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1 Category Theory (continued)

1.1 Baby Erlangen extended

Philosophical Note 1.1. There are two ways to interpret a function f :
A→ B in Set. First, as an A-indexed element of B or simply an A-element
of B, reading a parameter a ∈ A to output f(a) ∈ B:

•
•
•
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Here we are labelling the elements of B by A. In the second interpretation,
we read a map f : A→ B as a B-indexed family of subsets of A, a B-subset
of A or just a fibration over B, mapping b ∈ B to the set (fiber) f−1(b) ⊆ A:
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Here we are stacking the elements of A by B. Thanks to Yoneda embed-
ding, it is reasonable to lift these interpretations to any arbitrary category,
by interpreting objects as variable sets and morphisms as variable functions.
This way, we can interpret a map f : A → B as some sort of A-element of
B, reading a parameter a : X → A to output fa : X → B or as some sort of
B-part of A or a fibration over B, reading a parameter b : X → B to output
the fiber {a : X → A | fa = b}.

These two interpretations are useful in different settings. Usually, in a
category, we have some small simple known objects and to know any arbitrary
object A, we investigate the maps to/from A from/to these simple objects.
For instance, in geometry, we investigate a geometrical object by the maps
from the Euclidean cubes or the higher dimensional balls into it, while in
algebra, we study an algebraic object by more relations we can put on its el-
ements transforming the algebra to simpler algebras of the same kind. These
two dual approaches is what distinguish geometrical from algebraic way of
thinking. In some cases, it is possible to see both of the approaches at the
same time. For instance, living in Set, as {0} and {0, 1} are simple, we can
study X geometrically by all the maps going from {0} to X, i.e., its elements,
while investigating X by the maps from X to {0, 1} is the algebraic study
of X via the boolean algebra of its subsets. A similar situation happens in
algebraic geometry, logic and functional analysis. In the first, we can study
a polynomial equation either by working in the polynomial algebra modulo
the equation or by the zeros the equation has in some choice of simple rings
such as algebraically closed fields. In logic we have syntax versus semantics
and in functional analysis we can study a topological space either by looking
inside the topology or by working with its function algebra as the world of
measurable quantities over the space.

Finally, note that using these two interpretations, if we interpret A as our
interesting object in a category C, the slice category C/A is the category of all
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fibration over A, while the coslice category A/C is the category of A-enhanced
objects having a distorted copy of A inside.

Now, we are ready to define some categorical constructions by repre-
sentability or equivalently by universality.

Definition 1.2. An object A is called terminal if it represents the functor
∆1 : Cop → Set, i.e., Hom(B,A) ∼= {0}, natural in B. Equivalently, A is
terminal if for any B, there exists a unique map form B to A. Since this
object is unique up to isomorphism, we denote it by 1.

Example 1.3. In categories Set, Grp, Ab, VectR and Cat, the terminal
object exits and is {0}, interpreted respectively. In a poset (P,≤), the termi-
nal object is by definition an element a ∈ P such that for any b ∈ P , we have
b ≤ a. Hence, the terminal object is the greatest element of the poset. Any
non-trivial monoid as a category does not have a terminal object, because
if the only object of a monoid is terminal, then there must be exactly one
morphism over that object.

Example 1.4. In the category C/A, the terminal object is idA : A→ A, as
for any object g : B → A, there is exactly one morphisms g : B → A such
that idAg = f and that morphism is f itself.

B A

A

idAf

g

In Set/A the terminal object idA : A → A corresponds to the fibration
a 7→ {a}.

Example 1.5. In the category SetC
op

, the terminal object is ∆1 : Cop → Set,
as for any functor F : Cop → Set, there is exactly one natural transformation
α : F ⇒ ∆1, where αC : F (C)→ {0} maps everything to 0.

Definition 1.6. Let A and B be two objects. An object C together with a
natural isomorphism α : Hom(−, C) ∼= Hom(−, A)×Hom(−, B) is called a
product of A and B. Equivalently, C together with two morphisms p0 : C →
A and p1 : C → B is called a product if for any object D and any morphisms
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f : D → A and g : D → B, there exists a unique map h : D → C such that:

D

A C Bp0 p1

f g
h

The product of A and B is denoted by A×B. It is possible to extend products
from the binary case to any arbitrary family. More precisely, if I is a set and
{Ai}i∈I is a family of objects in C, by their product we mean an object C
together with a natural isomorphism α : Hom(−, C) ∼= Πi∈IHom(−, Ai).
Equivalently, it is an object C with maps pi : C → Ai such that for any
other family of maps fi : D → Ai, there exists a unique map h : D → C such
that pih = fi, for any i ∈ I. The product of {Ai}i∈I is denoted by Πi∈IAi.

Example 1.7. In categories Set, Top, Grp, Ab, VectR and Cat, the
product is the usual product. In a poset (P,≤), the product of a family
{ai}i∈I is by definition the greatest lower bound of {ai}i∈I i.e., an element
c such that c ≤ ai for all i ∈ I and for any d ∈ P if d ≤ ai for all i ∈ I
then d ≤ c. For the prototype posets, namely posets of subsets of X with
inclusion, if they are closed under arbitrary intersection, the intersection of
a family of subsets will be the product of the subsets. Products in posets are
usually called meets and denoted by

∧
or for finite families with ∧. For the

unique object ∗ in a non-trivial finite monoid as a category, even the binary
product ∗ × ∗ does not exists, because if it does, it must be ∗ and we must
have:

M = Hom(∗, ∗) ∼= Hom(∗, ∗ × ∗) ∼= Hom(∗, ∗)×Hom(∗, ∗) = M ×M

which is impossible.

Philosophical Note 1.8. When one sees the product topology for the first
time, one may wonder why such a topology and its bias towards using only fi-
nite proper opens in the basis elements Πi∈IUi is natural. Here is the answer.
The product together with this topology is the product. For us, behaving
as a product has a clear structural meaning and the object that represents
this behavior may incarnate in many different forms in the different con-
texts. In Top this topology is what we have to use to have the product. Its
construction, though, is secondary to what it must perform.
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Example 1.9. (Pullback) What is a binary product of two objects f : B → A
and g : C → A in C/A? It is an object h : D → A and two morphism
p0 : D → B and p1 : D → C such that:

D

B C

A

g

p0

h

p1

f

and for any other object e : E → A and any morphisms from q from e to f
and r from e to g, there exists a unique map from E to D such that:

E

D

B C

A

g

p0

h

p1

f

q r

Usually people write this data as:

E

D C

B A

gp0

p1

f

q

r

and call the square a pullback diagram, p0 a pullback of g along f and p1
a pullback of f along g. The pullback is also called the fiber product as it
is actually the product in the category of fibrations over A. Sometimes, the
object D itself is loosely called the pulllback and it is denoted by B ×A C.

Example 1.10. All pullbacks exist in the category Set. More precisely, for
the two functions f : B → A and g : C → A, the pullback is B ×A C =
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{(b, c) ∈ B × C | f(b) = g(c)} with the projection maps. Reading the data
as fibrations, the fiber corresponding to B ×A C over a ∈ A is nothing but
f−1(a)× g−1(a) that is the pointwise product of fibers.

Example 1.11. In the category SetC
op

, the product of E : Cop → Set and
F : Cop → Set is defined pointwise, i.e., (E × F )(A) = E(A) × F (A) and
(E×F )(f) = E(f)×F (f) : E(B)×F (B)→ E(A)×F (A), for any f : A→ B
in C. The projections p0 : E × F ⇒ E and p1 : E × F ⇒ F are also defined
pointwise, i.e., (p0)C : E(C) × F (C) → E(C) by projection on the first
element and similarly for p1.

Example 1.12. (Non-existence of terminal objects and binary products) For
an easier example, consider the poset (N,≤). This poset has no greatest
element and hence no terminal object. For product, take the poset (P,⊆) of
all infinite subsets of N. Then, the product (meet) of the set E of the even
numbers and O of the odd numbers does not exists, as there is no infinite
set below both of them. For a more interesting example, take the category
of fields. This category has no terminal object, because if F is terminal,
for any other field E, there must be a map from E to F . However, any
map between two fields is one-to-one and hence F must have the maximum
cardinality between all fields which is impossible. The binary product also
does not exist. For instance, if the field F = Q × Zp exists, then it has two
maps one into Q and one into Zp. Since p · 1 = 0 in Zp and the maps are
one-to-one, we must have p · 1 = 0 in F and hence in Q which is impossible.
Restricting fields to a fixed characteristic p can not solve the problem. It is
enough to pick a field F with a non-identity endomorphism e : F → F . (For
p = 0, pick F = C and e(z) = z̄ and for a prime p, pick F as a filed with p2

elements and e(x) = xp. In the latter case, e is not identity as the equation
xp = x has at most p roots while the field has p2 elements). Then, we claim
that F × F does not exist. If it does, call it K. Then, by the universal
property of the product, there is h : F → K such that:

F

F K Fp0 p1

idF idF
h

Since p0h = p1h = idF , both p0 and p1 are surjective. Since p0 and p1 are also
one-to-one, they are bijections and hence h is a bijection. Since p0h = p1h,
we have p0 = p1. Now, by the universal property of the product again, there
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must be h′ : F → K such that:

F

F K Fp0 p1

idF e
h′

But as p0 = p1 and e 6= idF , this is impossible.
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