Mathematical Structuralism, S18

Amir Tabatabai

May 6, 2021

1 Category Theory (continued)

1.1 Baby Erlangen extended

Definition 1.1. Let $f, g: A \rightarrow B$ be two morphisms. Define the functor $Eq_{f,g}: \mathcal{C}^{op} \to \mathbf{Set}$ by $Eq_{f,g}(X) = \{i: X \to A \mid fi = gi\}$ and $Eq_{f,g}(j) =$ $(-) \circ j$. By the equalizer of f and g, we mean the object C together with the natural isomorphism $Hom(X, C) \cong Eq_{f,g}(X)$. Equivalently, the equalizer of f and g is the object C together with a map $h: C \to A$ such that $fh = gh$, i.e.,

$$
C \xrightarrow{\quad \ \ } A \xrightarrow{\quad \ f \quad \ } B
$$

and for any other map $i: X \to A$ such that $f_i = gi$, there exists a unique map $j: X \to C$ such that

It is called the equalizer of f and g , as it equalizes f and g .

Example 1.2. In a poset as there is at most one map between any two objects, the equalizer of any pair $f, g : A \to B$ exists and it is $id_A : A \to A$. In any groupoid, any two maps $f, g : A \rightarrow B$ has the equalizer iff they are equal and the equalizer is again $id_A : A \to A$. More generally, the equalizer of two equal maps always exists and it is the identity of the source object.

Example 1.3. In Set, any two maps have the equalizer. Let $f, g : A \rightarrow B$ be two functions. It is easy to see that the set $C = \{x \in A \mid f(x) = g(x)\}\$ together with the inclusion $i: C \to A$ is the equalizer. The same also works for Grp, Ab and Vec_R, in which C inherits the algebraic structure of A. For **Grp**, note that the equalizer of $f : G \to H$ and the constant map $c_e : G \to H$ mapping everything to e_H is exactly the kernel of f. More generally, if a category has a zero object (when $0 \approx 1$), then the kernel of a map $f : A \rightarrow B$ may be defined as the equalizer of f and $0_{A,B}: A \to 1 \cong 0 \to B$, where the maps $A \to 1$ and $0 \to B$ are the unique maps provided by the universal properties of 0 and 1.

Example 1.4. In $\mathbf{Set}^{\mathcal{C}^{op}}$ any two maps have the equalizer and it is computed pointwise. Let $\alpha, \beta : F \Rightarrow G$ be two natural transformations. Define the functor $H: \mathcal{C}^{op} \to \mathbf{Set}$ on objects by $H(A) = \{x \in F(A) \mid \alpha_A(x) = \beta_A(x)\}\$ and on morphism $f: B \to A$ by $H(f) = F(f)|_{H(A)} : H(A) \to H(B)$. It is easy to check that H is a functor, the canonical inclusion $i_A : H(A) \to F(A)$ is a natural transformation and the whole data is the equalizer of α and β .

Theorem 1.5. Let C be a category that has the terminal object. Then, C has all pullbacks iff it has all binary products and all equalizers.

Proof. If a category has the terminal object and all pullbacks, then it has the binary product, computed as the pullback:

To prove that C, p_0 and p_1 is the product, note that if we have $f: D \to A$ and $g: D \to B$, then as there is only one map from D to 1, we have $!f = g$, and as the square is a pullback, there exists a unique map $h: D \to C$ such that:

Now, we prove that all equalizers exist. Let $f, g : A \rightarrow B$ be two maps. Consider the following pullback:

We claim that $p_0 : C \to A$ is the equalizer. First, as the square is commutative, we have $fp_0 = gp_0$. Moreover, if there is a map $i : D \to A$ such that $fi = qi$, then we have

As the square is a pullback, there is a map $j: D \to C$ such that $p_0j = i$, i.e.,

The only thing remains to prove it the uniqueness of this j . If there is $k: D \to C$ such that $p_0k = i$, then it is easy to see that k we have:

and as the square is the pullback, we have $k = j$.

Conversely, if the binary products and the equalizers exist, then pullback also exists. Let $f : A \to C$ and $g : B \to C$ be two maps. Then, consider the equalizer:

$$
D \xrightarrow{e = \langle e_0, e_1 \rangle} A \times B \xrightarrow{fp_0} C
$$

we claim that the diagram

is a pullback. It is clearly commutative. To show the universality, if there is $i: E \to A$ and $j: E \to B$ such that

Then, we have

which by the fact that $e : D \to A \times B$ is equalizer, there exists a map $h: E \to D$ such that

which implies

The uniqueness of $h : E \to D$ is easy.

Example 1.6. In the previous theorem, the existence of the terminal object is essential. For instance, if G is a non-trivial group as we observed before, if $q \neq h$, then they do not have equalizer. But all pullbacks in this category exist. The reason simply is that for any elements $q, h \in G$, the square

is a pullback, because it commutes and for any other $i, j \in G$ such that $gj = hi$, we have

The map $qj = hi$ is clearly unique.

Definition 1.7. Let $f, g : A \rightarrow B$ be two morphisms. Define the functor $CoEq_{f,g}: C \rightarrow$ Set by $CoEq_{f,g}(X) = \{i: B \rightarrow X \mid if = ig\}$ and $CoEq_{f,g}(j) = j \circ (-)$. By the coequalizer of f and g, we mean the object C together with the natural isomorphism $Hom(C, X) \cong CoEq_{f,q}(X)$. Equivalently, the coequalizer of f and g is the object C together with a map $h : B \to C$ such that $hf = hg$, i.e.,

$$
A \xrightarrow{f} B \xrightarrow{h} C
$$

 \Box

and for any other map $i : B \to X$ such that $if = ig$, there exists a unique map $j: C \to X$ such that $jh = i$, i.e.,

It is called the coequalizer as it is the dual of the equalizer.

Example 1.8. In a poset the coequalizer of any pair $f, g : A \rightarrow B$ exists and it is $id_B : B \to B$. In any groupoid, any two maps $f, g : A \to B$ has the coequalizer iff they are equal and the coequalizer is again $id_B : B \to B$. More generally, the coequalizer of two equal maps always exists and it is the identity of the target object. In Set, any two maps have the coequalizer. Let $f, g : A \to B$ be two functions. It is easy to see that the set $C = B / \sim$ together with the canonical projection $p : B \to C$ mapping b to [b] is the coequalizer, where $\sim \subseteq B \times B$ is the least equivalence relation extending $\{(b, c) \in B \times B \mid \exists a \in A \; b = f(a) \text{ and } c = g(a)\}.$ More specifically, if $R \subseteq B \times B$ is an equivalence relation, then B/R is just the coequalizer of $p_0, p_1 : R \to B$, where p_0 and p_1 are the projections. In **Top** the same construction works, except that we need the quotient topology. For instance, the coequalizer of the two ends of the interval $[0, 1]$ is \mathbb{S}^1 :

$$
\{0\} \xrightarrow{\hspace{.5cm}0 \mapsto 1 \hspace{.5cm}} [0,1] \xrightarrow{\hspace{.5cm}0 \mapsto 0 \hspace{.5cm}} \mathbb{S}^1
$$

For **Ab**, the coequalizer of $f, g : G \to H$ is the group $H/Im(f - g)$. Note that the cokernel of $f: G \to H$, i.e., $H/Im(f)$ is the coequalizer of f and $0: G \to H$, where 0 is the map that sends everything to 0_H . More generally, if a category has a zero object, then the cokernel of a map $f : A \to B$ may be defined as the coequalizer of f and $0_{A,B}: A \to 1 \cong 0 \to B$.