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1 Category Theory (continued)

1.1 Baby Erlangen extended

Definition 1.1. Let f, g : A → B be two morphisms. Define the functor
Eqf,g : Cop → Set by Eqf,g(X) = {i : X → A | fi = gi} and Eqf,g(j) =
(−)◦ j. By the equalizer of f and g, we mean the object C together with the
natural isomorphism Hom(X,C) ∼= Eqf,g(X). Equivalently, the equalizer of
f and g is the object C together with a map h : C → A such that fh = gh,
i.e.,

C A B
g

f

h

and for any other map i : X → A such that fi = gi, there exists a unique
map j : X → C such that

X

C A B
g

f

h

ij

It is called the equalizer of f and g, as it equalizes f and g.

Example 1.2. In a poset as there is at most one map between any two
objects, the equalizer of any pair f, g : A→ B exists and it is idA : A→ A.
In any groupoid, any two maps f, g : A → B has the equalizer iff they are
equal and the equalizer is again idA : A → A. More generally, the equalizer
of two equal maps always exists and it is the identity of the source object.
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Example 1.3. In Set, any two maps have the equalizer. Let f, g : A → B
be two functions. It is easy to see that the set C = {x ∈ A | f(x) = g(x)}
together with the inclusion i : C → A is the equalizer. The same also works
for Grp, Ab and VecR, in which C inherits the algebraic structure of A. For
Grp, note that the equalizer of f : G→ H and the constant map ce : G→ H
mapping everything to eH is exactly the kernel of f . More generally, if a
category has a zero object (when 0 ∼= 1), then the kernel of a map f : A→ B
may be defined as the equalizer of f and 0A,B : A → 1 ∼= 0 → B, where
the maps A→ 1 and 0→ B are the unique maps provided by the universal
properties of 0 and 1.

Example 1.4. In SetC
op

any two maps have the equalizer and it is computed
pointwise. Let α, β : F ⇒ G be two natural transformations. Define the
functor H : Cop → Set on objects by H(A) = {x ∈ F (A) | αA(x) = βA(x)}
and on morphism f : B → A by H(f) = F (f)|H(A) : H(A) → H(B). It is
easy to check that H is a functor, the canonical inclusion iA : H(A)→ F (A)
is a natural transformation and the whole data is the equalizer of α and β.

Theorem 1.5. Let C be a category that has the terminal object. Then, C has
all pullbacks iff it has all binary products and all equalizers.

Proof. If a category has the terminal object and all pullbacks, then it has
the binary product, computed as the pullback:

C B

A 1

!

!

p1

p0

To prove that C, p0 and p1 is the product, note that if we have f : D → A
and g : D → B, then as there is only one map from D to 1, we have !f =!g,
and as the square is a pullback, there exists a unique map h : D → C such
that:

D

C B

A 1

!

!

p1

p0

g

f

h
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Now, we prove that all equalizers exist. Let f, g : A → B be two maps.
Consider the following pullback:

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

We claim that p0 : C → A is the equalizer. First, as the square is commu-
tative, we have fp0 = gp0. Moreover, if there is a map i : D → A such that
fi = gi, then we have

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

As the square is a pullback, there is a map j : D → C such that p0j = i, i.e.,

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

j

The only thing remains to prove it the uniqueness of this j. If there is
k : D → C such that p0k = i, then it is easy to see that k we have:

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

k
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and as the square is the pullback, we have k = j.
Conversely, if the binary products and the equalizers exist, then pullback
also exists. Let f : A→ C and g : B → C be two maps. Then, consider the
equalizer:

D A×B C
gp1

fp0e=〈e0,e1〉

we claim that the diagram

D B

A C

e1

e0 g

f

is a pullback. It is clearly commutative. To show the universality, if there is
i : E → A and j : E → B such that

E

D B

A C

e1

e0 g

f

i

j

Then, we have

E

D A×B C
gp1

fp0e=〈e0,e1〉

〈i,j〉

which by the fact that e : D → A × B is equalizer, there exists a map
h : E → D such that

E

D A×B C
gp1

fp0e=〈e0,e1〉

〈i,j〉
h
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which implies

E

D B

A C

e1

e0 g

f

i

j

h

The uniqueness of h : E → D is easy.

Example 1.6. In the previous theorem, the existence of the terminal object
is essential. For instance, if G is a non-trivial group as we observed before,
if g 6= h, then they do not have equalizer. But all pullbacks in this category
exist. The reason simply is that for any elements g, h ∈ G, the square

∗ ∗

∗ ∗

g−1

g

h

h−1

is a pullback, because it commutes and for any other i, j ∈ G such that
gj = hi, we have

∗

∗ ∗

∗ ∗

g−1

g

h

h−1i

j

gj=hi

The map gj = hi is clearly unique.

Definition 1.7. Let f, g : A → B be two morphisms. Define the func-
tor CoEqf,g : C → Set by CoEqf,g(X) = {i : B → X | if = ig} and
CoEqf,g(j) = j ◦ (−). By the coequalizer of f and g, we mean the ob-
ject C together with the natural isomorphism Hom(C,X) ∼= CoEqf,g(X).
Equivalently, the coequalizer of f and g is the object C together with a map
h : B → C such that hf = hg, i.e.,

A B C
g

f
h
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and for any other map i : B → X such that if = ig, there exists a unique
map j : C → X such that jh = i, i.e.,

A B C

X

g

f
h

i
j

It is called the coequalizer as it is the dual of the equalizer.

Example 1.8. In a poset the coequalizer of any pair f, g : A → B exists
and it is idB : B → B. In any groupoid, any two maps f, g : A → B has
the coequalizer iff they are equal and the coequalizer is again idB : B → B.
More generally, the coequalizer of two equal maps always exists and it is the
identity of the target object. In Set, any two maps have the coequalizer.
Let f, g : A → B be two functions. It is easy to see that the set C = B/ ∼
together with the canonical projection p : B → C mapping b to [b] is the
coequalizer, where ∼ ⊆ B × B is the least equivalence relation extending
{(b, c) ∈ B × B | ∃a ∈ A b = f(a) and c = g(a)}. More specifically, if
R ⊆ B × B is an equivalence relation, then B/R is just the coequalizer of
p0, p1 : R → B, where p0 and p1 are the projections. In Top the same
construction works, except that we need the quotient topology. For instance,
the coequalizer of the two ends of the interval [0, 1] is S1:

{0} [0, 1] S1
07→1

07→0

For Ab, the coequalizer of f, g : G → H is the group H/Im(f − g). Note
that the cokernel of f : G → H, i.e., H/Im(f) is the coequalizer of f and
0 : G→ H, where 0 is the map that sends everything to 0H . More generally,
if a category has a zero object, then the cokernel of a map f : A → B may
be defined as the coequalizer of f and 0A,B : A→ 1 ∼= 0→ B.

6


