, we use [n] = {0, 1, . . . , n− 1}, for n ≥ 0,
as the objects to represent the nth moment of time and for any n ≤ m,
we define the morphisms from [n] to [m] as a function f : [m] → [n] where
f(i) = i, for any i < n. The equation f(i) = j represents the creation process
of the moments by encoding the fact that the moment i has been created

1



from the moment j. Therefore, the condition f(i) = i just says that when we
are at the nth moment, the moment i < n is fixed throughout the creation
process and only the moments greater than or equal to n are newly created.
As it is expected, the category SetC leads to an interesting intuitionistic
dynamic version of sets. What is surprising, though, is the fact that some
of these variable growing sets are in some sense completed and the category
of these completed sets satisfies all classical axioms of set theory except the
axiom of choice. Hence, it can serve as a model to prove the unprovability
of the axiom of choice from ZF.

1.2 Baby Erlangen extended

How to interpret the objects of the category SetC
op

? We saw that a functor
F : Cop → Set is a Cop-variable set or a realization of the category Cop using
the usual concrete sets. Now, we add another interpretation to the league.
Interpret C as the category of some sort of interesting yet simple objects and
then read a functor F : Cop → Set as an ideal object identifiable by the set of
the “maps” going from the simple object A in C to the ideal object F . Note
that the category C is considered to be too small with too simple objects to
have the ideal object F and hence the set F (A) of “maps” from A to F is
not a priori meaningful. However, whatever these sets are, they must behave
in a functorial way and hence it is reasonable to think of any functor as the
way we describe the ways the category of lenses in C looks inside of F . To
have an intuitive example, we can think of C as the category with a single
object R and continuous functions over it. Then, we can interpret C as the
category consisting of one flat one-dimensional line and the new ideal object
as the circle S1 that is not flat and hence lives outside of C. However, as the
circle is locally homeomorphic with R, we can identify it by the continuous
functions from R to it. In other words, if I know all possible maps from R to
S1, then I know the space S1.
Now, as we interpret a functor F as a generalized ideal object C-object,
it is reasonable to replace even the simple objects of C by the functors that
capture their behavior. In other words, if functors are ideal objects, the usual
objects must be among them. as well. This is what the Yoneda functor does:

Definition 1.2. (Yoneda functor) Let C be a locally small category. Define
the Yoneda functor y : C → SetC

op

by yA = Hom(−, A) on objects and
on the morphism f : A → B by yf : Hom(−, A) → Hom(−, B), where
(yf )C : Hom(C,A) → Hom(C,B) defined by (yf )C(g) = fg. A functor
F : Cop → Set is called representable, if there exists an object A in C such
that F ∼= yA.

2



Theorem 1.3. The Yoneda functor is actually a functor.

Proof. First, recall that the map yf is a natural transformation, for any map
f : A→ B, as we have:

Hom(D,A) Hom(D,B)

Hom(C,A) Hom(C,B)

(yf )D=f◦(−)

(yf )C=f◦(−)

Hom(g,A)=(−)◦g Hom(g,B)=(−)◦g

Now, to prove that y is a functor, we need to show that yid = id and
yfg = yfyg. Both claim are clear by the definition of the Yoneda functor
on morphisms.

Remark 1.4. Changing C to Cop, it is equally natural to have the dual
functor y(−) : Cop → SetC, defined by yA = Hom(A,−) and (yf )C(g) = gf .
It is also customary to call a functor F : C → Set representable if F ∼= yA,
for some object A in C.

Example 1.5. The functors idSet : Set → Set and P ◦ : Setop → Set are
representable, because idSet ∼= Hom(1,−) and P ◦ ∼= Hom(−, {0, 1}).

Example 1.6. The forgetful functor U : Top → Set is representable, be-
cause U ∼= Hom(1,−), where 1 = {0} is the trivial topological space. Also,
the functor O : Topop → Set defined on objects by O(X) as the set of
the open subsets of X and on morphisms by O(f) = f−1, is representable,
because O ∼= Hom(−, S), where S is the Serpienski space that is the space
{0, 1} with the opens {∅, {1}, {0, 1}}.

Example 1.7. The forgetful functor U : Mon → Set is representable,
because U ∼= Hom(N,−). Similarly, the forgetful functors V : Grp → Set
and W : VecR → Set are representable, because V ∼= Hom(Z,−) and
W ∼= Hom(R,−).

Example 1.8. Let A and B be two fixed sets. The functor Hom(A,−) ×
Hom(B,−) : Set→ Set is representable, because Hom(A,−)×Hom(B,−) ∼=
Hom(A + B,−).

Example 1.9. Let G and H be two fixed groups. The functor Hom(−, G)×
Hom(−, H) : Grpop → Set is representable, because Hom(−, G)×Hom(−, H) ∼=
Hom(−, G×H).

3



Example 1.10. The functor Tn : Grp → Set mapping any group G to
{x ∈ G | xn = e} and any homomorphism to its appropriate restriction is
representable, because Tn

∼= Hom(Zn,−).

Example 1.11. Let U and V be two fixed vector spaces. Then, the func-
tor BilinU,V : VecR → Set defined by BilinU,V (W ) = {T : U × V →
W | T is bilinear} and composition, is representable, because BilinU,V

∼=
Hom(U ⊗ V,−).

Philosophical Note 1.12. The last example has some special illuminating
role. Pedagogically, tensor product with its relatively complex construction
is hard to grasp for the newcomers. To solve this issue, sometimes it is
helpful to replace its detailed uninformative construction with the functor it
represents, namely BilinU,V . This is a point in usual Borbaki-style algebra
that we need to make a shift from what the objects actually are to what
they practically do. We can safely pretend that the only thing that we know
about the tensor product U ⊗V is that it is a vector space with the property
that the linear maps going out of it naturally correspond to the bilinear maps
going out from U × V . This technique of replacing the huge construction of
an object with what it does is the simplest example of what we can call the
structuralism in action.

Highlighting the importance of representables, it is now natural to ask if
there is a criterion to check whether a given functor is representable or not.
We approach this problem slowly. First, three examples:

Example 1.13. The functor ∆2 : Set → Set mapping all objects to 2 =
{0, 1} and all morphisms to identity is not representable. Because, if ∆2

∼=
Hom(A,−), then since Hom(A,B×C) ∼= Hom(A,B)×Hom(A,C), we must
have ∆2(B × C) ∼= ∆2(B)×∆2(C) which means {0, 1} × {0, 1} ∼= {0, 1}.

Example 1.14. Let G and H be two groups such that there are at least two
homomorphisms from G to H. Then, the functor Hom(−×G,H) : Grpop →
Set is not representable. Because, if Hom(− × G,H) ∼= Hom(−, K), then
since Hom({e}, K) has just one element, the set Hom({e}×G,H) ∼= Hom(G,H)
must have one element which is impossible by assumption.

Example 1.15. The functor Sub : Grpop → Set mapping a group to
the set of its subgroups and a morphism to the inverse image is not rep-
resentable. Because, if Sub(−) ∼= Hom(−, K), then since Hom(G⊕H,K) ∼=
Hom(G,K)×Hom(H,K), we have to have Sub(G⊕H) ∼= Sub(G)×Sub(H).
The last statement is false, because Sub(Z2)× Sub(Z2) has exactly four ele-
ments while Sub(Z2⊕Z2) has at least five elements including all the elements
of Sub(Z2)× Sub(Z2) plus the subgroup {(0, 0), (1, 1)}.

4



In the general situation, there is a criteria to check the representability of a
functor, imitating what we saw in the previous two examples. The main idea
is that the Hom functor preserves some sort of construction (in our examples
product, the “smallest possible” object, and the direct sum, respectively) and
if a functor is representable, it must preserve these structures, as well. We will
introduce these structures to see when this preservation can be even sufficient
for representability. For now, let us focus our main story of interpreting
functors as ideal objects.

5


