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1 Category Theory (continued)

1.1 Baby Erlangen extended

Definition 1.1. An object A is called initial if it corepresents the functor
∆1 : C → Set, i.e., Hom(A,B) ∼= {0}, natural in B. Equivalently, A is initial
if for any object B, there exists a unique map from A to B. The initial object
is denoted by 0.

Example 1.2. In the category Set the initial object is the empty set. In
Grp and VectR it is {0}. In Cat it is the empty category. In a poset (P,≤),
the initial object is by definition the least element. Any non-trivial monoid
as a category does not have an initial object, because if the only object of a
monoid is initial, then there must be exactly one morphism over that object.

Example 1.3. In the category A/C, the initial object is idA : A→ A, as for
any object f : A→ B, there is exactly one morphisms g : A→ B such that
g ◦ idA = f . The morphism is f itself:

A

A B

idA f

g

Example 1.4. In the category SetC
op

, the initial object is ∆∅ : Cop → Set
as for any functor F : Cop → Set, there is exactly one natural transformation
α : ∆∅ ⇒ F , that is defined by αC : ∅ → F (C), where αC is the empty
function.
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Definition 1.5. Let A and B be two objects. An object C together with a
natural isomorphism α : Hom(C,−) ∼= Hom(A,−) × Hom(B,−) is called
a coproduct of A and B. Equivalently, C together with two morphisms
i0 : A→ C and i1 : B → C is called a coproduct if for any object D and any
morphisms f : A→ D and g : B → D, there exists a unique map h : C → D
such that:

D

A C B
i0 i1

f g
h

The coproduct is denoted by A+B. It is possible to extend coproducts from
the binary case to any arbitrary family. More precisely, if I is a set and
{Aj}j∈J is a family of objects in C, by their coproduct, we mean an object
C together with a natural isomorphism α : Hom(C,−) ∼= Πj∈JHom(Aj,−).
Equivalently, it is an object C with maps ij : Aj → C such that for any other
family of maps fj : Aj → D, there exists a unique map h : C → D such that
hij = fj, for any j ∈ J . The coproduct of {Aj}j∈J is denoted by Σj∈JAj.

Example 1.6. In the category Set, the coproduct is the disjoint union with
its injection functions. In Ab and VectR, coproduct equals to the product.
In Cat, the coproduct is the coproduct we saw before. In a poset (P,≤),
the coproduct of a family {ai}i∈I is by definition the least upper bound of
{ai}i∈I i.e., an element c such that ai ≤ c, for all i ∈ I and for any d ∈ P
if ai ≤ d, for all i ∈ I then c ≤ d. For the prototype posets, namely posets
of subsets of X with inclusion, if they are closed under arbitrary union, the
union of a family of subsets will be the coproduct of the subsets. Coproducts
in posets are usually called joins and denoted by

∨
or for finite families with

∨. For the unique object ∗ in a non-trivial finite monoid as a category, the
coproduct ∗+ ∗ does not exists, because if it does, it must be ∗ and we must
have:

M = Hom(∗, ∗) ∼= Hom(∗+ ∗, ∗) ∼= Hom(∗, ∗)×Hom(∗, ∗) = M ×M

which is impossible.

Philosophical Note 1.7. When one sees the finite product in Ab for the
first time, it may be confusing why one notion has two names, diresct sum
and direct product. Later, seeing the general case, one can see the difference
in general that collapses in the finite case. However, one may still wonder
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why we need the finiteness condition in the definition of the direct sums?
Similar to what we saw for product topology, we have the same thing here.
The direct sum is the coproduct in Ab. For us, behaving as a coproduct has
a clear structural meaning and the object that represents this behavior may
incarnate in many different forms in the different contexts. In Ab this group
is what we have to use to have the coproduct. Its construction, though, is
secondary to what it must perform.

Example 1.8. (Pushout) What is a coproduct of two objects f : A → B
and g : A → C in A/C? It is an object h : A → D and two morphism
i0 : B → D and i1 : C → D such that:

A

B C

D

g

i0

h

i1

f

and for any other object e : A→ E and any morphisms q from f to e and r
from g to e, there exists a unique map from D to E such that:

A

B C

D

E

g

i0

h

i1

f

q r

Usually people write this data as:

A C

B D

E

g

i0

i1f

q

r
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and call the square a pushout square, i1 a pushout of f along g and i0 a
pushout of g along f . The pushout is also called the cofiber coproduct as it
is dual to fiber product. Sometimes, the object D itself is loosely called the
pushout and it is denoted by B +A C.

Example 1.9. All pushouts exist in the category Set. More precisely, for the
two functions f : A→ B and g : A→ C, the pushout isB+AC = B+C/ ∼=,
where ∼ is the lest equivalence relation generated by {f(a) = g(a) | a ∈ A}
with the injection maps. Reading the data as A-enhanced sets, the pushout
is nothing but the disjoint union of B and C in which the two copies of
A are glued together. The same is also true for the category Top where
B + C/ ∼ is equipped with the quotient topology, i.e., the topology where
U is open in B + C/ ∼ if either i−10 (U) is open in B and i−11 (U) is open
in C. As a concrete example, when A = {0}, the pushout is the notion of
coproduct in the category of pointed spaces. For instance, S1 is the pushout
of f : {0} → [0, 1] and g : {0} → [0, 1], where f(0) = 0 and g(0) = 1:

{0} [0, 1]

[0, 1] S1

07→0

0 7→1

In Ab, the pushout is B ⊕ C/N , where N is the subgroup generated by
f(a)− g(a)’s for any a ∈ A. In CRing, it is B ⊗A C, considering B and C
as A-algebras via the maps f : A→ B and g : A→ C.

Example 1.10. One can thinks of pushouts as scalar extensions (cobase
change) in the algebraic world as the dual of the geometric base change
operation. For instance, if we have an algebras structure over a field K such
as Mn(K), then changing the field of scalaras from K to a greater field L ⊇ K
is the pushout

K L

Mn(K) Mn(K)⊗K L = Mn(L)

i

a7→aIn a7→aIn

Philosophical Note 1.11. For the newcomers in topology, the quotient
topology is something complex and mysterious. The structural way of think-
ing makes it simpler by proposing that it is the gluing in the category of
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Top. The quotient topology is just secondary to the pushout role it plays.
The same holds for tensor product of A-algebras. They are just the gluing
of rings as A-enhanced objects.

Philosophical Note 1.12. Structural way of thinking is useful as it shows
that gluing of pointed spaces and tensor product of A-algebras for the fixed A
are the same thing. Moreover, we can see that this construction is dual to the
fiber product of topological spaces. Does it mean that something geometric
lives in CRing, dully, where tensor product plays the role of fiber product?

Example 1.13. In the category SetC
op

, the coproduct of E : Cop → Set
and F : Cop → Set is defined pointwise, i.e., (E + F )(A) = E(A) + F (A)
and (E + F )(f) = E(f) + F (f) : E(B) + F (B) → E(A) + F (A), for any
f : A→ B in C. The injections i0 : E ⇒ E +F and i1 : F ⇒ E +F are also
defined pointwise, i.e., (i0)C : E(C) → E(C) + F (C) by usual set injection
and similarly for i1.

Remark 1.14. (Duality) Note that a terminal object in C is an initial ob-
ject in Cop and the same also holds for the pair product/coproduct and pull-
back/pushout. In this sense, these pairs of notions are dual to each other or
in its slogan form they are the same thing, reversing the arrows.

Example 1.15. (Non-existence of initial objects and binary coproducts) For
an easier example, consider the poset (Z,≤). This poset has no least element
and hence no initial object. For coproduct, take the poset (P,⊆) of all subsets
of N whose complement is infinite. Then, the coproduct (join) of the set E
of the even numbers and O of the odd numbers does not exists, as the only
subset above both of them is N whose complement is finite. For a more
interesting example, take the category of fields. This category has no initial
object, because, for any other field E, there must be a map from F to E.
As any map between two fields is one-to-one, the characteristics of E and
F equals which excludes all E’s with different characteristics. The binary
product also does not exist for the same reason. Restricting fields to a fixed
characteristic p can not solve the problem. The reason is similar to what we
had for products before.

Definition 1.16. Let C be a category with products and A and B be two
objects. An object C together with a natural isomorphism α : Hom(−, C) ∼=
Hom(− × A,B) is called an exponentiation of B to A. Equivalently, an
exponentiation of B to A is an object C together with a morphism ev :
C × A → B such that for any f : D × A → B, there exists a unique
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g : D → C such that:

D × A

C × A Bev

f
g×idA

The exponentiation is denoted by BA.

Example 1.17. In the category Set, the exponential is BA = {f : A →
B} with the morphism ev : BA × A → B by ev(f, a) = f(a). In Cat,
the exponential category is defined by DC as the functor category and ev :
DC × C → C by ev(F,A) = F (A) and ev(α, f) = αBF (f) = G(f)αA, for any
f : A→ B and α : F ⇒ G. The last equality is because of the naturality of α.
In a poset (P,≤), the exponentiation is by definition the least element c such
that c∧a ≤ b i.e., an element c such that c∧a ≤ b and for any d ∈ P if d∧a ≤ b
then d ≤ c. For the prototype posets, namely posets of subsets of X with
inclusion, if they are closed under arbitrary union and finite intersections, the
exponentiation of two subsets U and V are V U =

⋃
{W ∈ P | W ∩ U ⊆ V }.

Exponential objects in posets are called Heyting implications and denoted
by →.
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