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1 Category Theory (continued)

1.1 Baby Erlangen extended

We saw how to define categorical constructions by representability. Here, we
show how these constructions are functorial.

Theorem 1.1. Let F : Cop ×D → Set be a functor such that for any object
D in D, the functor F (−, D) is representable. Then, there exists a unique
(up to natural isomorphism) functor G : D → C such that Hom(C,G(D)) ∼=
F (C,D), natural in C and D.

Proof. Since for any D, the functor F (−, D) : Cop → Set is representable,
there is an object G(D) in C such that Hom(C,G(D)) ∼=αC,D

F (C,D), nat-
ural in C. For maps, if f : D → E is a map in D, we define G(f) as the
unique morphism whose Yoneda is yG(f) = α−1C,EF (idC , f)αC,D:

yG(D) F (C,D)

yG(E) F (C,E)

yG(f) F (idC ,f)

αC,D

αC,E

It is easy to see that G is a functor and αC,D is also natural in D. For
uniqueness, assume there are G and H have the property. Then,

Hom(C,G(D)) ∼= F (C,D) ∼= Hom(C,H(D))

Hence, yG(D)
∼= yH(D), natural in D. By Yoneda embedding, we have G(D) ∼=

H(D), natural in D.
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Remark 1.2. Dually, if F : C×D → Set is a functor such that for any object
D in D, the functor F (−, D) is corepresentable, there exists a unique (up
to natural isomorphism) functor G : D → Cop such that Hom(G(D), C) ∼=
F (C,D), natural in C and D.

As an application, we can see that products, coproducts and exponentials
define functors. For products, it is enough to set F : Cop × C × C → Set
as F (X,A,B) = Hom(X,A) × Hom(X,B) to reach G(A,B) = A × B as
the product functor. The case for coproduct is similar. For the exponential
functor, set F : Cop × Cop × C → Set as F (X,A,B) = Hom(X × A,B) to
reach G(A,B) = BA as the exponential functor.
It is always possible to provide the functor by the universal behavior that
is usually tiresome. Let’s do it once for product as it has some pedagogical
value. Assume f : A → C and g : B → D are two morphisms and we want
to define f × g : A×B → C ×D. By the universal property of C ×D, it is
enough to provide two maps from A× B → C and A× B → D and the we
will have our map automatically. For these two maps, pick:

A×B

C C ×D D

f×g

p1p0

gp1fp0

We will rewrite the previous diagram as

A A×B B

C C ×D D

f×g

p1p0

p1

g

p0

f

to have a more suggestive shape in our later computation. Now, we have
to show that product is a functor. For that matter, assume i : C → E and
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j : D → F and we have to show that (fi)× (gj) = (f × g) ◦ (i× j). We have

A A×B B

C C ×D D

E E × F F

f×g

p1p0

p1

g

p0

f

i×j ji

p0 p1

Since all the small squares commute, the outer two vertical rectangular also
commutes, meaning

A×B

C ×D

E E × F F

f×g

i×j

p0 p1

(jg)p1(if)p0

But by definition, there is only one vertical map that makes the diagram
commutative, i.e., (f × g) ◦ (i × j). Hence, (f × g) ◦ (i × j) = (fi) × (gj).
The proof for id× id = id is similar.

Example 1.3. (Yoneda lemma as a computational tool) In any category
with binary product and terminal object, we have A× 1 ∼= A, natural in A.
As we saw before, we have to show that these two objects have the same
behavior. We have

Hom(X,A× 1) ∼= Hom(X,A)×Hom(X, 1) ∼= Hom(X,A)

Hence, yA×1 ∼= yA which by Yoneda lemma implies A× 1 ∼= A. Similarly, it
is possible to prove that product is symmetric, i.e., A×B ∼= B ×A and it is
associative, i.e., A× (B × C) ∼= (A×B)× C.
Again, it is possible to do the same thing by the universal property. To prove
that A × 1 ∼= A, we must provide two maps, one from A to A × 1 and one
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from A× 1 to A such that they become each other’s inverses. For these two
maps, pick f = p0 : A × 1 → A and g = 〈idA, !〉 : A → A × 1. The latter is
the unique map that makes the following commutative:

A

A A× 1 1p1p0

idA !〈idA,!〉

It is clear that fg = p0〈idA, !〉 = idA. For the converse, consider the following
diagram

A A× 1 1

A A 1

A A× 1 1p1p0

p1p0

p0

〈idA,!〉

idA !

!

!

idA

idA

It is easy to see that all small squares are commutative and hence the outer
two vertical rectangular must be commutative, meaning

A× 1

A

A A× 1 1p1p0

p0

〈idA,!〉

!p0

But the only vertical map that makes the diagram commutative is idA×1.
Hence, 〈idA, !〉p0 = idA×1.

Example 1.4. (Yoneda lemma as a computational tool) In any category with
coproduct, product and exponentiation, we have A×(B+C) ∼= A×B+A×C,
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natural in A, B and C. To show that these two objects have the same
behavior, note that

Hom(A×(B+C), D) ∼= Hom((B+C), DA) ∼= Hom(B,DA)×Hom(C,DA) ∼=

Hom(A×B,D)×Hom(A× C,D) ∼= Hom(A×B + A× C,D)

Hence, yA×(B+C) ∼= yA×B+A×C which by Yoneda lemma implies A×(B+C) ∼=
A×B + A× C.

Example 1.5. Let (Sub(R2),⊆) be the poset of all linear subspaces of R2.
In this poset, all joins and meets exist. Meets are just intersections and
joins are the linear subspaces generated by the unions. However, we do not
have the equality M × (N +K) = M ×K +N ×K and hence the category
does not have all exponentials. To show the failure of the equality, set M ,
N and K as three distinct lines going through the origin in R2. It is clear
that N + K = R2 and hence M × (N + K) = M ∩ (N + K) = M , while
M ×N = M ×K = {0} and {0}+ {0} = {0} 6= M .

Example 1.6. (Non-existence of the exponential objects) Let C be a non-
preorder category with the initial and terminal objects where 0 ∼= 1. Then,
C does not have all exponentials, because if it does, then we must have

Hom(A,B) ∼= Hom(1× A,B) ∼= Hom(1, BA) ∼= Hom(0, BA)

But the last set has exactly one element. Hence Hom(A,B) must have
exactly one element, for any choice of A and B, which is a contradiction. As
a consequence, the categories Grp, Ab and VecR don’t have all exponential
objects.

Exercise 1.7. It seems that in Ab, the object HG consisting of all homo-
morphisms from G to H with the pointwise addition is the exponential object
of H by G. Find what is missing here.

Philosophical Note 1.8. (Convenient category of spaces) The category
Top does not have all the exponentials and this fact makes the category
somewhat cumbersome to work with. One way to overcome this issue is
moving to a convenient category of topological spaces that includes a copy of
all the tame interesting topological spaces like CW-complexes while having
good properties including the closure under products and exponentiation.
Steenrod proposed a list of such good properties for such a category. However,

It is also known that these propositions do not hold in the category
of all Hausdorff spaces. In fact arguments have been given that
which imply that there is no convenient category in our sense.
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However, Steenrod himself introduced such a category. He explains the ap-
parent mismatch by:

The arguments are based on a blind adherence to the customary
definitions of the standard operations. These definitions are suit-
able for the category of Hausdorff spaces, but they need not be
for a subcategory. The categorical viewpoint enables us to defrost
these definitions and bend them a bit.

In fact, the customary definition that needs to change is the construction
of the product. In Steenrod’s category, a subcategory of the category of all
Hausdorff spaces, all the products exist but its topology is far from the usual
product topology and the adherence to this usual topology is what made
the others blind to find the right category. With a bit of provocation, let’s
conclude that history also suggests the priority of the relative behavior of
the entities to their absolute constructions.

Example 1.9. (Yoneda lemma as a tool to define functors: subobject clas-
sifier) Consider the functor Sub : (SetC

op

)op → Set mapping a functor
F : Cop → Set to the set of all sub-functors of F and a natural trans-
formation to the pre-image function. This functor is representable by a
functor Ω : Cop → Set, i.e., Sub(F ) ∼= Hom(F,Ω). Let’s guess this func-
tor. Using the Yoneda lemma, we know that Ω(A) must be equivalent to
Hom(yA,Ω). However, we expect Hom(yA,Ω) to be equivalent to Sub(yA).
Therefore, we can define Ω(A) as Sub(yA) and check if it really works, i.e.,
if Sub(F ) ∼= Hom(F,Ω), natural in F . We will not present the details here,
but it fortunately holds.

Philosophical Note 1.10. Note that Ω plays the role of {0, 1} in Set.
Therefore, it is reasonable to say that the object Ω is the variable set of the
truth values of the new world SetC

op

. More precisely, let F be a variable set.
Then, any map from F to Ω is a characteristic map of a variable subsets of F
assigning truth values to the “elements” of F , according to the way that the
subfunctor sits inside F . Such an Ω with this behavior is called a subobject
classifier.

Example 1.11. (Yoneda lemma as a tool to define functors: exponential
object) The category SetC

op

has all exponential objects. To prove that, we
use the Yoneda lemma again. Let E,F : Cop → Set be two functors. We need
to define FE such that Hom(E ×X,F ) ∼= Hom(X,FE). Again set X = yA.
Then, we have to have Hom(E× yA, F ) ∼= Hom(yA, F

E). But Hom(yA, F
E)

must be equivalent to FE(A), by Yoneda lemma. Therefore, it is enough to
define FE by FE(A) = Hom(E × yA, F ). The only thing to check is that if
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FE satisfies the more general Hom(E × X,F ) ∼= Hom(X,FE). Again, we
will not present the details here, but it fortunately holds.
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