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1 Category Theory (continued)

1.1 Baby Erlangen extended

Example 1.1. If J is the monoid (N,+), the limit of a functor F : (N,+)→
Set

C

F (∗) F (∗)

h∗ h∗

F (1)

is just the set C of all fixed points of the function F (1) : F (∗) → F (∗)
together with the inclusion map h∗ : C → F (∗).

Example 1.2. (Sheaves) Let X be a topological space, {Ui}i∈I be a family
of open subsets and U =

⋃
i∈I Ui. Define the functor C : O(X)op → Set

on the open subset V of X by C(V ) = {f : V → R | f is continuous}
and on the unique morphism V ⊇ W as the restriction map |W : C(V ) →
C(W ). The functor C stores all partial continuous functions over X defined
on an open domain. Define P as the set of all {i, j}’s, where i, j ∈ I and
F : (P,⊆) → Set as the diagram mapping {i, j} to C(Ui ∩ Uj) and the
only non-trivial morphism {i} ⊆ {i, j}, for i 6= j to the restriction map
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|Ui∩Uj
: C(Ui)→ C(Ui ∩ Uj). Then, C(U) is the limit of the diagram F :

C(U)

C(U1) C(U2) C(U3)

C(U1 ∩ U2) C(U1 ∩ U3) C(U2 ∩ U3)

|U1∩U3
|U1∩U3 |U2∩U3

|U2∩U3

|U1
|U3|U2

|U1∩U2

|U1∩U2

The diagram is clearly commutative. To show its universality, for any other
cone {fi : D → C(Ui)}i∈I :

D C(U)

C(U1) C(U2) C(U3)

C(U1 ∩ U2) C(U1 ∩ U3) C(U2 ∩ U3)

|U1∩U3
|U1∩U3 |U2∩U3

|U2∩U3

|U1
|U3|U2

|U1∩U2

|U1∩U2

f1 f2

f3

f

the commutativity of the diagram states that for any x ∈ D, the functions
{fi(x) : Ui → R}i∈I are consistent on the intersections of their domains
and hence we can construct a unique function on U by their union. Set
f(x) : U → R as this unique function and note that f is continuous. It is
easy to see that this f is the only map we can use here.
Note that the main reason behind the argument is that the fact that conti-
nuity is a local notion meaning that continuity in a point is determined by
the behavior of the function on a small neighbourhood of x. This implies
that if we have a consistent family of continuous functions on some opens, we
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can glue them together to construct a unique continuous function extending
them all. Changing continuity to any other local notion like derivability also
works while using global notions like constancy breaks the argument.
To formalize the general situation, let G : O(X)op → Set be a functor. If
for any family of opens {Ui}i∈I covering U , the set G(U) is the limit of the
corresponding functor F , we call G a sheaf over X. We can think of a sheaf
as a machine to store all the local instance of a local notion.

Example 1.3. A poset is (finitely) complete iff it has all (finite) meets. One
direction is clear. For the other direction, let F : J → (P,≤) be a diagram.
Then, as in a poset any two maps with the same source and target are equal,
we can observe that the meet

∧
J F (J) together with its unique map to all

F (J)’s is the limit of F . For instance, the poset (P (X),⊆) is complete as it
has all possible meets.

Example 1.4. The category Set is complete. To prove that, let F : J →
Set be a small diagram. Then, define C = {s ∈

∏
A∈J F (A) | ∀f : A →

B [F (f)(s(A)) = s(B)} and hA : C → F (A) as the canonical projection on
A’th element:

C

F (A1) · · ·

F (A0) F (A2) · · ·

F (f1)

F (f2)

F (f2f1)

hA1

hA0

hA2

hA3

···

It is easy to see that this data is the limit of F . The same construction with
the pointwise algebraic structure also works for Grp, Ab and VecR. For
Top, we also have the same construction, this time using the product and
the subspace topology. Note that the subcategory of all compact Hausdorff
spaces is also complete. The reason is simply the combination of the Ty-
chonoff’s theorem and the fact that the subspace defined by any number of
equalities is compact.

Theorem 1.5. A category is (finitely) complete iff it has all (finite) products
and all equalizers.
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Proof. One direction is clear by definition. For the other direction, we use
the argument from the previous example. Let F : J → Set be a small
diagram. Then, as products of size of J exists, the product

∏
J∈J F (J)

with projections pJ : P → F (J) exists. Set P =
∏

J∈J F (J). Then, set
C and q : C → P as the equalizer of 〈pK〉J,f , 〈F (f)pJ〉J,f :

∏
J∈J F (J) →∏

J∈J
∏

f :J→K F (K). The limit will be {pJq : C → F (J)}J∈J . As q : C → P
is the equalizer, we have pKq = F (f)pJq. To show that it is the best choice,
assume {iJ : D → F (J)}J∈J has the property iK = F (f)iJ , for any f : J →
K:

C

D P =
∏

J∈J F (J)

F (A1) · · ·

F (A0) F (A2) · · ·

F (f1)

F (f2)

F (f2f1)

pA1

pA0

pA2

pA3

q

iA0

iA1
iA2

〈iJ 〉J∈J

j

···

Therefore, 〈pK〉J,f ◦〈iJ〉J = 〈F (f)pJ〉J,f ◦〈iJ〉J . As q : C → P is the equalizer,
there exists a unique map j : D → C such that qj = 〈iJ〉J . Hence, pJqj = iJ .
Uniqueness condition for limit is also easy.

Now, let us spell out the dual notion of cones under a diagram or cocones
and colimits. Let F : J → C be a diagram (functor). Define a cone under F
with the nadir X as a natural transformation α : F ⇒ ∆X . Spelling out, a
cone under F with the nadir X is an assignment {iA : F (A)→ X}A∈J such
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that hA = hBF (f), for any f : A→ B, i.e.,

F (A1) F (A3)

F (A0) F (A2)

X

F (f1)

F (f2)

hA1

hA0

hA2

F (f4)

F (f3)

hA3

By the cone functor under F , we mean the functor ConeF : C → Set defined
by ConeF (X) as the set of all cones under F with nadir X and for a map
j : A→ B by ConF (j) = (−) ◦ j.

Example 1.6. Let F : 0→ C be the functor from the empty category to C.
Then, for any object X, there is exactly one cone under F with the nadir X
and hence ConeF = ∆{0}. For any functor F : 1 + 1 → C, a cone under F
with nadir X is just the pair of two maps i0 : F (0)→ X and i1 : F (1)→ X:

F (0) F (1)

X

i0 i1

For more examples, define the following categories:

J : ∗ † K : • ∗

•

f0

f1

Then a cone under F : J → C with nadir X is the tuple of three maps i∗, i•
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and i†, such that:

F (∗) F (†)

F (•) X

i†

i•

i∗

It is easy to see that the map i∗ is uniquely determined by the maps i• and
i† and hence there is no need to keep its data. Therefore, w.l.o.g, we can say
that a cone under F with nadir X is a pair of maps i• and i†, such that:

F (∗) F (†)

F (•) X

i†

i•

For a functor F : K → C, a cone under F with nadir X is a pair of maps i•
and i∗ such thati• = i∗F (f0) and i• = i∗F (f1), i.e.,

• ∗

X

F (f0)

F (f1)

i•
i∗

Again, it is easy to see that i• is uniquely determined by i∗. However, this
does not mean that we can pick any i∗ as we want. The necessary and
sufficient condition for i∗ is that i∗F (f0) = i∗F (f1):

• ∗

X

F (f0)

F (f1)

i∗

Therefore, w.l.o.g, we can say that a cone under F with nadir X is a map i∗
such that i∗F (f0) = i∗F (f1).
For a functor F : (N,≤)→ C, a cone under F with nadir X is a sequence of
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maps {in : F (n)→ X}n∈N such that:

F (0) F (1) F (2) F (3) · · · · · ·

X

i3i1

i0

i2 ···

Can you explain why a cone under F : (N,≤)op → C is not interesting?

Definition 1.7. Let F : J → C be a diagram (functor). By the colimit of
F , we mean an object C together with a natural isomorphism Hom(C,X) ∼=
ConeF (X). Equivalently, the colimit of F is the object C together with a
map hA : F (A) → C, for any object A in J , such that hA = hBF (f), for
any f : A→ B, i.e.,

F (A1) F (A3)

F (A0) F (A2)

C

F (f1)

F (f2)

hA1

hA0

hA2

F (f4)

F (f3)

hA3

and for any other maps iA : F (A) → D, for any object A in J such that
F (f)iA = iB, for any f : A→ B, there exists a unique map j : C → D such
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that jhA = iA, for any A, i.e.,

F (A1) F (A3)

F (A0) F (A2)

C D

F (f1)

F (f2)

hA1

hA0

hA2

j

iA2

iA0

iA1

F (f4)

F (f3)

hA3
iA3

the category J is (finite) small. A category is called cocomplete, if it has all
small colimits and finitely cocomplete, if it has all finite colimits.

Example 1.8. Let F : 0→ C be the functor from the empty category to C.
The colimit of F is the initial object. For any functor F : 1 + 1 → C the
limit is the coproduct of the objects in the image of F . Recall that we had
the following categories:

J : ∗ † K : • ∗

•

f0

f1

Then, the colimit of any functor F : J → C is the pushout of the F -image
of the arrows along each other and the colimit of any functor F : K → C is
the equalizer of the F -image of the two arrows F (f0) and F (f1).

Example 1.9. If J is a group G and F : G → Set be a G-action. Then,
the colimit of F :

C

F (∗) F (∗)

h∗ h∗

F (g)
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is just the set F (∗)/R where R = {(x, y) ∈ F (∗)× F (∗) | ∃g ∈ G F (g)(x) =
y} together with the projection map h∗ : F (∗) → F (∗)/R. The set F (∗)/R
is actually the set of all orbits.

Example 1.10. Any group is a colimit of its finitely-generated subgroups.
More formally, let G be a group and J be the poset of all finitely-generated
subgroups of G with the inclusion. Then, if F : J → Grp is the inclusion
functor, the colimit of F is G with legs hH : H → G as the inclusion ho-
momorphism. It is clear that the diagram is commutative. To show that G
is the best choice, assume {iH : H → K}H∈J be a cone under F . Then,
define j : G → K by j(g) = i〈g〉(g), where 〈g〉 is the cyclic group gener-
ated by g ∈ G. The map j is a homomorphism, i.e., j(gg′) = j(g)j(g′).
As {iH : H → K}H∈J is a cone under F , we have i〈g〉(g) = i〈g,g′〉(g).
Similarly, we have i〈g′〉(g

′) = i〈g,g′〉(g
′) and i〈gg′〉(gg

′) = i〈g,g′〉(gg
′). Since

i〈g,g′〉 is a homomorphism, we have i〈g,g′〉(gg
′) = i〈g,g′〉(g)i〈g,g′〉(g

′). Hence,
i〈gg′〉(gg

′) = i〈g〉(g)i〈g′〉(g
′). The map iH is the composition of the inclusion

and the map j. The argument is again similar to what we did for proving
that j is a homomorphism. The uniqueness of such j is obvious.

Philosophical Note 1.11. The main reason why the previous example
works is twofold. First, the fact that we are working with algebras (sets
equipped with some operators satisfying certain equations) and second that
the operators of the algebras (in our example, the product) are finitary. For
instance, to show that j preserves the operators, we need to put all the inputs
of the operator in one finitely-generated algebra which needs the number of
these inputs (the arity of the operator) to be finite. Philosophically speaking,
we can say that in the finitary algebraic world (groups, rings, etc) we can
construct an algebra by their finitely-generated subalgebras and hence un-
derstanding the maps going out from an algebra reduced to the maps going
out from some finitely-generated algebras .
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