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1 Category Theory (continued)
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So far, we have provided a way to interpret the objects of C as the ideal
objects embodied as functors. Now, we have two things to check. First, we
have to make sure that the behavior of these new copies in their new world is
the same as their behavior in their original world. This means that we have
to show that the Yoneda functor is a full and faithful functor, also called
an embedding. Secondly, if F : Cop → Set is an ideal object and if F (A)
encodes the set of all “maps” from A to F , then moving to the new world of
SetC

op

where there is a copy of A, namely yA, and also there is a well-defined
notion of map from this copy to F , stored in Hom(yA, F ), we expect to have
a canonical isomorphism between Hom(yA, F ) and F (A). This expectation
is fortunately a theorem and it is called the Yoneda lemma. We first prove
this lemma and then we will use it to prove the fullness and faithfulness of
y : C → SetC

op

.
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Theorem 1.1. (The Yoneda lemma) The functors Hom(y(−),−) : Cop ×
SetC

op → Set and (−)(−) : Cop×SetC
op → Set are naturally isomorphic via

the maps αA,F : Hom(yA, F ) → F (A) and ᾱA,F : F (A) → Hom(yA, F )
defined by αA,F (β) = βA(idA) and [ᾱA,F (p)]C(f) = F (f)(p). Specially,
Hom(yA, F ) ∼= F (A), natural in A and F .

Proof. We have to show that α and ᾱ are natural transformations and for
each A and F the maps α(A,F ) and ᾱA,F are the inverse of each other in Set.
For the first, note that β = ᾱA,F (p) is a natural transformation because

Hom(D,A) F (D)

Hom(C,A) F (C)

βD

βC

Hom(g,A) F (g)

But F (g)βD(f) = F (g)F (f)(p) = F (gf)(p). For naturality, we just check
the naturality for α. The naturality of ᾱ will be the result of the fact that
it is the pointwise inverse of α. For α, we have to show that for any map
f : B → A and any γ : F ⇒ G:

Hom(yA, F ) F (A)

Hom(yB, G) G(B)

α(A,F )

α(B,G)

Hom(yf ,γ) G(f)γA=γBF (f)

It is not hard to prove the commutativity of the diagram and we will leave
this tiresome task to the reader. For the second part, note that any β ∈
Hom(ya, F ) is uniquely determined by βA(idA). The reason is the following
naturality diagram, for a map f : C → A:

Hom(A,A) F (A)

Hom(C,A) F (C)

βA

βC

Hom(f,A) F (f)

which implies that for any f : C → A, we have βC(f) = F (f)(βA(idA)).
This shows that ¯αA,FαA,F (β) = ᾱA,F (βA(idA)) = β as both ᾱ(βA(idA)) and
β on C and f are βC(f) = F (f)(βA(idA)). For the converse, we simply have
αA,F ᾱA,F (p) = F (idA)(p) = p.
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Corollary 1.2. (The Yoneda embedding) The functor y : C → SetC
op

is full
and faithful.

Proof. By the Yoneda lemma, the map ᾱA,yB : yB(A) = Hom(A,B) →
Hom(yA, yB) is a natural isomorphism. Computing ᾱA,yB , we see that

[ᾱA,yB(f)]C(g) = yB(f)(g) = fg = [yf ]C(g),

for any C and g : C → A. Hence, ᾱA,yB(f) = yf . Therefore, the map y(−) :
Hom(A,B)→ Hom(yA, yB) is a bijection which means that y : C → SetC

op

is a full and faithful functor.

Philosophical Note 1.3. Note that this embedding is a representation the-
orem stating that any abstract category can be seen as a category of variable
sets. This is useful, as the category SetC

op

is a category of sets with set-like
behavior. Hence, whenever we want to investigate something about C, we
can embed it into SetC

op

to have enough set-theoretic machinery. Then, if
we finally reach a representable functor, we can come back to the original
category we started with.

Corollary 1.4. (Uniqueness of the representing object) yA ∼= yB iff A ∼= B.
The same holds for y(−).

Proof. Since the Yoneda functor is full and faithful and for any such functor
F , we have F (A) ∼= F (B) iff A ∼= B, the claim follows.

Philosophical Note 1.5. From the philosophical point of view, the unique-
ness of the representing object means that the relative data of an object is
enough to identify it. Therefore, whenever it is convenient, we forget the
object and work with its functor.

Example 1.6. Using the relative behavior of tensor products, we prove that
it is commutative, i.e., U ⊗ V ∼= V ⊗ U and R⊗ V ∼= V . We have

Hom(U ⊗ V,W ) ∼= BilinU,V (W ) ∼= BilinV,U(W ) ∼= Hom(V ⊗ U,W )

natural in W . Hence, yU⊗V ∼= yV⊗U which implies U ⊗ V ∼= V ⊗ U . With
the same line of reasoning, we have

Hom(R⊗ V,W ) ∼= BilinR,V (W ) ∼= Hom(V,W )

natural in W . Hence, yR⊗V ∼= yV which implies R⊗ V ∼= V .
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We will see more applications later, but first, we want to use our new
machinery to define some new categorical objects by identifying the relative
behavior that we expect them to have. Then, the uniqueness of the repre-
senting object ensures that the defined object is unique up to isomorphism.
To that purpose, it is convenient to provide an equivalent characterization
of the representable functors by one of the core notions of category theory,
namely the universality.

Theorem 1.7. (Universal elements) A functor F : Cop → Set is repre-
sentable iff there exists an object A in C and an element a ∈ F (A) such that
for any object B and any element b ∈ F (B), there exists a unique f : B → A
such that F (f)(a) = b. The object A and the element a ∈ F (A) are called
the universal object and the universal element, respectively.

Proof. By Yoneda lemma, an element a ∈ F (A) corresponds to the natural
transformation β : yA ⇒ F , defined by βC(f) = F (f)(a). Note that β is a
natural isomorphism iff βC is an isomorphism for all C. The latter is exactly
what the universality condition says.

Philosophical Note 1.8. If we read F as a structured set, then a ∈ F (A)
may be interpreted as the generic point of the generic structure that can act
as all structures and all elements generically.

Remark 1.9. Note that the universal pair (A, a) if exists is unique up to
isomorphism, i.e., if both (A, a) and (B, b) are universal for F , then there
exists an isomorphisms f : B → A such that F (f)(a) = b. Why?

Example 1.10. For the functor P ◦ : Setop → Set, the universal element is
{1} ∈ P ({0, 1}). The universality condition states that any set U ∈ P (X)
is obtainable by applying P ◦(f) = f−1 on {1}, for a unique f : X → {0, 1}.
This unique function is the characteristic function of U in X.

Example 1.11. For the forgetful functors U : Mon → Set, V : Grp →
Set and W : VecR → Set, the universal elements are 1 ∈ U(N) = N,
1 ∈ V (Z) = Z and 1 ∈ W (R) = R. We just explain the case of monoids.
The reason is that for any element m ∈ U(M), there exists a unique monoid
homomorphism f : N→M such that U(f)(1) = f(1) = m.

Example 1.12. For the functor Hom(A,−) × Hom(B,−) : Set → Set,
the universal element is (i0, i1) ∈ Hom(A,A+ B)×Hom(B,A+ B), where
i0 : A → A + B is defined by i0(a) = (0, a) and i1 : B → A + B is defined
by i1(b) = (1, b). The reason is that for any set C and any element (f, g) ∈
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Hom(A,C) × Hom(B,C), there exists a unique map h : A + B → C such
that [Hom(A, h)×Hom(B, h)](i0, i1) = (hi0, hi1) = (f, g), i.e.,

D

A A+B B
i0 i1

f g
h

Example 1.13. For the functor Hom(−, G)×Hom(−, H) : Grpop → Set,
the universal element is (p0, p1) ∈ Hom(G×H,G)×Hom(G×H,H), where
p0 and p1 are the projections. The reason is that for any group K and
any element (f, g) ∈ Hom(K,G) × Hom(K,H), there exists a unique map
h : K → G×H such that [Hom(h,G) ×Hom(h,H)](p0, p1) = (p0h, p1h) =
(f, g), i.e.,

K

G G×H Hp0 p1

f g
h

Example 1.14. For the functor BilinU,V : VecR → Set, the universal ele-
ment is i ∈ Bilin(U⊗V ), where i : U×V → U⊗V is defined by the bilinear
function i(u, v) = u⊗v. The universality condition says that for any element
f : BilinU,V (W ) = {f : U × V → W | f is bilinear}, there exists a unique
linear map g : U ⊗ V → W such that Bilin(g)(i) = gi = f , i.e.,

U × V

U ⊗ V Wg

i
f
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