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1 Introuction

Let a, b, c ∈ Z be three given integers. Is there any finitistic method1 to
decide whether the quadratic equation ax2 + bx + c = 0 has an integer
solution? Although the phrase finitistic method is vague and open to different
interpretations, we can all agree that the answer to this question is positive.
The following is a high-level explanation of a finitistic method to solve the
problem. It is based on the explicit formula for the roots of the quadratic
equations:

Compute b2 − 4ac. Check whether it is a perfect square or not.2

If not, the equation does not have an integer root. If yes, call
it δ and check whether 2a divides −b + δ or −b − δ. If yes, the
equation has an integer root, if not, it doesn’t.

The same finitistic method also works for the polynomials with the degree
three and four. The reason simply is that these equations are solvable by

1We emphasize on being finitistic because we expect our methods to be reasonable for
us as finite mortal human beings. For instance, one way to answer the problem is checking
all possible numbers which is clearly not an option for us.

2There are so many finitistic methods to check wether a given number x is a perfect
square or not and if yes, computes its square root. Some of these finitistic methods are
significantly effective and some extremely slow and impractical. For instance, the following
is an example of the latter case: Compute the squares of all the numbers less than or equal
to x and compare them with x. If x has an integer square root, the finitistic method finally
finds it because the root, whatever it is, stands below the number x itself. There are also
more reasonable approaches. One of them is based on some kind of recursion. You can find
the recursion yourself. Begin with the situation in which x is even and then ask yourself
that what is the relationship between

√
x and

√
x/4.
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the four basic operations and the radicals with degrees two, three and four,
respectively.

Now let us go one level further to investigate the same problem for any
polynomial with one variable p(x) with degree five. As the nineteen century
mathematics has already shown, when it comes to the equations with higher
degrees than four, there can not be an explicit root formula consisting of
the four basic operations and the radicals. Therefore, our previous finitistic
method breaks down. However, it is clear that this failure does not mean
that we can not find another finitistic method to solve our problem. In fact,
there exists a uniform finitistic method to handle all polynomials with one
variable with any degree. To explain how, we first need an observation. Let
us assume that a ∈ Z is an integer root for the polynomial p(x) = anx

n +
an−1x

n−1+. . .+a0 with integer coefficients. Then, it is clear that there exist a
polynomial q(x) such that p(x) = (x−a)q(x), where q(x) = bn−1x

n−1+. . .+b0

and bi ∈ Z for all i ≤ n − 1. Therefore, a0 = ab0, meaning that a|a0. This
simple observation leads to the following finitistic method :

By checking all the numbers less than or equal to a0, find all the
divisors of a0 and then check whether any of them is a root of
p(x) or not.

This procedure is a uniform finitistic method applicable to any polynomial
with any degree including the quadratics, the cubics and the quartics that
we addressed before. But note that this uniformity comes at a price. The
radical-based approach is more effective and far faster than this brute force
approach of checking all the possible divisors. The reason is simple. The
former has some access to an explicit root formula that only needs checking
some easy properties rather than searching for some bounded numbers with
some easy properties.

Now we can go even one step further. What do we know about the poly-
nomials with two variables? For quadratics the answer is again positive.
This time the idea is more sophisticated than what we had for the one vari-
able case and unfortunately we do not have enough space to explain even
the basics. For the degree three, the problem gets already beyond our full
understanding. Here, even if we have access to all possible mathematical
methods, including infinitary ones, we are far from the full understanding of
the behavior of the zeros of these cubic polynomials with two variables. You
can consult the theory of elliptic curves to see how complex the situation
can be. As we can observe, by targeting the higher degrees and/or higher
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number of variables, the problem becomes harder and harder. Therefore, it
would be reasonable to conjecture that after some point there should not be
a finitistic method to handle the polynomials. And certainly, there should
not be a unified finitistic method to handle all the polynomials with any
number of variables in any possible degree. This is our conjectured answer
to Hilbert’s tenth problem.3 The problem reads:

“Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite num-
ber of operations whether the equation is solvable in rational in-
tegers.”

So far, we have had a conjecture that the answer to Hilbert’s tenth prob-
lem should be negative. But how to prove such a negative statement? How
to show that a given decision problem does not have an acceptable deciding
finitistic method? The first clear step is finding a precise definition of what
we mean by a finitistic method.4

Let us start with inspecting our basic expectations from any formaliza-
tion of a finitistic method. The first point as the reader may expect is the
finitieness condition. The formalization, whatever it will be, should make a
difference between the finitistic methods and some infinitary ones. For in-
stance, one infinitary method to solve Hilbert’s tenth problem is checking all
the integers in the equation p(~x) = 0. But this can not be considered as an
acceptable method, since it is not possible for us, as human beings, to follow
such an infinitary method. Therefore, one reasonable condition on a finitistic
method is that it must take place in finite time. However, this finitness con-
dition depends on how we actually count the needed time. If the definition
is not well-refined enough, then it can consider the whole checking process
of all the integers as an instant atomic act, and hence concludes that the

3In his lecture in the second international congress of mathematics in Paris in 1900,
Hilbert proposed twenty three problems that shaped the whole skeleton of the twentieth
century mathematics. Three of these problems had a foundational flavor. The first on the
continuum hypothesis, the second on the consistency of arithmetic and the tenth on the
Diophantine equations.

4The answer came in 1936 in four different flavors developed by four different mathe-
maticians, Alonzo Church, Alan Turing, Stephen Cole Kleene and Emil Post. Here we will
follow Turing’s formalization and his argument why we have to accept his formalization as
a complete characterization of what we, humans, can perform. This completeness claim
is usually called the Church-Turing thesis. It roughly states that whatever is computable
intuitively, is also computable by a Turing machine that is Turing’s formalization of a
computational model.
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needed time is just finite. Here, we see the second important ingredient: The
finitistic method should consist of very basic operations that we can consider
as the atomic steps of our methods. The third condition is that these basic
operations must be meaningless and mechanical operations on a finite set of
symbols to avoid using any hidden information encoded inside of the symbols.
For instance, if we use a function symbol f with the hidden interpretation
that f reads a polynomial and decides whether it has an integer root or not,
then it is clear that using such f is not acceptable in any finitistic solution
for Hilbert’s tenth problem.

Now, the only question is that what are these basic meaningless opera-
tions that we can do on a piece of paper by some given symbols. There are
only four of them and it is totally reasonable to believe that these operations
exhaust all possible basic operations. The first three operations are reading,
erasing and writing the symbols, while the fourth is moving over the paper to
find the other symbols. Note that by moving, we mean moving step by step,
following what the rules dictate. Therefore, everything happens locally and
there is no jump from one point in the paper to some other point. Following
this argument, we can informally define a finitistic method or as we will call
it a computation as a method that is implementable in finite time via the local
operations of reading, writing and erasing the symbols on a piece of paper and
moving throughout the paper, all governed by a given finite set of rules. This
is essentially what Turing defined as his well-known Turing machine. We
will use the words Turing machine and/or algorithm informally in the rest
of this section to refer to such mechanical machines.

Now, we have a formalization of the finitistic method as what is per-
formable by a Turing machine. But how to prove that there is no computable
way to check the existence of the integer roots? This is not an easy problem
to solve. Therefore, it may be reasonable to generalize the problem to first
develop a reasonable theory around the notion of computablility and second
to have harder problems that makes the impossibility results easier.

For this purpose, let S be a set and L ⊆ S be one of its subsets. The
decision problem of L is checking whether a given element x ∈ S is in L or
not. For Hilbert’s tenth problem, the set S is the set of all polynomials with
integer coeffiecients and L is the set of all such polynomials that have integer
roots. For another example, S can be the set of all mathematical statements
and L = LTruth can be the set of all true mathematical statements. In this
case, we are looking for a finitistic method to read a mathematical statement
and check wether it is true or not. Here there is a very insightful observation.
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Reading this new problem, we may not be able to solve it in an absolute way,
but we can at least locate it by comparing its difficulty with a problem that
we already know it is hard. The idea is as follows: Assume that you have
a finitistic method for the harder problem and show it leads to a finitistic
method for the easier one. For instance, as we can easily see, any finitis-
tic method to solve LTruth leads to a decision finitistic method for Hilbert’s
tenth problem. (Just check the truth of the statement ∃~x ∈ Z [p(~x) = 0].)
Therefore, this problem is even harder than the Hilbert’s tenth problem and
hence it would be reasonable to assume that this problem is not solvable by
the finitistic methods.

One other example may help. Let S be the set of all mathematical state-
ments again and let L = LTAUT be the set of all logical tautologies. This set
seems easier to decide than what we saw before. After all, being a tautology
is admittedly a syntactical property, checkable by looking into the syntacti-
cal form of the statement. Surprisingly, in reality, this problem is not even
easier but actually harder than the previous examples. Here is the reason.
Assume that LTAUT is solvable by a finitistic method. Then we will show how
to solve the decision problem of LTruth using that finitistic method. Pick M
as a finite set of axioms, axiomatizing the whole mathematics. Then, A is a
true mathematical statement iff it is provable in M . But the latter is equiva-
lent to the statement that “

∧
M → A” is a logical tautology. Therefore, you

can use the finitistic method for LTAUT on
∧
M → A to decide if A ∈ LTruth.5

The last example is one from the computability theory itself. First, note
that Turing machines, may behave in a strange way on some of their inputs.
For instance, a reasonable finitistic method to find the least possible number
with some property is checking the property first for zero, then for one, two
and so on till finding the first number with the property. If there is a number
with that property, we can find the least possible one. However, if there is
no number with the property, then the algorithm does not understand it and
goes on forever. As this algorithm shows, we expect Turing machines to halt

5The decision problem for LTAUT , called Entsheidungsproblem, is one of the famous
foundational problems of the last century. It has been proposed by David Hilbert and
motivated, among many other things, the emergence of the whole theory of computation.
Hilbert himself thaugt the answer to this problem should be positive and hence it may
lead to a finitistic method to decide the truth of any statement in the whole mathematics.
Exactly like his tenth problem, here there were also some special cases for which Hilbert’s
school found some decision finitistic methods. They tried to find a finitistic method for the
general problem but it remained unsolved. After 1931 and under the influence of Gödel’s
first incompleteness theorem, that positive hope declined dramatically.
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on some inputs and not halt on the others. Let S be the set of all pairs
(M,x), where M is a Turing machine and x is an input. Define LHalt as the
set of such pairs that the machine M halts on the input x. Deciding such a
problem is crucially important for a programmer. It would be very convenient
to have a mechanical finitistic method to check whether a machine halts on
a given input without running the actual program, as it is possible that the
not-halting case happens as an unintended bug in the design of the algorithm.
We will show that the problem LHalt is easier than LTruth. Assume we have
a finitistic method to decide the truth of a mathematical statement. Then,
pick the statement “The Turing machine M halts on the input x.” Its truth
is nothing but halting condition and hence we can decide the halting problem.

So far, we have stated a list of decision problems and some natural nega-
tive conjectures about them. Now, it is time to explain the main idea behind
the proof of undecidability of these problems. First, let us begin with the
halting problem. The idea is the usual self-referential argument you may
have seen in Russell’s or the liar paradox. The moral is that our notion of
computation is so much powerful that it can talk about itself and this leads to
self-referential and paradoxical behavior. The reason simply is that Turing
machines are finite syntactical objects and we can encode them via natu-
ral numbers which makes Turing machines powerful enough to even run on
themselves as their inputs. Let us explain it a bit more. Assume that there
exists a Turing machine H(M,x) that decides whether the Turing machine
M halts on the input x or not, i.e., if M halts on x, we have H(M,x) = 1
and otherwise, H(M,x) = 0. Let’s denote the code for the machine M by
m. Then, think about the machine N as the machine that first computes
M(x, x) and then if it is one, it does not halt by doing something unbound-
edly and if it is zero, it halts and outputs zero. Now, let us check N(n),
where n is the code of N . If N halts on n, then by definition of N , we have
M(n, n) = 0 which means that N does not halt on n. If N does not halt on
n, then again by definition M(n, n) = 1 which means N halts on n. You can
recognize Russell’s paradox. Right? The algorithm N talks about its halting
behavior in a negative way.

Now, following the way we located the problems before, we know that
the halting is easier than the truth problem and it is easier than the Entshei-
dungsproblem. Therefore, by proving that the halting problem is undecid-
able, we actually proved that all these three problems are undecidable, as
well. But what about the tenth problem? This problem is easier than the
truth problem which does not imply its undecidability. In fact, the tenth
problem is also undecidable. However, its proof is extremely harder than
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what we saw for halting and the others. Its undecidability proved by Mati-
asevich, Davis, Putnam and Robinson by showing that the halting problem
is equivalent to the existence of integer roots for a specific polynomial with
integer coefficients. We will mention this problem later in the lectures.

2 Deterministic Finite Automata

As we have explained in Introduction, computation is a mechanical manipu-
lation of symbols via the local operations of reading, writing and erasing, all
governed by a finite set of given rules. In this section we limit ourselves to a
very restricted notion of computation in which we are only allowed to read
the input without writing and erasing any symbol anywhere. One may hesi-
tantly ask that even if some kind of computation is possible in such a limited
situation, how the machine is supposed to report the result of the compu-
tation without the minimum power of writing. Because of this very reason,
in this section, the computation is limited only to the decision procedures
through which the machine computes the truth value of the input statement.
The mechanism is as follows: The machine has finitely many internal states
that change throughout the computation process. Some of these states are
called the accepting states. The machine reads the input, letter by letter,
and in each step modifies its current state according to what it just has read
and what its rules dictate. The whole process ends when the machine reads
the last letter of the input and it accepts the input if it lands in a final state.

Definition 2.1. Let Σ be a finite set. By Σ∗ we mean the set of all finite
strings (including the zero-length string ε) consisting of the elements of Σ.

Definition 2.2. By a language over the alphabet Σ we mean any subset of
the set Σ∗.

For instance, the English language is a language over the set {a, b, c, . . . , z}
while natural numbers can be considered as a language on the binary set
{0, 1} via the binary expansion or the unary set {1} via identifying n by 1n as
a sequence of n many 1’s. The other examples include the set {anbn | n ≥ 0}
over the alphabets {a, b} or the set {1p | p is a prime number} over the al-
phabet {1}.
Definition 2.3. A deterministic finite automaton, DFA, M on the alphabet
Σ = {s1, . . . , sn} with states Q = {q1, . . . , qm} is given by a function δ :
Q×Σ→ Q which maps each pair (qi, sj), 1 ≤ i ≤ m, 1 ≤ j ≤ n, into a state
qk, together with a set F ⊆ Q. One of the states, usually q1, is singled out
and called the initial state. The states belonging to the set F are called the
final or accepting states. δ is called the transition function.
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It is usually useful to represent a DFA by a directed graph with the nodes
representing the states and edges with the alphabet labels to represent the
transition function. If the transition function sends p to q reading the letter
s, there will be an edge from p to q with label s. The start state is shown by
a node with a small unlabelled in-edge and the accepting states are indicated
by double circles.

q1 q2 q3

s1

s2

s2

s1

s1, s2

Figure 1: A DFA with the states {q1, q2, q3}, alphabet {s1, s2} and F = {q2}.

Definition 2.4. Let q ∈ Q be a state and w ∈ Σ∗ be a finite string. By
δ∗(q, w) we mean the state resulting from iterating δ starting from q and
reading the letters of w from left to right till it ends. Then M accepts a word
w if δ∗(q1, w) ∈ F . It rejects w otherwise. Finally, the language accepted
(recognized) by M , written L(M), is the set of all w ∈ Σ∗ accepted by M ,
i.e.,:

L(M) = {w ∈ Σ∗ | δ∗(q1, w) ∈ F}.

A language is called regular if there exists a deterministic finite automaton
which accepts it.

Notation. From now on, in the examples, we denote the states by p, q,
r and so on. The letter p is always reserved for the initial state. For the
alphabet letters we usually use a, b, c and so on. We also use 0 and 1 later
in the course.

Example 2.5. Consider the DFA M on the alphabet {a, b} with the states
{p, q} such that F = {p}. Define δ as p for the input (p, a) and q otherwise.
Then L(M) = {an | n ≥ 0}. See Figure 2. The reasoning is simple. If M
reads an, for some n, (including n = 0), it goes through the loop over p, n
many times. Therefore, it ends up in p and hence M accepts it. But if it
includes at least one b, the machine must cross the edge between p and q at
some point and after that it will remain in q till the end. Hence, M cannot
accept these strings.
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p q

a

b

a, b

Figure 2: Example 2.5

2.1 Some Examples

Example 2.6. Consider the DFA M on the alphabet {a, b} with the state
{p} such that F = ∅. Define δ as p for the both inputs (p, a) and (p, b). Then
L(M) = ∅. See Figure 3.

p

a, b

Figure 3: Example 2.6

Example 2.7. Consider the DFA M on the alphabet {a, b} with the state
{p} such that F = {p}. Define δ as p for the both inputs (p, a) and (p, b).
Then L(M) = {a, b}∗. See Figure 4.

p

a, b

Figure 4: Example 2.7

Example 2.8. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r} such that F = {q}. Define δ as q for the input (p, a) and r otherwise.
Then L(M) = {a}. See Figure 5.

Example 2.9. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r, t} such that F = {r}. Define δ as q for the input (p, a) and r for the
input (q, b) and t otherwise. Then L(M) = {ab}. See Figure 21.

Exercise 2.10. Let u ∈ {a, b}∗. Define a DFA M such that L(M) = {u}.
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p q

r

b

a, b

a

a, b

Figure 5: Example 2.8

p q r

t

a

a

a, b

b

a, bb

Figure 6: Example 11.29

Example 2.11. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r, t} such that F = {q, r}. Define δ as q for (p, a); r for (p, b) and t
otherwise. Then L(M) = {a, b}. See Figure 7.

Example 2.12. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r} such that F = {r}. Define δ as q for the input (p, b), r for the input
(p, a), q for both (q, a) and (q, b) and finally the same for r, meaning r for
both (r, a) and (r, b). Then L(M) = {aw | w ∈ {a, b}∗}. See figure 22.

Exercise 2.13. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r, t} such that F = {r}. Define δ as q for the input (p, a); r for the
input (q, b); r for both (r, a) and (r, b) and t for the rest. Then, show that
L(M) = {abw | w ∈ {a, b}∗}.

Exercise 2.14. Let u ∈ {a, b}∗. Define a DFA M such that L(M) = {uw |
w ∈ {a, b}∗}.
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p

q

t

r

a a, b

a, bb

a, b

Figure 7: Example 2.11

p q

r

a

b

a, b

a, b

Figure 8: Example 11.31

Example 2.15. Consider the DFA M on the alphabet {a, b} with the states
{p, q} such that F = {q}. Define δ as q for the input (p, a) and (q, a) and p
otherwise. Then L(M) = {wa | w ∈ {a, b}∗}. See Figure 9.

Exercise 2.16. Define a DFA M such that L(M) = {wba | w ∈ {a, b}∗}.

Exercise 2.17. Let u ∈ {a, b}∗. Define a DFA M such that L(M) = {wu |
w ∈ {a, b}∗}.

Example 2.18. Consider the DFA M on the alphabet {a, b} with the states
{p, q} such that F = {q}. Define δ as p for the input (p, a) and q otherwise.
Then L(M) = {w | w has at least one b}. See Figure 10.

Exercise 2.19. Compare Examples 2.5 and 2.18 and answer the following
question: Let L be a regular language over the alphabet Σ. Is Σ∗ − L also
regular?
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p q

b

a

b

a

Figure 9: Example 5.11

p q

a

b

a, b

Figure 10: Example 2.18

Exercise 2.20. Describe a DFA M that recognizes the strings over {a, b}
with at least two a’s. What about the condition “at most one a”?

Example 2.21. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r, t} such that F = {r}. Define δ as q for the input (p, a); r for (q, b)
and (r, b); q for (q, a) and t otherwise. Then L(M) = {anbm | m,n ≥ 1}. See
Figure 11.

p q r

t

a

a

a, b

b

a
b

b

Figure 11: Example 2.21

Example 2.22. Consider the DFA M on the alphabet {a, b} with the states
{p, q, r} such that F = {p}. Define δ as p for the input (q, b); q for (p, a) and
r otherwise. Then L(M) = {(ab)n | n ≥ 0}. See Figure 12.
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p q

r

b

a

ab

a, b

Figure 12: Example 2.22

Exercise 2.23. Let u ∈ {a, b}∗. Define a DFA M such that L(M) = {un |
n ≥ 0}.

Example 2.24. Consider the DFA M on the alphabet {1} with the states
{p, q, r} such that F = {p}. Define δ as q for the input (p, 1) and r for (q, 1)
and p for (r, 1). Then L(M) = {13n | n ≥ 0}. Interpreting {1}∗ as N, the
machine recognizes the multiples of three. See Figure 13.

p q

r

1

11

Figure 13: Example 2.24

Exercise 2.25. Define a DFA M on the alphabet {1} such that L(M) =
{13n+1 | n ≥ 0}.

Exercise 2.26. Let m and r be two fixed natural numbers such that m ≥ 1
and r < m. Define a DFA M on the alphabet {1} such that L(M) = {1mn+r |
n ≥ 0}.
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3 Non-deterministic Automata and Regular

Operations

In this section we will introduce a generalization of a DFA called a non-
deterministic finite automaton or NFA, for short. These models may seem
more powerful than the DFAs but they are actually equivalent to them and
accept the same languages as the DFAs do. Their advantage, though, lies
in the fact that the NFAs are easier and more well-behaved to use. For
instance, the class of the new machines is closed under some simple gluing
operations that help us to construct more regular languages from the old.
We can simulate these operations over the DFAs, as well, but then they are
not as transparent as they were for NFAs.

Definition 3.1. A non-deterministic finite automaton, NFA, M on the al-
phabet Σ = {s1, . . . , sn} with states Q = {q1, . . . , qm} is given by a transition
relation δ ⊆ Q × Σ × Q, together with a set of accepting states F ⊆ Q and
the initial state q1.

Remark 3.2. Note that in a run of an NFA, after reading a letter from
the input, the machine may have many possible next states (including zero
possibilities), leading to many possible futures. This is why it is called non-
deterministic.

Definition 3.3. Let q ∈ Q be a state and w ∈ Σ∗ be a string. By δ∗(q, w)
we mean the set of all states resulting from any iteration of δ starting from q
and reading the letters of w from left to right till they end. Then M accepts
a word w if δ∗(q1, w) ∩ F 6= ∅. In other words, it accepts w if there exists
a path of states following the relation δ and the letters of w from q1 to F .
Finally, the language accepted by M , written L(M), is:

L(M) = {w ∈ Σ∗ | δ∗(q1, w) ∩ F 6= ∅}.

3.1 Some Examples

Example 3.4. Consider the NFA M on the alphabet {a, b} with the states
{p, q, r} such that F = {r}. Define δ as the following relation: {(p, a, q), (q, b, r)}.
Then L(M) = {ab}. See Figure 14.

Exercise 3.5. Let u ∈ Σ∗. Define an NFA M such that L(M) = {u}.

Example 3.6. Consider the NFA M on the alphabet {a, b, c} with the states
{p, q, r, t} such that F = {t}. Define δ as the following relation:

{(p, a, q), (p, a, r), (q, b, t), (r, c, t)}.
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p q r
a b

Figure 14: Example 3.4

p

q

t

r

a b

ca

Figure 15: Example 3.6

Then L(M) = {ab, ac}. See Figure 15.

Exercise 3.7. Let u1, . . . , uk ∈ Σ∗. Define an NFA M such that L(M) =
{u1, . . . , uk}.

Exercise 3.8. Let M and N be two NFAs that recognize the languages L1

and L2, respectively. Is there an NFA to recognize the language L1 ∪ L2?

Example 3.9. Consider the DFA M on the alphabet {a} with the states
{p, q} such that F = {q}. Define δ as the following relation: {(p, a, q), (q, a, q)}.
Then L(M) = {an | n ≥ 1}. See Figure 16.

p qa

a

Figure 16: Example 3.9

Now we will use M to construct the NFA N on the alphabet {a, b} with
the states {p, q, q′, r′, t′} such that F = {t′}. Define δ as the following relation:

{(p, a, q), (q, a, q)} ∪ {(q, b, q′), (q′, a, t′), (q, a, r′), (r′, b, t′)}.

15



Then L(M) = {anba | n ≥ 1} ∪ {anab | n ≥ 1}. See Figure 17. Note that
this machine is the result of gluing the previous machine M to a machine
similar to the machine of Example 3.6, in the node q = p′.

p q = p′

q′

t′

r′

b a

ba

a

a

Figure 17: Example 3.9

Exercise 3.10. Let M and N be two NFAs that recognize the languages L1

and L2, respectively. Is there an NFA to recognize the language L1 · L2 =
{uv | u ∈ L1, v ∈ L2}?

Example 3.11. Consider the NFA M on the alphabet {a, b, c} with the
states {p, q, r} such that F = {p}. Define δ as the following relation:

{(p, a, q), (q, b, p), (p, a, r), (r, c, p)}.

Then L(M) = {w1w2 . . . wn | wi ∈ {ab, ac}, n ≥ 0}. See Figure 18. Note
that this machine is the result of gluing the initial and the final states of the
machine of Example 3.6.

Exercise 3.12. Let M be an NFA that recognizes the language L. Is there
an NFA to recognize the language L∗ = {w1w2 . . . wn | n ≥ 0, wi ∈ L}?

3.2 The Equivalence Theorem

Theorem 3.13. A language is accepted by an NFA if and only if it is regular.
Equivalently, a language is accepted by an NFA if and only if it is accepted
by a DFA.

Proof. Obviously, any language accepted by a DFA is also accepted by an
NFA. Conversely, let L = L(M), where M is an NFA with the transition
relation δ, set of statesQ = {q1, . . . , qm}, and the set of final states F . We will
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Figure 18: Example 3.11

construct a DFA N such that L(N) = L(M). The idea is that the individual
states of N will be the subsets of M denoted by Q′ = {Q1, Q2, . . . , Q2m},
where in particular Q1 = {q1} is to be the initial state of M . The set G of
final states of N is given by:

G = {Qi ∈ Q′ | Qi ∩ F 6= ∅}

The transition function σ of N is then defined by:

σ(Qi, s) = {r ∈ Q | ∃q ∈ Qi δ(q, s, r)}

It is easy to see that N accepts exactly the strings for which there exists an
accepting path in M . Hence, L(M) = L(N).

Remark 3.14. Simulating the parallel nature of non-determinism by some
deterministic moves usually comes at a huge price. For instance, note that
in the previous theorem, the deterministic simulator is exponentially bigger
than the original non-deterministic machine.

3.3 Regular Operations

In this section we will explain some high-level methods to construct different
regular languages, without the need to describe the actual machine every
time. In fact, we will present a descriptive criterion that characterizes all
regular languages based on their common description form.
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Lemma 3.15. For any NFA M , there exists an equivalent non-restarting
NFA N . Non-restarting means that the machine has no edge entering the
start state i.e., there is no pair (q, s) ∈ Q× Σ such that δ(q, s, q1).

Proof. Add one new state q to M as the new start state and add an edge
from q to r with label s ∈ Σ if there is already an edge from the starting
state of M to r with the same label. Finally, make the state q accepting iff
the initial state of M was accepting. It is easy to see that N is non-restarting
and equivalent to M , i.e., L(M) = L(N).

Theorem 3.16. Let L1 and L2 be regular languages. Then all of the lan-
guages L1∪L2, L1 ·L2 = {uv | u ∈ L1, v ∈ L2} and L∗1 = {w1w2 . . . wn | wi ∈
L1, n ≥ 0} are regular.

Proof. Let M and N be two DFAs accepting the languages L1 and L2, re-
spectively. To show the mentioned languages are regular, we describe the
construction of an accepting NFA K for each case. Checking that these
machines work is easy and left to the reader.

• For L1 ∪L2, put M above N , add one new start state q mimicking the
out edges of both start states of M and N . Note that this new machine
can be non-deterministic.

• For L1 · L2, put N after M , connecting all final states of M to some
states of N mimicking the in-edges of the start state of N .

• For L∗1, use M but for any edge with the label s from q to r, where r is
a final state in M , draw an edge with the label s from q to the initial
state of M and make the initial state of M also final (if it is not final
already). For this machine to work, M should be non-restarting and
we can assume that condition for M , thanks to Lemma 3.15.

Exercise 3.17. In the third part of the proof of Theorem 3.16, for the
closure under star, run the algorithm on a restarting M (i.e., there is a pair
(q, s) ∈ Q×Σ such that δ(q, s) = q1). Show by an example that the resulting
automaton does not recognize L∗1.

Definition 3.18. Any combination of the symbols {∪, ·, (−)∗} on the el-
ements of Σ is called a regular expression. By the language of a regular
expression E, we mean the language defined recursively by interpreting the
element s ∈ Σ as the singleton language {s} and the symbols in {∪, ·, (−)∗}
by their corresponding operations. If L is the language of the regular expres-
sion E, we say that E is a description of L (or L is described by E).
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Example 3.19. Let Σ = {a, b}. Using the convention of omitting the points
in concatenations, the regular expressions a∗, (aa∗)(bb∗) and (ab)∗ are de-
scriptions of the regular languages {an | n ≥ 0}, {anbm | m,n ≥ 1} and
{(ab)n | n ≥ 0}, respectively.

Note that any regular expression describes a regular language by Theorem
3.16 and Exercise 3.5.

Exercise 3.20. For each language L described in the exercises 1.12, 1.13,
1.14, 1.15, 1.16, 1.17, 1.18, give a description by a regular expression.

Exercise 3.21. Let L = {w ∈ {a, b}∗ | w 6= ε and bb is not a substring of w}.

(i) Find a regular expression describing L.

(ii) Show that L is regular by constructing an NFA that accepts L.

The next theorem provides the converse of the previous statement. It can
be read as a connection between the computability via certain models and
being described by a certain form.

Theorem 3.22. (Kleene) A language is regular iff it has a description by a
regular expression.

Proof. One side is proved. For the converse, we will explain the idea behind
the proof. First, we have to introduce a generalized version of NFAs called
GNFAs, with the same structure but this time using regular expressions as
the labels of the edges. Acceptance in these machines is defined in a natural
way. The machine reads the input, but not letter by letter. If it is in the state
q and read the input up to wi in w = w1w2 . . . wn, it can read any segment
onwards such as wi+1 . . . wj and check if this segment is in the language of
the label of an eadge from q to some other state, say q′. If yes, it can go to
q′ and jump on the input to wj+1. It is clear that the usual DFAs are the
special case of these machines. There are two things to prove. First, one
should prove that these generalized machines only accept regular languages
and then to show that any GNFA is equivalent (accepting the same language)
to a smaller GNFA. This procedure reduces a usual DFA (read as a GNFA)
to a single regular expression which completes the proof.

4 Pumping Lemma

Consider the language L = {anbn | n ≥ 0} over the alphabets {a, b}. Is L
regular? Let us assume its regularity for a moment and try to construct a
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DFA to accept it. How should this machine work? The natural candidate
for the algorithm is the following: First read all the a’s till you reach the
first b and remember the numbers of a’s that you have read. Then do the
same for b’s, meaning that you have to read all the block of b’s and remember
their number again. Then, if you read an a again, reject, otherwise check
whether the number of a’s and b’s that you have read so far are equal or not.
The problem with this very natural algorithm is that it goes far beyond the
power of the DFAs. The reason is simple: DFAs are not allowed to write and
hence they do not have a reasonable memory (except maybe for a fixed finite
amount of data, encoded through the finite states of the machine) and hence
they cannot remember the variable number of a’s or b’s that they have read in
the algorithm. This lack of memory limits the power of DFAs dramatically.
In this section we will explain how to use this weakness of DFAs to show that
a given language is not regular. The main idea is the following: If you have
a bounded memory, you will repeat yourself, eventually.

Theorem 4.1. (Pumping Lemma). Let L = L(M), where M is a DFA with
n states. Let x ∈ L, where |x| ≥ n. Then we can write x = uvw, where
|v| 6= 0, |uv| < n and uviw ∈ L for all i ≥ 0.

Proof. Since x consists of at least n symbols, x must go through at least n
state transitions as it scans x. Including the initial state, this requires atleast
n+1 (not necessarily distinct) states. But since there are only n states in all,
we conclude thatM must be in at least one state more than once. Let q be the
first state in which M finds itself at least twice. Then we can write x = uvw,
where δ∗(q1, u) = q , δ∗(q, v) = q , δ∗(q, w) ∈ F . That is, M arrives in state
q for the first time after scanning the last (right-hand) symbol of u and then
again after scanning the last symbol of v. Since this “loop” can be repeated
any number of times, it is clear that δ∗(q1, uv

iw) = δ∗(q1, uvw) ∈ F . Hence
uviw ∈ L. Moreover, since q is the first repeated state, we have |uv| < n.

Example 4.2. The language L = {anbn | n ≥ 0} on the alphabet {a, b}
is not regular. Assume otherwise. Then there exists a DFA M such that
L(M) = L. Set |QM | = n. Then by the pupming lemma, since the length
of x = anbn is bigger than n, it has a partition uvw such that |uv| < n.
Therefore, v only consists of a’s and since |v| 6= 0, the number of a’s and b’s
in uv2w cannot be equal which means uv2w /∈ L. The same argument also
works for the language L = {x ∈ {a, b}∗ | Na(x) = Nb(x)}, where Na(x) and
Nb(x) are the number of a’s and b’s in x.

Exercise 4.3. Show that the language L = {wwR ∈| w ∈ {a, b}∗} is not
regular, where wR is the reverse of w, i.e., the word w written from right to
left. For instance, (abb)R = bba.
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Example 4.4. The language L = {1p | p is a prime number} on the alpha-
bet {1} is not regular. Assume otherwise. Then there exists a DFA M such
that L(M) = L. Set |QM | = n and pick p ≥ n. Then by the pupming lemma,
since the length of x = 1p is bigger than or equal to n, it has a partition uvw
such that |v| 6= 0. Since the alphabet consists only of one element, any string
can be identified with its length. Set |u| = a, |v| = b and |w| = c. Therefore,
a + ib + c for any i ≥ 0 is prime. Put i = 0, then a + c is prime. Now put
i = a+ c, then a+ ib+ c = (a+ c)(1 + b). We know that 1 + b ≥ 2 and a+ c
is prime. Therefore, their product cannot be a prime. Hence uva+cw /∈ L.

Exercise 4.5. Show that the language L = {1n2 | n ≥ 0} on the alphabet
{1} is not regular. Interpreting {1}∗ as N, it means that the set of all perfect
squares is not regular.

Exercise 4.6. Show that the language L = {12n | n ≥ 0} on the alphabet
{1} is not regular. It means that the set of all powers of two is not regular.

Exercise 4.7. Show that the language L = {ww | w ∈ {a, b}∗} on the
alphabet {a, b} is not regular.

5 Turing Machines

Let us recall our informal notion of computation as a mechanical manipula-
tion of symbols via the local operations of reading, writing and erasing, all
governed by a finite set of given rules. In the previous sections we studied
the limited power of computability when only reading is allowed. Now, we
are ready to talk about the full story.

Definition 5.1. A Turing machineM is described by a tupleM = (Q,Σ, δ, q1, F )
containing:

• A finite set Q of possible states of M . We assume that Q contains a
designated start state q1, and F ⊆ Q as the halting states.

• A finite set Σ of the input alphabet such that �,# /∈ Σ where � is a
symbol for blank and # is a symbol for separating comma that we will
see later.

• A transition function δ : (Q−F )× (Σ∪{�,#})→ Q× (Σ∪{�,#})×
{L,R}.

We also need a formal version of a piece of paper on which the computa-
tion takes place. For that matter, the Turing machine M = (Q,Σ, δ, q1, F )
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uses an unbounded linear tape, divided into infinite discrete cells. Initially,
M receives its input w = w1w2 . . . wn ∈ (Σ ∪ {�,#})∗ on the tape with the
rest of the tape filled with the blank symbol �. The machine also has a
read/write head. By convention, we assume that the head always starts on
the leftmost square of the input. If the input is empty, then it starts some-
where. Once M has started, the computation proceeds according to the rules
described by the transition function, meaning that if the machine is in the
state p reading the letter s, it goes to the state q, changes the content of the
cell to s′ and go one cell right or left according to D where δ(p, s) = (q, s′, D)
and D ∈ {L,R}. The computation continues until it enters one of the halting
states. If it does not occur, M goes on forever.

Just like a finite automaton, we can also represent a Turing machine by a
directed graph with the nodes representing the states and edges with labels
s 7→ s′, D where s, s′ ∈ Σ∪ {�} and D ∈ {L,R}, representing the transition
function. If the transition function sends p to q reading the letter s with the
instruction to erase s and write s′ and move the head to D, there will be
an edge from p to q with the label s 7→ s′, D. Similar to what we had for
automata, the start state is shown by a node with a small unlabelled in-edge
and the halting states are indicated by double circles.

. . . � � � s s s � s # s � � � � � . . .

q1 q2 q3

q1

l 7→ �, R

� 7→ l, L

l 7→ l, R

� 7→ �, R

Figure 19: A TM with the states {q1, q2, q3}, alphabet {s} and F = {q3}.

Definition 5.2. A partial function6 f : (Σ∗)k → Σ∗ is computable by the
Turing machine M , if for any (w1, w2, . . . , wk) ∈ (Σ∗)k, the machine halts on
the input w1#w2# . . .#wk iff (w1, . . . , wk) is in the domain of the function

6Unlike the usual practice of mathematics, when we write f : A→ B we mean a partial
function with dom(f) ⊆ A.

22



f . Moreover, when it halts, the value of f must appear on the tape between
two lines of blanks while the head is on its first letter. A partial function is
called computable if it is computable by some Turing machine.

To represent the truth values over any alphabet set Σ, fix an element a ∈
Σ and represent 0 and 1 by the empty string and the string a, respectively.

Definition 5.3. A relation R ⊆ (Σ∗)k is called semi-decidable or computably
enumerable7, c.e. for short, if there exists a Turing machine M such that if
~w ∈ R it halts on the input w1#w2# . . .#wk and outputs 1 and if ~w /∈ R,
it does not halt. It is called decidable or computable if there exists a Turing
machine M such that it always halts on the input w1#w2# . . .#wk and
outputs 1 if ~w ∈ R and 0 if ~w /∈ R.

Remark 5.4. Note that the relation R is decidable iff its characteristic
function χR:

χR(~w) =

{
1 ~w ∈ R
0 ~w /∈ R

is computable and it is c.e. if the function χ′R with the domain R and the
constant value 1 is computable.

5.1 Some Examples

In this subsection we will present some basic examples of Turing machines.
We will first focus on the computable functions to see how to compute a
concrete function. Then we will move to the decision procedures and their
corresponding decidable and c.e. relations.

5.1.1 Computable Functions

Example 5.5. Consider the Turing machine M on the alphabet Σ with the
states {p, q} such that F = {q}. Define δ as (p,�, R) for the input (p, l) for
any l ∈ Σ∪ {#} and (q,�, R) for (p,�). Then, M erases its input, if it is in
Σ∗. See Figure 20. For Σ = {1}, it computes the constant zero function.

Exercise 5.6. Let u ∈ Σ∗ be a fixed string. Describe a Turing machine that
computes the function Cu defined by Cu(w) = u for any w ∈ Σ∗.

7The terminology here may seem a bit mysterious, simply because the machine is ap-
parently implementing a sort of decision procedure and not enumeration. We will explain
the reason behind this terminology in the following sections.
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p q

l 7→ �, R

� 7→ �, R

Figure 20: Example 11.29

Example 5.7. Consider the Turing machine M on the alphabet Σ with the
states {p, q, r} such that F = {r}. Pick a ∈ Σ and define δ as (p, l, R) for the
input (p, l) for any l ∈ Σ ∪ {#}; (q, a, L) for (p,�); (q, l, L) for (q, l) for any
l ∈ Σ ∪ {#} and (r,�, R) for (q,�). Then M computes the total function
f : Σ∗ → Σ∗ that sends w to wa. See Figure 21. For Σ = {1}, it computes
the successor function.

p q r

l 7→ l, R

� 7→ a, L

l 7→ l, L

� 7→ �, R

Figure 21: Example 11.30

Exercise 5.8. Let u ∈ Σ∗ be a fixed string. Describe a Turing machine that
computes the function Su defined by Su(w) = wu for any w ∈ Σ∗.

Example 5.9. Consider the Turing machine M on the alphabet Σ with the
states {p, q, r, s} such that F = {s}. Define δ as (p, l, R) for the input (p, l)
for any l ∈ Σ∪{#}; (q,�, L) for (p,�); (r,�, R) for (q, l) for any l ∈ Σ∪{#};
(r,�, L) for (q,�); (r, l, L) for (r, l) for any l ∈ Σ ∪ {#} and (s,�, R) for
(r,�). This machine erases the right-most letter of w ∈ Σ∗, if there is any,
otherwise, it returns ε. Therefore, M computes the function:{

Pred(ε) = ε
Pred(wa) = w

See figure 22. For Σ = {1}, it computes the predecessor function.

As we can observe even with these very simple examples, spelling out all
the details of a Turing machine and drawing its graph representation can
be very complicated and time-consuming. Therefore, from now on, we will
explain the algorithm behind the machine in words and in a more high-level
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p q r s

l 7→ l, R

� 7→ �, L

l 7→ �, L

� 7→ �, L
l 7→ l, L

� 7→ �, R

Figure 22: Example 11.31

manner. It helps to see the main ideas of the algorithm rather than the
details of the implementation. However, one has to be aware that every
high-level operation must be reducible to the basic operations of the Turing
machines, controlled by their finite number of states.

Example 5.10. (Projection) Consider the Turing machine Projection on
any set of alphabets Σ:

(I) Go right and erase everything till you see the (i− 1)th #. (Don’t erase
this #). Then, go right but do nothing till you see the next #. Then,
again go right and erase the tape till you read blank. Come back till
you see #. Erase # and go one cell to the right.

This machine reads the input w1#w2# . . .#wk, where wj ∈ Σ∗ and outputs
wi for i ≤ k. Therefore, it computes the projection function I ik(w1, . . . , wk) =
wi.

Example 5.11. (Moving Right) Consider the Turing machine MovingRight

on any set of alphabets Σ ∪ {#}:

(I) If you read blank, go one step right and halt. If you read any letter l
go right till you reach a blank. Then, go to (II).

(II) Go one step left, read the content. If it is in Σ, remember it, change it
to blank. Go one step right, write the letter, go left and go to (II). If
it is blank, go two steps right and halt.

This machine moves the input string in Σ∗ one step to the right.

Example 5.12. (Concatenation) Consider the following Concatenation al-
gorithm:

(I) Go right till reaching the first #. Erase it and go left till you see
the first blank. Then, go one step right and apply the MovingRight

algorithm as in Example 5.11.
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If we apply the Concatenation to the input u#v, it moves u one step to
the right to produce the concatenation uv. Therefore, the machine computes
the concatenation function f : Σ∗ × Σ∗ → Σ∗ mapping (u, v) to uv. Note
that if the algorithm MoveRight reads u�v, it does not care what is in the
right hand side of the middle blank. The Concatenation uses this property,
substantially. Note that for the language Σ = {1} and identifying {1}∗ by
N, the function f is the usual addition.

Exercise 5.13. (Sequence Concatenation) Let Σ be a set of alphabets. Write
a Turing machine SeqConcatenation on Σ such that if it reads u1#u2# . . .#un
where ui ∈ Σ∗, it returns the concatenation u1u2 . . . un.

Exercise 5.14. (Copy) Let Σ be a set of alphabets. Write a Turing machine
Copy on Σ such that if it reads u#w, where u ∈ (Σ ∪ {#})∗ and w ∈ Σ∗, it
returns u#w#w and when it halts the head is on the first letter of the first
w.

Example 5.15. (Multiplication) Consider the Turing machine Multiplication
on any set of alphabets Σ:

(I) Read the current cell. If it is #, then go right and erase everything till
the first blank. Then, go left till reaching the # and erase it and halt.
If the content of the current cell is in Σ, erase it, go one step to the
right and go to (II).

(II) Read the content of the current cell, if it is #, erase it, go one step to
the right and go to (III). If the content of the current cell is a letter
in Σ, erase it and go right till reaching the first blank. Then, go left
until reaching the first #. Go one cell right and run Copy. Go left till
reaching the first blank. Go one step right. Go to (II).

(III) Run SeqConcatenation.

This machine computes f : Σ∗×Σ∗ → Σ∗ that sends (u, v) to v|u|. Note that
for the language Σ = {1} and identifying {1}∗ by N, the function f is the
usual multiplication.

Example 5.16. (Boolean Operations) Consider the Turing machine Disjunction
defined as follows: Run Concatenation. Scan the output. If it consists of
two a’s, erase one a, move the head over that a and halt. Otherwise, just
halt. This machine computes the disjunction function ∨ : {0,1} × {0,1} →
{0,1}. For the conjunction function ∧ : {0,1} × {0,1} → {0,1} use
Multiplication. For negation, ¬ : {0,1} → {0,1}, use the following
Negation machine: Scan the input. If it consists of one a, erase the a and
halt. If the input is empty, write one a and halt. Otherwise, just halt.
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Exercise 5.17. Show that the following function C : {0,1}×Σ∗×Σ∗ → Σ∗

is computable:

C(u, v, w) =

{
v u = 0
w u = 1

Exercise 5.18. Let S ⊆ Σ∗ be a finite set and f : S → Σ∗ be any function.
Show that f is computable. Note that it implies that any function with finite
domain is computable.

5.1.2 Computably Enumerable and Decidable Relations

Example 5.19. Consider the Turing machine M on the alphabet Σ = {1}
with the states Q = {p, q, r, s} such that F = {s}. Define δ as (q, 1, R) for the
input (p, 1); (q, l, R) for the input (q, l) for any l ∈ {1,�}; (r, 1, R) for (p,�);
(s, l, L) for (r, l) for any l ∈ {1,�}. The machine halts if it reads the empty
string and outputs 1 but if we feed the machine any other string, then it goes
right forever. Therefore, M computes the partial function f : {1}∗ → {1}∗
with domain {ε} and the value 1 = 1. In other words, it shows that the set
{ε} is computably enumerable. See Figure 23.

p r

q

s

1 7→ 1, R

1 7→ 1, R

� 7→ �, R

� 7→ 1, R l 7→ l, L

Figure 23: Example 5.19

Exercise 5.20. By constructing two Turing machines, show that the equal-
ity relation {(u, v) ∈ Σ∗ × Σ∗|u = v} is both decidable and computably
enumerable.

Exercise 5.21. By constructing two Turing machines, show that the first
segment relation {(u, v) ∈ Σ∗ × Σ∗|∃w(uw = v)} is both decidable and
computably enumerable.
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Example 5.22. Any regular language L is also decidable. Let us assume that
the DFA M recognizes L. We will construct a Turing machine N deciding
L. The algorithm N first runs M till it reads all the input. If it accepts
the input, N erases everything, writes 1 and halts. If it rejects, N erases
everything, writes 0 and halts.

The previous example shows that the class of all decidable languages
extends the class of all regular languages. This extension is proper as we will
see in the following example:

Example 5.23. Consider the following Turing machine:

(I) If you read blank, write 1 and halt. If you read b, erase everything
and right 0. If you read a, erase it and then go right till you reach the
blank. Go left and check whether the last letter is b or not. If not,
erase everything, write 0 and halt, if yes, erase the last letter and go
left till reaching the blank. Go right and go to (I).

This machine computes the function f : {a, b}∗ → {0,1} that sends all
strings of the form anbn to 1 and the rest to 0. Therefore, it decides the
language L = {anbn|n ≥ 0} and hence there are some decidable non-regular
languages.

Exercise 5.24. Show that the language {12n|n ≥ 0} over the alphabet {1}
is decidable.

Example 5.25. Any decidable language is also computably enumerable.
Let M be the decision procedure for R. Then define the machine N as first
running M , if it outputs 1 halt. If it outputs 0, go to right forever.

Remark 5.26. The inclusion of the Example 5.25 is also proper. We will
provide a c.e. but undecidable language later in the course.

6 Variants of Turing Machines

In the previous section we introduced the deterministic Turing machines
with one linear unbounded tape, and we have defined the notion of com-
putability based on that definition. Fortunately, the notion of computability
is extremely robust and independent from the implementing details of the
Turing machines. In the following we will mention some variants of the Tur-
ing machines with different structural details but with the same power of
computation:
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• Usually Turing machines are defined without the set F and the tran-
sition function δ : Q × Σ → Q × Σ × {L,R} as a partial function. In
these machines, halting means reaching a configuration outside of the
domain of δ.

• Just like the case for NFAs, it is also possible for Turing machines to
be non-deterministic. The idea, again, is allowing the function δ to be
a relation.

• For computably enumerable and decidable relations, sometimes people
use the machines with two specified states called the accept state and
the reject state. If the machine reaches the accept state (reject state)
it accepts (rejects) the input, otherwise the machine does not halt on
the input. In these machines, accepting or rejecting the language has
nothing to do with the outputs of the machine.

• It is possible to use a greater set of working alphabets than the the set
of the input alphabets Σ. This set is usually denoted by Γ and it should
be an extension of Σ.

• The machines can have access to more local moves than the two basic
moves of left and right. For instance in some cases it is useful to have
a machine with three moves Left, Right and Stay.

• It is also possible to change the details of the tape of the machine. The
machine could have only one semi-unbounded tape that is unbounded
only on one direction and bounded on the other or it can have fixed
number of tapes with separate heads for any tape or even a plane type
of tape with one head with four moves for four directions.

• The machine can receive its input in many different ways. For instance,
the head can be on its right-most end of the input or when the machine
has a one-sided tape, the head can be on the first cell of the bounded
side of the tape.

7 A Bit of Recursion Theory

As we have observed for finite automata and their relation with regular ex-
pressions, in some cases, it is possible to develop a machine independent
characterization for computability with respect to a given notion of compu-
tation. Turing machines are no exception in this regard. In this section we
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will introduce a machine-independent characterization for computable func-
tions and computably enumerable and decidable relations. As we can expect,
such a characterization is helpful in proving the computability of functions
and relations without providing the actual possibly complex Turing machines.
However, we have to pay the price for handling these complicated details at
some point and this section and its equivalence theorem may be the reason-
able point to handle them. However, we have to confess that in this section
we will only use the computability in its very high-level sense, avoiding the
implementation details, altogether. Admittedly, this is a sort of cheating,
but in our defence, let us emphasize that for such a short lecture, it may
be reasonable to explain the main ideas behind the algorithms rather than
getting lost in the implementation details.

Theorem 7.1. (Basic Functions) The basic functions Z(w) = ε, Sa(w) = wa
for a ∈ Σ and I ik(w1, w2, . . . , wk) = wi for 1 ≤ i ≤ k are all computable.

Proof. See the examples of the previous lecture on Turing machines.

Theorem 7.2. (Composition) If f : (Σ∗)k → Σ∗ and gi : (Σ∗)l → Σ∗ for
1 ≤ i ≤ k are computable, then so is h = f(g1, . . . , gk).

Proof. Use a Turing machine with k tapes to compute the function h. First,
for each i ≤ k, run gi on the ith tape, one after another. If one of them does
not halt, then as we expect, the new machine does not halt, as well. If all
halt with the outputs gi(~w), then copy all the elements of all the tapes in the
first tape in the form g1(~w)#g2(~w)# . . .#gk(~w) and then run the computing
algorithm for f on the first tape.

Application 7.3. (Substitution) If R ⊆ (Σ∗)k is a c.e. relation and for any
1 ≤ i ≤ k the function gi : (Σ∗)l → Σ∗ is computable, then, the relation
S = R(g1, . . . , gk) is also c.e. If R is decidable and all gi’s are total, S is also
decidable.

Proof. It is a consequence of the closure of the class of computable functions
under composition and the fact that χ′S = χ′R(g1, . . . , gk). Note that if R is
decidable, then by the totality of gi’s, we have χS = χR(g1, . . . , gk) and hence
the result follows.

Exercise 7.4. Let f : (Σ∗)k → Σ∗ be a computable function. Then, the
graph of f , i.e., {(~x, y) | f(~x) = y} is a c.e. relation. If f is also total, its
graph is decidable.
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Theorem 7.5. (Primitive Recursion) Assume the functions g : (Σ∗)k → Σ∗

and for any a ∈ Σ, ha : Σ∗ × (Σ∗)k × Σ∗ → Σ∗ are computable. Then the
function f : Σ∗×(Σ∗)k → Σ∗ with the following definition is also computable:{

f(ε, ~v) = g(~v)

f(ua,~v) = ha(u,~v, f(u,~v))

Proof. First, note that to compute f on any input in the form (wa,~v), it is
enough to know the value f(w,~v). Using this observation, we can develop
a possible computing procedure: We reduce computing f on (w,~v) to com-
puting f on some (w′, ~v), where w′ is shorter than w and we keep following
this procedure till reaching f(ε, ~v) which is computable by g(~v). Now, the
strategy is following the procedure that we have constructed, backwardly.
First, compute f(ε, ~v). Then, compute f for the previous element using the
appropriate ha, till you reach the input u. More formally: Use a 4-taped
machine to compute f . Write u on the first tape and ~v on the third tape.
First, copy ~v on the fourth tape, run g on ~v. Then, read the elements of u
one by one and in each step, copy u on the second tape, keep the part of
u that you have read and erase the rest, and apply the predecessor. If you
have read a, copy the content of the second and the third tape to the fourth
tape in the order second, third, fourth and then apply ha on the fourth tape.
Erase the second tape and do it again till you scan all the elements of u.
Then, halt and output the content of the fourth tape.

Example 7.6. The concatenation function Con(u, v) = uv is computable.
Use recursion on v to define Con(u, v):{

Con(u, ε) = u = I1
1 (u)

Con(u, va) = Sa(Con(u, v))

Since both I1
1 and Sa are computable, the so is Con. Note that identifying

N with {1}∗, Con becomes the usual addition function, denoted by Add.

Example 7.7. The conditional function C : Σ∗ × Σ∗ × Σ∗ → Σ∗ with the
definition:

C(u, v, w) =

{
v u = ε

w u 6= ε

is computable. It is enough to use primitive recursion on u to define C(ε, v, w) =
I1

2 (v, w) and C(ua, v, w) = I3
3 (u, v, w).

Exercise 7.8. As usual, identify the set of natural numbers with {1}∗. Then,
show that the functions Sum(m,n) = m+n, Prod(m,n) = mn, Exp(m,n) =
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mn, Fact(n) = n!, the predecessor Pred(n) = max{0, n − 1}, the proper
subtraction PSub(m,n) = max{0,m − n}, the division div(m,n) = b m

n+1
c

and the remainder r(m,n) = m− (n+ 1)div(m,n) are all computable.

Exercise 7.9. Show that over the alphabets {1}∗, the function Sign(n) with
the following definition:

Sign(n) =

{
1 n = 0

0 n ≥ 1

is computable. Then, use Sign and PSub to prove that the inequality relation
{(m,n) ∈ {1}∗ × {1}∗|m ≤ n} is decidable. Finally, show that the equality
relation and the strict inequality are also decidable.

Definition 7.10. Any function constructed from the basic functions and the
operations of composition and primitive recursion is called primitive recur-
sive.

Application 7.11. (Boolean Combinations) Let R, S ⊆ (Σ∗)k be two com-
putably enumerable relations. Then R ∩ S is also computably enumerable.
If R is also decidable, then so is Rc. Therefore, any boolean combinations of
decidable relations is also decidable.

Proof. For the first part, note that χ′R∩S = C1(χ′R, χ
′
S) where C1 : Σ∗×Σ∗ →

{1} is the constant function, constructible via composition and basic func-
tions as C1(u, v) = S1(Z(I1

2 (u, v))). Therefore, by the closure under compo-
sition, we see that if χ′R and χ′S are computable, then so is χ′R∩S.
For the second part, the claim is a consequence of the closure under compo-
sition and the fact that χR∩S = C(χR,0, χS) and χRc = C(χR,1,0), where
C is the conditional function.

Remark 7.12. The complement of a c.e. relation is not necessarily c.e. In
the last section we will see an interesting counter-example.

Theorem 7.13. (Union) Let R, S ⊆ (Σ∗)k be two computably enumerable
relations. Then, R ∪ S is also computably enumerable.

Proof. Let M and N be the algorithms for R and S. Then, for an algorithm
K for R ∪ S, run M and N in parallel. More formally, use a 2-taped Turing
machine and copy the input on the second tape, as well. Then, run one step
of M on the first tape and then one step of N on the second tape and keep
implementing both algorithms at the same time. The whole process halts if
at least one of M or N halts and it outputs 1 when it halts. This algorithm

32



clearly computes χ′R∪S. Note that at the first glance, it can be really tempting
to simplify the algorithm by running M first and then applying N . The
problem with this algorithm is that it ignores the possibility in which M
does not halt while N halts on the input. So the algorithm get stuck in
running M and can not see that N actually halts on the input.

Application 7.14. (Definition by cases) Let R ⊆ (Σ∗)k be a decidable
relation and g, h : (Σ∗)k → Σ∗ be two computable functions. Then, the
function f : (Σ∗)k → Σ∗ defined by:

f(~u) =

{
g(~u) ~u ∈ R
h(~u) ~u /∈ R

is also computable.

Proof. The theorem is a consequence of the closure under composition and
the fact that we have f(~u) = C(χR(~u), h(~u), g(~u)).

Example 7.15. Let Σ be a set of alphabets. Then the length function
| · | : Σ∗ → {1}∗ sending w to 1n where n is the length of w, is computable.
It is enough to use recursion on u to define |u| as |ε| = ε and |ua| = S1(|u|).

Lemma 7.16. For any primitive recursive function over {1}, the function
f̃ over Σ with the definition f̃(~u) = 1f(|~u|) is primitive recursive over Σ.

Proof. The proof is easy and uses induction on the structure of f .

Exercise 7.17. Use Lemma 7.16 to show that both of the length-inequality
relation

LIneq(u, v) = {(u, v) ∈ Σ∗ × Σ∗| |u| ≤ |v|}

and the length-equality relation

Leq(u, v) = {(u, v) ∈ Σ∗ × Σ∗| |u| = |v|}

are decidable.

Exercise 7.18. First show that the set {ε} is decidable. Then, prove that
for any a ∈ Σ, the set {a} is also decidable. We will denote this predicate
with Eqa.

Exercise 7.19. Show that the function Seg(u, v) computing the first seg-
ment of u consisting of the leftmost |v| elements of u, is computable. Then,
show that the |v|-th component function uv computing the |v|’th letter of u
(for |u| < |v| answers ε) is computable.
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Exercise 7.20. LetR, S ⊆ (Σ∗)k be two decidable relations and g1, g2, g3, g4 :
(Σ∗)k → Σ∗ be four computable functions. Show that

f(~u) =


g1(~u) ~u ∈ R and ~u ∈ S
g2(~u) ~u ∈ R and ~u /∈ S
g3(~u) ~u /∈ R and ~u ∈ S
g4(~u) ~u /∈ R and ~u /∈ S

Exercise 7.21. Let f(m,~n) be a computable function over N. Show that
the functions g(p, ~n) =

∑
m≤p f(m,~n) and h(p, ~n) =

∏
m≤p f(m,~n) are com-

putable.

Exercise 7.22. Let π(n) be the number of prime numbers less than or equal
to n. Show that π is a primitive recursive function over N.

Exercise 7.23. (Bounded Concatenation) Assume that f : Σ∗× (Σ∗)k → Σ∗

is computable. Show that the function f̄ : Σ∗×(Σ∗)k → Σ∗ with the following
definition is computable, as well:

f̄(u,~v) = f(10, ~v)f(11, ~v) . . . f(1|u|, ~v)

Exercise 7.24. Show that the function Mirror : Σ∗ → Σ∗ mapping w to its
mirror image is computable. By the mirror image of w, we mean a word by
reading w from right to left. For instance, Mirror(abb) = bba.

Exercise 7.25. Show that the function e : ({a, b, ; })∗ → ({a, b})∗ mapping
any letter a, b and ; in w to aa, bb and ab, respectively, is computable. For
instance, en(a; b) = aaabbb.

Application 7.26. (Bounded Search) If f : Σ∗ × (Σ∗)k → Σ∗ is a total
computable function, then so is µ.|u| ≤ |w| [f(u,~v) = 1], where µ.|u| ≤
|w| [f(u,~v) = 1] is defined as 1k, where k ≤ |w| is the length of the shortest
u such that f(u,~v) = 1. If there is no such u, then the output is 1|w|+1.

Proof. Denote µ|u| ≤ |w| [f(u,~v) = 1] by g(w,~v). We will use primitive
recursion on w to show that g is computable. For w = ε, the only possible u
is u = ε. Hence, it is just enough to check whether f(ε, ~v) = 1 or not. We
can do it as {1} is decidable. Then, using the definition by cases operation,
if f(ε, ~v) = 1, set g(ε, ~v) = 10 = ε. Otherwise, set g(ε, ~v) = 1. To compute
g(wa,~v) from g(w,~v), again we use definition by cases. If the shortest possible
u with the condition |u| ≤ |w| exists (check it by checking the decidable
|g(w,~v)| = |w|+ 1), then we have found our answer. If not, we have to check
all possible f(wa,~v) = 1, for any a ∈ Σ, because the intended u may be
one of these finitely many possibilities. If we find one, the answer is 1|w|+1.
Otherwise, it is 1|w|+2.
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Remark 7.27. Note that for any decidable relation R(u,~v), the function
g(w,~v) = µ|u| ≤ |w|.R(u,~v) is computable, where µ|u| ≤ |w|.R(u,~v) is 1n

where n ≤ |w| is the length of the shortest possible u such that R(u,~v). And
if there is no such u, then µ|u| ≤ |w|.R(u,~v) is |w|+ 1. The reason is simply
the fact that R(u,~v) is equivalent to χR(u,~v) = 1.

Example 7.28. The function NextP (x) that finds the least prime p > x is
computable, because it is definable via bounded search NextP (x) = µy ≤
2x.[Prime(y) ∧ x < y]. (We will see how to define Prime(y) in a moment).
Note that we are using Bertrand’s postulates that states between any number
x ≥ 1, there exists a primes number x < p ≤ 2x. Moreover, it is also possible
to use NextP to define the function px that computes the x-th prime number.
It is enough to use primitive recursion to define px by p0 = SS(0) = 2 and
px+1 = NextP (px).

Example 7.29. The equality relation over the alphabet Σ is decidable be-
cause it has the following construction: (|u| = |v|) ∧ |x(u,v)| = |u| + 1
where x(u,v) = µ|w| ≤ |u| ¬[uw ≡ vw] and y ≡ z is an abbreviation for∨
a∈Σ(Eqa(y) ∧ Eqa(z)).

Exercise 7.30. Let R ⊆ Σ∗ be a finite set. Show that χR is primitive
recursive.

Application 7.31. (Bounded Quantifiers) If R ⊆ Σ∗ × (Σ∗)k is a decidable
relation, then so are S(w,~v) = ∀|u| ≤ |w| R(u,~v) and T (w,~v) = ∃|u| ≤
|w| R(u,~v).

Proof. By closure under booleans, it is enough to prove the theorem for T .
By bounded search, f(w,~v) = µ.|u| ≤ |w| [χR(u,~v) = 1] is computable and
total. Now, check whether |f(w,~v)| = |w| + 1 or not. If |f(w,~v)| = |w| + 1,
then ∃|u| ≤ |w| R(u,~v) does not hold . If |f(w,~v)| 6= |w| + 1, then we have
∃|u| ≤ |w| R(u,~v).

Example 7.32. The set of all prefect squares in the language {1}∗ is decid-
able, because it is definable by

Square(x) = [∃y ≤ x(x = y2)]

The latter is decidable as multiplication is total and computable and the
equality relation is decidable. Hence, by substitution the relation x = y2 is
decidable. Finally, since decidability is closed under bounded quantifiers, the
claim follows.
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Example 7.33. The function GP (n) that computes m such that pm is the
greatest prime that pm|n + 2, is computable, because it is constructible via
bounded search µi ≤ n+ 2. [∃k ≤ n+ 2(pn+2−ik = n+ 2)]. Here, we use the
fact that if pm|n+ 2, then m ≤ pm ≤ n+ 2.

Example 7.34. The set of all prime numbers in the language {1}∗ is decid-
able, because it is definable by

Prime(x) = [(x > 1) ∧ ∀yz ≤ x((x = yz)→ (y = x ∨ y = 1))]

The latter is decidable as the equality and inequality relations are decidable.
Hence, by substitution the relations x > 1, x = yz, y = x and y = 1 are
decidable. Finally, since decidability is closed under boolean operations and
bounded quantifiers, the claim follows.

Remark 7.35. Note that the languages in the previous examples, namely
{1n2 | n ≥ 0} and {1p | p is prime} are not regular. Therefore, we can also
use the above argument for their decidability to show that the inclusion of
regular languages in decidable languages is proper.

Exercise 7.36. Show that the function exp(m,n) computing the exponent
of m+ 2 in n+ 1, meaning the greatest k such that (m+ 2)k devides n+ 1,
is computable.

Exercise 7.37. Show that the function ind(m,n) computing the exponent
of pm in n+ 1 is computable.

Exercise 7.38. Use bounded search to show that the functions PSub and
div are computable.

So far, we have shown that all primitive recursive functions are com-
putable. The natural question is that whether these functions exhaust the
whole class of computable functions? The answer is of course not. Because
there are so many partial computable functions while all primitive recur-
sive functions are total by construction. However, the partiality may not
be an important problem. Therefore, let us revise the question: Is a total
computable function primitive recursive? The answer is again negative:

Example 7.39. Consider the Ackerman function defined recursively by:

A(m,n) =


n+ 1 m = 0

A(m− 1, 1) m > 0, n = 0

A(m− 1, A(m,n− 1)) m > 0, n > 0
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This function is not primitive recursive as it grows faster than any primi-
tive recursive function. More precisely, it is not hard to prove that for any
primitive recursive function f(~x), there exists a number t such that for any
~x, we have f(~x) < A(t,max{~x}). Therefore, if A is primitive recursive,
there is t such that for any x, y we have A(x, y) < A(t,max{x, y}). Hence
A(t, t) < A(t, t). On the other hand, it is very clear that this function is
computable. What is your strategy to compute it?

To capture the full power of computability and its partial nature, we
need another operation. But before introducing that operator let us state
a technical lemma and a theorem on the existential quantifiers. It helps to
understand how the final operator works:

Lemma 7.40. (Enumerability of the Total Space) There is a total computable
function en : Σ∗ → Σ∗ whose restriction to {1}∗ is surjective.

Proof. Let us first explain the enumeration by an example. Let Σ = {s1, s2, s3}.
Then, enumerate the set Σ∗ in the following way:

ε | s1 | s2 | s3 | s1s1 | s1s2 | s1s3, s2s1 | s2s2 | s2s3 | s3s1 | s3s2 | s3s3

s1s1s1 | s1s1s2 | s1s1s3 | s1s2s1 | ... | s3s3s3 | s1s1s1s1 | ...
The algorithm is clear. Right? Here is the formal version. First, fix an order
over the elements of Σ as {s1 < s2 < . . . < sm}. Use a 2-taped machine. The
input is on the first tape. Now, in each step, read a letter from the input,
go one step to right on the input and do the following: Check the second
tape. If the rightmost elements is not sm, change it from blank to s1 or from
si to si+1. If it is sm, find the leftmost cell whose right side consists only of
sm’s. Change the content of the this cell from si to si+1 and if it is blank to
s1. Then, change the content of every cell in the right hand side from sm to
s1. Keep iterating this procedure till reading all the input. Then halt. This
algorithm computes a total function and its application even on the elements
of {1}∗ is enough to cover the whole Σ∗.

Theorem 7.41. (Unbounded Existential Quantifier) If R ⊆ Σ∗ × (Σ∗)k is a
c.e. relation, then so is S(~v) = ∃uR(u,~v).

Proof. Let M be the algorithm for R and we want to define an algorithm
N for S. The idea is reading the input ~v and then computing M(u,~v) for
all possible u’s to check whether there exists a u such that M(u,~v) = 1 or
not. For this purpose, first order all u’s in a length increasing order u0, u1,
... Consider the following tempting search algorithm: Apply M on (u0, ~v),
then on (u1, ~v) and so on, till one of them outputs 1, otherwise do not halt.
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The problem with this algorithm is that it is possible that M(u0, ~v) does
not halt, while M(u1, ~v) = 1. Therefore, the machine gets stuck in u0 and
never reaches the working u1. To overcome this problem, we run all these
algorithms in parallel and step by step in the following manner and we call
the algorithm N . Let en : Σ∗ → Σ∗ be a total computable function whose
restriction to {1}∗ is surjective. In the stage n, the algorithm N applies M
on (en(n0), ~v) for n1 many steps where n+ 1 = 2n0(2n1 + 1). Then, N checks
whether it reached a halting state or not. If it does, it also halts. Otherwise,
it erases everything and go to the next stage. This algorithm captures S(~v).
The reason is the following: If N halts and outputs 1, then it means that it
halts in some stage, say n. Then, it means that the machine M applied on
the input (en(n0), ~v) halts after n1 many steps. Hence, we have R(en(n0), ~v)
which implies S(~v). Conversely, if S(~v), then there exists some string u such
that R(u,~v). Then, if M runs on (u,~v), it halts after say m many steps. Since
the restriction of en to {1}∗ is surjective, there exists k such that en(k) = u.
Then, the machine N on the stage n where n+ 1 = 2k(2m+ 1) simulates the
work of M on (u,~v) and hence it halts and outputs 1.

Application 7.42. (Bounded Existential Quantifier) If R ⊆ Σ∗× (Σ∗)k is a
c.e. relation, then so is T (w,~v) = ∃|u| ≤ |w| R(u,~v).

Proof. Since R(u,~v) is c.e. and |u| ≤ |w| is decidable, then |u| ≤ |w|∧R(u,~v)
is also c.e. Hence, ∃u(|u| ≤ |w| ∧R(u,~v)) is c.e.

Example 7.43. Let p(~x, ~y) be a polynomial with non-negative integer co-
efficients. Then, the relation R(~x) defined as ∃~yp(~x, ~y) = 0 is computably
enumerable, because all polynomials are compositions of addition and mul-
tiplications and hence computable and then by decidability of the equality
and by substitution, the relation p(~x, ~y) = 0 is decidable and by closure of
the c.e. relations under unbounded existential quantifiers, the claim follows.

Example 7.44. Let L be a first-order language. Then, the set of all L-
tautologies over the alphabets L∪{; } is computably enumerable. Note that
we use the symbol “;” to separate formulas and hence to represent the proofs
as words in the new language L ∪ {; }. To show why this set is c.e., note
that it has the following description: ∃πPrf(π,A), where Prf(π,A) is the
relation “π is a proof of A”. Intuitively, it is clear that checking whether
something is a proof of some statement is decidable. We only need to check
some basic syntactical properties of π to check whether it is really a proof or
not.

Exercise 7.45. The domain and the range of any computable function is
computably enumerable.
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Theorem 7.46. (Unbounded Search) Let g : Σ∗ × (Σ∗)k → Σ∗ be a com-
putable function. Then, the function f : (Σ∗)k → Σ∗ with the following
definition is also computable:

f(~v) = µ|u|. [g(u,~v) = 1]

where µ|u|. [g(u,~v) = 1] means the string 1n where n is the length of the
shortest possible u such that g(u,~v) is defined and g(u,~v) = 1 and for any w
shorter than u, the value g(w,~v) is defined and g(w,~v) 6= 1. If there is no
such u, f(~v) is not defined.

Proof. The most natural algorithm is computing g(u,~v) for the given ~v and
all possible u’s, one after another in a length increasing order, till we see
the first output 1 and then we can compute the length of the shortest u.
The problem with this algorithm is that it ignores the situation in which
the shortest possible length is n and we are checking u before w, both with
length n while g(u,~v) is not defined and g(w,~v) is. To overcome this issue, we
check all possible lengths but running the machine for g on (u,~v) for all u’s
with the same length, in parallel. More formally, let en : Σ∗ → Σ∗ be a total
computable function whose restriction to {1}∗ is surjective and it enumerates
all strings in a length increasing order and M be the machine computing g.
Then, define the algorithm N in the following way. It consists of some stages
that itself is partitioned to some steps. In the stage n, the machine N first
computes all en(i)’s, one after another, to find the first number Nn such that
the length of en(Nn) becomes n. This is possible because en enumerates the
elements in a length increasing order. Then, we know that all elements with
length n are en(Nn), en(Nn + 1) till en(Nn + 2n). Now in each step m, the
algorithm N first computes m0 and m1 where m + 1 = 2m0(2m1 + 1) and
then if m0 > 2n, the machine goes to the next step, otherwise N applies M
on (en(Nn +m0), ~v) for m1 many steps and then checks whether M reached
a halting state or not. If it does, N checks whether the output of M is 1 or
not. If it is 1, it halts and outputs n. Otherwise, it erases everything, writes
m0 somewhere to remember it and goes to the next step. The machine goes
to its next stage, if it gets the halting state of M with output not equal to 1
for all possible 0 ≤ m0 ≤ 2n.
If there exists a shortest possible u such that f(u,~v) = 1, then M halts on
any shorter input and outputs something different than 1. Hence, N passes
all the stages before n, and in the stage n finally meets the answer u at some
point since en is surjective. If there is no shortest u, then there is a number
n such that M halts on any (u,~v) where |u| < n and for u with length n at
least at one point it does not halt and wherever it halts it does not output
1. Therefore, N passess all the stages before n but in the stage n since there
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is no u such that g(u,~v) = 1 and at least there is one u for which M never
halts, N does not halt.

Remark 7.47. Note that for any decidable relation R(u,~v), the function
f(~v) = µ|u|.R(u,~v) computing 1n where n is the length of the shortest
possible u such that R(u,~v). The reason is that R(u,~v) is equivalent to
χR(u,~v) = 1.

Example 7.48. The empty function empty(w) with the empty domain is
computable because empty(w) = µ|u|. [Z(u) = 1].

Example 7.49. Let R ⊆ N be a decidable relation and f : N → N be
a computable function over the alphabets {1}. Then f |R, the restriction
of f to the relation R is also computable, because f |R(v) is definable by
f(µ|w|. [R(w) ∧ (w = v)]).

Example 7.50. Let R ⊆ Σ∗ be a decidable relation. Then, it is also c.e.,
because χ′R(v) is definable by C1(µ|w|. [R(w) ∧ (w = v)]).

Exercise 7.51. Use the µ operator to show that the set {w ∈ Σ∗ | |w| ≤ 3}
is c.e.

Example 7.52. The function Twin(n) that computes the least p ≥ n such
that both p and p + 2 are primes is computable, because it is definable via
unbounded search Twin(n) = µ|m|.[Prime(m) ∧ Prime(m + 2) ∧ n ≤ m].
Note that the totality of the function Twin is equivalent to the twin prime
conjecture stating the existence of infinitely many pairs of primes (p, p+ 2).

Theorem 7.53. (Kleene)

(i) A function is computable iff it is constructible from the basic functions,
composition, primitive recursion and unbounded search.

(ii) A relation is c.e. iff it is in the form ∃u[f(u,~v) = 1], where f is
primitive recursive.

Over the language {1}∗, it is also possible to prove a far more powerful
characterization of c.e. relations using polynomials instead of arbitrary prim-
itive recursive functions. This characterization was proved by Yuri Matiyase-
vich, Julia Robinson, Martin Davis and Hilary Putnam, hence its acronym:

Theorem 7.54. (MRDP) Over the language {1}∗, a relation is c.e. iff it is
in the form ∃~yp(~x, ~y) = 0 where p is a polynomial.

40



So far, we have provided a machine-independent characterization of com-
putable functions and computably enumerable relations. In the following
theorem, we reduce the notion of decidability to the notion of computably
enumerability to provide a characterization for decidable relations, as well:

Theorem 7.55. A relation R is decidable iff both R and Rc are c.e. There-
fore, R is decidable if there are primitive recursive functions f, g such that
R(~v) iff ∃u[f(u,~v) = 1] iff ∀w[g(w,~v) = 1].

Proof. It is enough to prove the first part. The rest follows. For the first
part, one direction is proved previously. For the other direction, if both R
and Rc are c.e., they have algorithms M and N . For a decision algorithm
K for R, run M and N in parallel. More formally, use a 2-taped Turing
machine and copy the input on the second tape, as well. Then, run one step
of M on the first tape and one step of N on the second tape, alternately, till
one of them halts. Since for any ~v, either ~v ∈ R or ~v ∈ Rc. Therefore, one
and exactly one of M and N halts and outputs 1. If M halts, output 1, if
N halts, output 0.

8 The Stability Theorem

Turing machines are defined in a way that depends on the given set of al-
phabets and computability inherits this unintended dependence from them.
However, as the reader may expect, we want the notion of comutability in-
dependent of all these details. For instance, this would be unsatisfactory if
we have a numeral function computable over the binary expansions of the
numbers but uncomputable over the usual unary representation. The prob-
lem, though, is with the functions themselves. A function is defined over a
fixed set of alphabets and it is somewhat meaningless to compare functions
with different possible inputs and outputs. To solve this problem, we need
a transfering method to transfer functions over one set of alphabets to the
functions over another set, respecting computability in both ways. This sec-
tion is devoted to this kind of stability.

Let Σ be a set of alphabets with at least two elements a, b ∈ Σ.8 And
let x /∈ Σ be a new symbol. We want to present a translation from the
expressions over the alphabet Γ = Σ ∪ {x} into the expressions over the
set Σ, in a way that the computable functions over Γ make a one to one

8This is not a real restriction. All the results of this section also hold for a singleton
Σ. But, the needed techniques must change dramatically and we want to avoid such
complicacies in this very short lecture.
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correspondence with the computable functions over Σ. For this matter we
need two translation functions; one for the encoding process e : Γ∗ → Σ∗ and
the other for the decoding process d : Σ∗ → Γ∗. For the encoding function
e : Γ∗ → Σ∗, define e(w1w2 . . . wn) as u1u2 . . . un where ui is defined in the
following manner: If wi ∈ Σ, then ui = wiwi. If wi = x, then ui is ab. For
instance, if Σ = {a, b}, then e(axb) = aaabbb. Note that the function e is
total and computable if we consider it as a function over Γ. It simply reads
the input and make any letter double. Moreover, if we restrict e to Σ∗, it
will again be a very easy computable function. This restricted function is
definable over Σ and we denote it by e′ : Σ∗ → Σ∗. For the decoding process
d : Σ∗ → Γ∗, read a string over Σ. If the length is odd, then just go right for-
ever, and do not halt. Otherwise, Split the input into blocks with length two
and compute the inverse of the process that we defined above for each block.
If all the blocks behave in an expected manner you can recover the original
string over Γ. Otherwise, go right forever and do not halt. The function d
is not a total function. It works only on the image of the function e and is
computable if we consider it as a function over Γ. Moreover, note that e and
d are inverses of each other, i.e., for any w ∈ Γ∗ we have d(e(w)) = w and
for any u ∈ Σ∗ for which d is defined, e(d(u)) = u. Restricting d to strings
without ab lands in Σ∗ and is computable. This function that is clearly the
inverse of the function e′ is denoted by d′ : Σ∗ → Σ∗.

Note that the functions of e and d are intuitively easy, syntactical and
“computable”. However, they cannot be computable in their technical sense,
because the notion of computability is defined over one fixed language and
we do not have computability of functions between strings over different
alphabets. However, it is possible to formalize this informal computability of
e and d via the bridge role they play in transferring the computable functions
over Γ to the computable functions over Σ and vice verse:

Theorem 8.1. (Stability Theorem) Let Γ = Σ ∪ {x} where x /∈ Σ. Then a
function f : (Γ∗)k → Γ∗ is computable iff the function f̃ : (Σ∗)k → Σ∗ with
the definition f̃(~w) = e(f(d(~w))) is computable.

Proof. Let us assume that f̃ : (Σ∗)k → Σ∗ is computable. Then, we show that
f is also computable. Since f̃ is computable, thre exists a Turing machine M
over Σ that computes f̃ . First, we want to change this machine to a machine
over Γ. The only thing to do is defining a dummy work for the machine when
it reads x. We require the machine to stay in the same state with the same
head position. Then clearly, this new machine ignores any letter x in the
input and does what f̃ demands. Now, combine this new machine with the
machines for e and d when we consider them as computable functions over Γ.
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For the converse, assume that f is computable by a machine N over Γ and
we want to show that f̃ is computable over Σ. We will define the machine
M simulating N in the following way: Read and write everything in pairs. If
you read ww for w ∈ Σ, then do what N does for w, and if it writes u ∈ Σ,
write uu, if you read ab, then do what N does for x and if it writes x, write
ab. In any case, if you cannot follow this pattern, go right forever. This is
easily possible by making all the states of N double. Then, this new machine
computes f̃ .

Remark 8.2. Using the stability theorem, it is possible to transfer any com-
putable function over Γ to a computable function over Σ. Sometimes we use
this theorem loosely to forget which language we are computing over. For in-
stance, adding one new symbol to the alphabet makes the language powerful
enough to talk about all sequences of strings over the original alphabet. It
is enough to add the symbol “;” to Σ to represent a sequence w1, w2, . . . wn,
where wi ∈ Σ∗, by one string w1;w2; . . . ;wn over Σ∪{; }. In this case, some-
times, we silently move to a bigger alphabet to have the power to encode
sequences. But we actually mean going to the bigger language, doing the
computation and then using the stability theorem to come back.

Remark 8.3. The map e′ = e|Σ∗ translates the set Σ∗ ⊆ Γ∗ into the set
A, consisting of all strings in the form w1w1w2w2 . . . wnwn where wi ∈ Σ
and d′ = d|A acts as the inverse of e′. Moreover, we know that both of the
functions e′ and d′ are computable over Σ. Therefore, in transferring the
functions over Γ to the functions over Σ, if the domain or the range of any
variable is Σ∗ ⊆ Γ∗, we can use the computable equivalence of A and Σ∗ to
keep those variables unchanged. For instance, if f : Γ∗ → Γ∗ is computable
over Γ, it implies that f̃ is computable over Σ∗. Define g : Σ∗ → Σ∗ as
d′f̃ e′. Since e′ and d′ are computable over Σ, then g is also computable over
Σ. But g(w) = d′ef̃d(e′(w)). Since de′ = d′e = id, we have g(w) = f(w).
Hence, f is also computable over Σ, meaning that in transfering the function
we could keep the variable w ∈ Σ∗ and the range f(w) ∈ Σ∗ unchanged.
Moreover, it shows that in computing a function over Σ, it is possible to
extend the language temporarily for conveninece in the computation. It does
not change the status of computability of the function.

Remark 8.4. The stability theorem provides a translation pair (e, d), for
any pair of alphabet sets. The reason is that using the stability theorem we
know how to add or eliminate an element from the alphabet. With these two
operations at hand, we can clearly reach any alphabet from any other one.
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9 The Universal Machine

Any computable task can be implemented by a Turing machine and hence it
is mechanizable. However, this mechanization is not necessarily performed
in a uniform manner and for different tasks, we need to develop different
machines; one machine for addition, one for multiplication, one for exponen-
tiation and so on. To use the everyday life examples, the situation is similar
to the pre-digital era of the single-task machines such as telephones, typing
machine, the television and so on. What Alan Turing’s game-changing in-
sight added to that story was the existence of one multi-task machine capable
of implementing every possible computable task. This machine is called the
universal machine and it can be rightfully called the heart of the modern
digital age.

A universal machine is a Turing machine that reads a program (a Turing
machine itself) and its input and simulates the work of that machine on that
input. In this sense, we have one machine to do every possible computation
and to mechanize every computable task, it is enough to design one universal
machine, once and for all. To have a machine like this, we have to first feed
the machine with a program, which means that our first task in this section
is encoding Turing machines into strings of the language. Our strategy is the
following. We first extend the alphabet from the original set Σ to the enriched
alphabet Σ̄ = Σ∪{1, 7→, ; ,+,−, L,R, (, ), [, ], 〈, 〉} to have the power to freely
talk about programs and computations. Then, we will use the Stability
theorem to transfer whatever we have constructed over this new language
to the original language. Therefore, throughout this section, we work in the
extended language carelessly. Now, let us formalize all the primitive notions
of computations via this new language. There are three fundamental notions
that we want to handle; algorithms, configurations and computations:

• Any Turing machine is nothing but a finite table consisting of its basic
data and its basic rules. Therefore, it is reasonable to think of the
possibility of encoding these machines by some strings over a suitable
set of alphabet. The following is one possible way to do that which
is by no means canonical. Let M be a Turing machine. Represent M
by the string (I1; I2; . . . ; In) over Σ̄∗ where Ii’s are strings in the form
1r; a 7→ 1s; b;D where r, s ∈ N, a, b ∈ Σ and D ∈ {L,R}, encoding the
rule that if the machine in the state qr reads a, it changes the content
of the cell to b, goes to the state qs and moves its head to left or right
according to D.

• By the configuration of a machine at the moment n, we mean all the
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data of the machine at the n-th instant of time, namely, the tuple
consisting of the state of the machine, its head position and the whole
non-blank data over its tape, at the moment n. The configuration at
the moment 0 is called the starting configuration and a configuration
whose state is in the halting states is called a halting configuration. A
configuration is also a finite data and hence representable. For instance,
we can represent a configuration by [1r; 1s;x;E1;E2; . . . , Em] where Ei
is a string in the form (1j; y; a) where r, s, j ∈ N, x, y ∈ {+,−} and
a ∈ Σ, encoding that the state is qr, the head is in the position +s or
−s depending on x and the content of the (+j)-th cell or (−j)-th cell
is a, depending on y. For any j not occurring in Ei’s, we assume that
the content of that cell is blank.

• A computation is a sequence of configurations of the machine, starting
with the initial configuration and following the rules of the machine.
Represent a computation by 〈C1; . . . ;Cm〉 where any Ci is a represen-
tation of the configuration of the machine in the i-th step.

Theorem 9.1. (i) The relation T (m,~u, w, v) stating “the machine m on
the input ~u has the halting computation w leading to the output v” over
the alphabet Σ̄ is decidable.

(ii) There exists a universal Turing machine U(m,~u) simulating all Turing
machines, i.e., for any machine M with description m and any input
~u we have U(m,~u) = M(~u).

Proof. For (i), define the function F (x,m, ~u) as a function over Σ̄ that sends
(x,m, ~u) to the computation of m on ~u after |x| many steps. This function is
computable via the following natural Simulation algorithm that uses recur-
sion on x. For the base case, Simulation generates the initial configuration
by printing the initial state, the input itself and the head position over the
first letter of the input. Then, reading any element of x, first the machine
finds the last configuration of m encoded in the output of the last step and
then goes to m to see what the rules in m say about changing this last con-
figuration. It then applies what m states to compute the next configuration
and finally adds this new configuration to the whole string of computation
that it has produced so far. The machine halts when it reads all the elements
of x. Now, computing F , we can define T ′(m,~u, w) stating that “the machine
m halts on the input ~u with the computation w” as

∃|x| ≤ |w| [F (x,m, ~u) = w] ∧ hState(m,w)

where hState(m,w) means that the last state of the computation w is halt-
ing according to m. Note that hState(m,w) is computable because for its
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decision it is enough to scan both m and w. Then, define the predicate
T (m,~u, w, v) as T ′(m,~u, w) ∧ (out(w) = v) where out(w) computes the out-
put of the computation w. Again note that out(w) is computable because it is
enough to scan the computation w to extract the output of the computation
m from it as the tape data of the last configuration. For (ii), define U(m,~u) =
out(F (x(m,~u),m, ~u)) where x(m,~u) = µ|x|. hState(m,F (x,m, ~u)).

Remark 9.2. Using the Stability under the language extensions, both of the
predicate T and the universal machine U can be transferred over Σ via the
suitable encoding-decoding process.

The previous theorem can be rewritten more carefully to serve also as a
proof for the Kleene’s machine-independent characterization theorem:

Proof. For (i), one direction is already proved. For the other direction, note
that a more detailed investigation shows that what we explained before is
actually a primitive recursive construction for the predicate T . Therefore, the
universal machine is constructible via Kleene’s operations, because it applies
one unbounded search on the predicate T . Therefore, if a function f(~u) is
computable via a Turing machine M with the code m, then f(~u) = U(m,~u).
Since U is constructible, f is also constructible. For (ii), again one direction
is proved. For the other direction, assume that the machine for R is M with
the code m. Then, note that R(~u) if ∃w T (m,~u, w,1). This completes the
proof. Note that this proof works over the extended language Σ̄. To move
it over the original language Σ, we also need a primitive recursive version of
the translations in the Stability theorem. This is also possible, but it needs
more work.

On Computably Enumerable Relations

Using what we have developed in this section, we can explain the terminology
that we use for c.e. relations:

Theorem 9.3. A set A ⊆ Σ∗ is c.e. iff it is either empty or the range of a
total computable function f : {1}∗ → Σ∗.

Proof. For simplicity, identify {1}∗ with N and represent 1n by n. Then,
assume A 6= ∅ and M is the machine for A with the code m. Pick a ∈ A
and consider the predicate R(u,w) = T (m,u,w,1) representing that “w is
a computation of the machine M on the input u that halts and outputs 1”.
Let en : Σ∗ → Σ∗ be a total computable function whose restriction to {1}∗
is surjective. Now, define f : {1}∗ → Σ∗ as

f(n) =

{
un R(un, vn)

a ¬R(un, vn)
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where en(n0) = un and en(n1) = vn where n + 1 = 2n0(2n1 + 1). Firstly,
the range of f is clearly a subset of A, because in the first case, vn is the
computation of the machine M on un with answer 1, meaning that un ∈ A.
The second case is clear because a ∈ A. Conversely, if b ∈ A, then M halts
on b and outputs 1. Take w as the computation of M on b. Then, since the
restriction of en to {1}∗ is surjective, there exist m, k such that en(m) = b
and en(k) = w. Therefore, f(n) = b where n+ 1 = 2m(2k + 1).

Remark 9.4. The Theorem 9.3 states that a set A is c.e. if it is either
empty or there exists a total computable function with range A, surjective
even when it is restricted to {1}∗. In other words, f reads a number n
and produces an element of A. Since f |{1}∗ is surjective, it covers A (with
possible repetitions). This means that A = {f(0), f(1), f(2), . . .} meaning
that f enumerates all the elements of A in a computable manner; hence the
name computably enumerable.

Exercise 9.5. Let f : N → N be a strictly increasing total computable
function. Then, show that the set {f(n) | n ∈ N} is decidable.

10 The Uncomputable World

In this section we will present some negative results including an uncom-
putable function, an undecidable relation and a relation that is c.e. but not
decidable. Our method is essentially different from what we did before in the
pumping lemma for the regular languages. Here, the computability notion is
extremely powerful. Therefore, it seems impossible to prove an undecidabil-
ity result by investigating all the possible patterns of computation. However,
this full notion of computation is so powerful that it can speak about it-
self, as we observed in the previous section. This power then leads to the
usual self-referential paradoxes, this time encoded via computations. This
self-referential type of argument is the main technique of proving undecid-
abilities. Let us recall the diagonalization method by reproving the fact that
there is no surjective function from N to the set of all infinite sequences of
natural numbers. Assume that such function exists and call it f . Then, we
can use it to enumerate all possible sequences as in the following diagram,
where the sequence in the ith row is f(i):
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1 n11 n12 n13 n14 n15 n16 · · ·
2 n21 n22 n23 n24 n25 n26 · · ·
3 n31 n32 n33 n34 n35 n36 · · ·
4 n41 n42 n43 n44 n45 n46 · · ·
5 n51 n52 n53 n54 n55 n56 · · ·
6 n61 n62 n63 n64 n65 n66 · · ·
7 n71 n72 n73 n74 n75 n76 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

Now define the sequence s = {si}i∈N by si = f(n)i+1 = nii+1. This sequence
can not be any of f(i)’s, because if it is then s = f(n) and hence sn = f(n)n,
while sn is defined as f(n)n + 1. The method is called diagonalization as it
uses the diagonal in the previous diagram to produce a violating sequence.
In the following theorem we use the same technique to show that the halting
predicate is not decidable:

Theorem 10.1. The halting relation H ⊆ Σ∗ × Σ∗ defined as H(m,u) =
∃wvT (m,u,w, v) is c.e. but not decidable. Hence, the total function χH is
not computable.

Proof. It is c.e. because it has the description ∃wvT (m,u,w, v) where the
predicate T (m,u,w, v) is the decidable relation that states “w is the com-
putation of the machine m on the input u halting and outputting v”. For
undecidability, let us assume that there exists a Turing machine M to decide
H. Therefore, M always halts. Define the machine N(x) as the machine
that first compute M(x, x) and then if it is one, it does not halt and if it is
zero, it halts and outputs zero. Now, let us check N(n) where n is the code
of N . If N halts on n, then by definition of N , we have M(n, n) = 0 which
means that N does not halt on n. If N does not halt on n, then again by
definition M(n, n) = 1 which means N halts on n.

Corollary 10.2. The set Hc is not computably enumerable.

Proof. If it is computably enumerable, then since H is also computably enu-
merable, by Theorem 7.55, H will be decidable which we know it is not the
case.

Remark 10.3. Note that the previous corollary shows that the class of c.e.
relations is not closed under complement.

Exercise 10.4. Prove or disprove: If f : Nk → N is a total function and
there exists a number k ∈ N such that for any ~n ∈ Nk we have f(~n) ≤ k,
then f is computable.
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Exercise 10.5. Is there a total computable function f : Nk+1 → N such that
an algorithm M halts on the input ~n iff it halts on ~n in f(m,~n) steps, where
m is the description of the algorithm M?

Exercise 10.6. Prove that there is no total computable function f : N→ N
such that {f(n) | n ∈ N} becomes the set of the descriptions of all Turing
machines computing total computable functions on N.

Exercise 10.7. Show that the relation {m | m never halts} is not decidable.

Exercise 10.8. Show that the relation

{(m,n) | m and n halts on the same elements}

is not decidable.

Exercise 10.9. Show that the relation

{m | m computes χ′R for a finite R ⊆ Σ∗ }

is not decidable.

In the following, we will generalize what we had for the halting property
of a machine to a very general setting. We will show that any non-trivial
property of the machines that depends on the function that the machine
computes and not the implementation details (like its number of states) is
not decidable.

Definition 10.10. Let C be a set of Turing machines. It is called extensional
if for any computable function f , either C has all the machines for f or none
of them.

Theorem 10.11. (Rice Theorem) Let C be an extensional set of Turing
machines. Then, C is either undecidable or trivial, i.e., either empty or the
set of all Turing machines.

Proof. Assume on the contrary that C is decidable and non-trivial. Since C
is extensional, either C has all the machines computing the function with the
empty domain or C has none of them. W.l.o.g. we assume the latter, because
in the first case we can use Cc in the rest of the argument. Now, we use the
decidability of C to show that the halting relation H is also decidable. Since
C is not trivial, there is at least one K ∈ C. The decision algorithm for
halting is the following: Read a machine M and an input w. Then construct
the machine [M,w] with the input u and the following algorithm: Run M on
w. If it halts, run K on u. It is clear that [M,w] computes the same function
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as K does if M halts on w. Otherwise, the domain of [M,w] is empty. Since
C has none of the machines computing the function with the empty domain
and K ∈ C, we have [M,w] ∈ C iff M halts on w. Finally, we can run the
decision procedure for C on [M,w].

Example 10.12. The class of all Turing machines halting on all of their
inputs is not decidable as it is extensional and non-trivial.

Exercise 10.13. Show that the class of all Turing machines computing the
constant functions is not decidable.

It is satisfying to end this section by the negative solution for Hilbert’s
tenth problem. It heavily depends on the elegant MRDP theorem that we
stated before:

Theorem 10.14. (Unsolvability of Hilbert’s Tenth Problem) There is no
algorithm to decide whether a polynomial with integer coefficients has an
integer root or not.

Proof. By MRDP, the halting relation H(x, y) is equivalent to a statement
like ∃~z ∈ N p(x, y, ~z) = 0. Define q(x, y, ~z, ~w) as

p(x, y, ~z)2 + Σi(zi − w2
i1 − w2

i2 − w2
i3 − w2

i4)2

Then ∃~z ∈ N p(x, y, ~z) = 0 iff ∃~z ~w ∈ Z q(x, y, ~z, ~w) = 0. The main reason
behind this equivalence is the Lagrange theorem stating that any natural
number is representable as the sum of four perfect squares. Finally, if there
exists an algorithm to decide the latter, then it means we can decide the
former and hence the halting problem which is impossible.

Finally, let us mention some other concrete undecidable problems. There
are many of them scattered in different fields of mathematics, from topology
and analysis to algebra and combinatorics. In the following we only mention
two problems of this kind:

Example 10.15. (The Matrix Mortality Problem) Use a reasonable language
to talk about matrices with integer entries, for instance {1, ; }. Then, in
this language, pick the set of all finite sets of n × n matrices with integer
entries such that there exists a multiplication of them in some order, possibly
with repetitions, to yield the zero matrix. This set is c.e. as it is definable
via the unbounded existential quantifier (the list of multiplications) over a
decidable relation “checking whether the multiplication is zero”. The latter is
decidable, because it only needs to follow the list of multiplications, compute
them and then check whether it is zero or not. The set is undecidable, but
its proof is beyond the scope of our lectures.
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Example 10.16. (Post Correspondence Problem) Fix Σ with at least two
elements and use Σ ∪ {1, ; }. Then, pick the set of all pairs of finite lists
of strings over Σ such as {ai}ni=1 and {bi}ni=1 with the same length such
that there exists a list of indices like {ij}mj=1 where 1 ≤ ij ≤ n such that
ai1ai2 . . . aim = bi1bi2 . . . bim . This set is c.e. as it is definable by an unbounded
existential quantifier on the list of indices over a decidable relation “over
the given list {ij}mj=1, we have ai1ai2 . . . aim = bi1bi2 . . . bim”. The latter is
decidable, because it only needs to follow the list to put aij ’s and bij ’s and
then check whether they are equal or not that needs only a simple scanning.
The relation is undecidable, but its proof is beyond the scope of our lectures.

11 Lambda Calculus

We saw that the universal machine is powerful enough to simulate all Turing
machines. Now, the natural question is: Is it possible to develop a machine-
independent language using just the universal machine? The answer is yes
and the result is called lambda calculus.

Definition 11.1. Let V be a countable set of variable symbols. Then, the
set of λ-terms is defined inductively in the following way:

• Any element of V is a λ-term. These are called the variables.

• If M is a λ-term and x is a variable, then (λx.M) is also a λ-term. The
λ-term (λx.M) is called the λ-abstraction of M with respect to x.

• If M and N are both λ-terms, then (MN) is also a λ-term. The λ-term
(MN) is called the application of M to N .

We can read the λ-terms as the codes for Turing machines, the application
MN as the universal machine U(M,N) and the abstraction as a program
that reads x and returns M . Note that in this setting there is not a priori
data type. Everything by design is both an algorithm and an input as you
can observe in the application (MN).

Example 11.2. The expressions (λx.x), (xx) and (λf.(λx.(fx))) are all λ-
terms.

Convention. To read the λ-terms easily, we use the following conventions:

• Omit the outermost parentheses. For instance, we writeMN for (MN).
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• Associate the applications to the left. For instance, MNP means
(MN)P . This is convenient when applying a function to a number
of arguments, as in fxyz, which means ((fx)y)z.

• The body of a lambda abstraction (the part after the dot) extends as
far to the right as possible. In particular, λx.MN means λx.(MN),
and not (λx.M)N .

• Multiple lambda abstractions can be contracted; thus λxyz.M will ab-
breviate λx.λy.λz.M .

• We use the symbol ≡ as the syntactical equality meaning that a λ-term
is just equal to itself.

Definition 11.3. Define the set of free variables of a λ-term M , denoted by
FV (M), recursively by:

• FV (x) = {x},

• FV (MN) = FV (M) ∪ FV (N),

• FV (λx.M) = FV (M)− {x}.

Definition 11.4. A relation ∼ on λ-terms is called a congruence if it is
an equivalence and has the property that if M ∼ N , then MK ∼ NK,
KM ∼ KN and λx.M ∼ λx.N , for any λ-term K and any variable x.

Definition 11.5. We define α-equivalence to be the smallest congruence
relation on λ-terms, such that for all λ-terms M and all variables y that do
not occur in M , the λ-terms λx.M and λy.M [x/y] are considered congruent,
i.e., λx.M =α λy.M [x/y]

Clearly, the name of the variable x in the λ-term λx.M is not important.
The α-equivalence reads terms up to the name change of these occurrences
of the variables.

Definition 11.6. Let M , P be two λ-term and x ∈ FV (M). Define the
substitution of a λ-term N for x in M inductively as:

• x[x/N ] ≡ N and y[x/N ] ≡ y, when y 6= x,

• (MP )[x/N ] ≡M [x/N ]P [x/N ],

• (λx.M)[x/N ] ≡ λx.M .

• (λy.M)[x/N ] ≡ λy.(M [x/N ]), if y 6= x and y /∈ FV (N),
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• (λy.M)[x/N ] ≡ λz.(M [z/y])[x/N ], if y 6= x and y ∈ FV (N) and z is a
new variable that does not occur in M and N .

Note that the variable z in the last part can be any fresh variable and
hence it seems that the substitution operation is not well-defined. However,
as we consider the λ-terms up to the α-equivalence, the problem with the
name of z disappears.

11.1 Computation in Lambda Calculus

Reading λ-terms as Turing machines, it is reasonable to assume that compu-
tation in this setting is the simplification of λ-terms by changing (λx.M)N
to M [x/N ].

Definition 11.7. (β-reduction) By a β-reduction we mean the following
transformation to any subterm of a λ-term: (λx.M)N →β M [x/N ]. We
write M �β N if M reduces to N in zero or more steps of β-reductions.
In fact, �β is the reflexive transitive closure of →β. Similarly, define β-
equivalence as the reflexive, symmetric and transitive closure of →β and
denote it by =β.

Example 11.8. We have

(λx.x)M →β M (λy.y)N →β N

and hence
((λx.x)M)((λy.y)N) �β MN

Moreover,

((λx.x)M)((λy.y)N) =β M((λy.y)N) =β ((λx.x)M)N =β MN

Example 11.9. The λ-term I ≡ λx.x is a program reading that reads an
input x and returns it. For any λ-term M , we also have the constant program
λx.M reading x and returning M , regardless of the input. What happens to
the multi-variable functions? For instance, if f reads both x and y, then we
interpret it as a function that reads x and return the function which reads y
to return f(x, y). For instance, the program Iin ≡ λx1 · · ·xn.xi reads x1 and
then x2 till xn to return xi.

A λ-term on which no β-reduction is applicable is called normal or in
normal form. For instance, the λ-terms x, λx.x are normal while (λx.x)M
is not. The normal λ-terms can be interpreted as the values and if M �β N
where N is normal, we can say that M has been evaluated to the value N .
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The natural question to ask is whether all λ-terms have a value? If they do,
is this value unique? As we expect from any formalization of computability,
there must be some sort of partiality here. It is actually the case. There are
some λ-terms that are no reducible to a normal λ-term and their reducing
process does not halt. For instance, consider the λ-term (λx.xx)(λx.xx).
This λ-term is clearly not normal, becuase we can apply the following reduc-
tion:

(λx.xx)(λx.xx)→β (λx.xx)(λx.xx)

However, as this is the only reduction we can peform and the result of the
reduction is the λ-term itself, it is clear that there can not be any reduction
process to a normal λ-term.
So far, we saw that some of the λ-terms have no values. Here, it is important
to mention another point. Even if a λ-term has a value, it does not mean
that any reduction strategy halts. For instance, consider the following λ-term
(λxy.y)((λx.xx)(λx.xx))z. By using reduction on the outer lambda we have

(λxy.y)((λx.xx)(λx.xx))z →β z

Since z is normal, we can claim that the λ-term has a value. However, if we
use reduction over the inner lambda we reach itself and if we keep reducing
the inner lambda the process never halts.

In general, there are different reduction strategies some of which may lead
to a normal λ-term while the others may not. However, the most common
strategy, the natural strategy that always picks the left-most possible lambda
to reduce, leads to a normal λ-term iff the λ-term has a normal form.
The last question is that if a λ-term reduces to a normal λ-term, is this
λ-term unique? We come back to this question later. Before that a bit of
programming.

Exercise 11.10. Let M and N be two λ-terms in which x, y, a and b
do not occur. Simplify the following λ-terms: (λxy.x)MN , (λxy.y)MN ,
(λab.abM)(λxy.x)N and λxy.(λfx.x)(λz.y)x.

Exercise 11.11. Write down a λ-term F such that FMN =β M(NM)N ,
for all λ-terms M and N .

11.2 Basic Data Types and Programs

As everything in lambda calculus is a program, we have to encode the data
types with the programs to be able to perform the computations. Let us
start with the booleans:
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Example 11.12. (Booleans) To define the booleans, we have to first repre-
sent the truth values by some λ-terms and then we have to define some other
λ-terms to represent the basic boolean operations including the conjunction
and the negation. For the truth values we use: T ≡ λxy.x and F ≡ λxy.y.
Then, if we define and ≡ λab.abF, the following reductions show that and
actually represents the conjunction:

and TT �β (λab.abF)TT �β TTF �β (λxy.x)TF �β T

and TF �β (λab.abF)TF �β TFF �β (λxy.x)FF �β F

and FT �β (λab.abF)FT �β FTF �β (λxy.y)TF �β F

and FF �β (λab.abF)FF �β FFF �β (λxy.y)FF �β F

The negation is also definable as neg ≡ λa.aFT. Then, we again need the
following computations:

neg T �β (λa.aFT)T �β TFT �β (λxy.x)FT �β F

neg F �β (λa.aFT)F �β FFT �β (λxy.y)FT �β T

More generally, it is not hard to see that if B is a boolean, then BPQ is “if
B then P , else Q. Therefore, we can define if-then-else ≡ λxyz.xyz.

Example 11.13. (Pairing) Using the λ-term if-then-else it is now easy to
encode the pair 〈M,N〉 as the conditional 〈M,N〉 ≡ λz. (if z then M else N) ≡
λz.zMN . Then, if we define p0 ≡ λp.pT and p1 ≡ λp.pF, we have

p0 〈M,N〉�β (λp.pT) 〈M,N〉�β 〈M,N〉T �β (λz.zMN)T �β TMN �β M

and

p1 〈M,N〉�β (λp.pF) 〈M,N〉�β 〈M,N〉F �β (λz.zMN)F �β FMN �β N

The λ-terms p0 and p1 act as the projection functions associated to the
pairing operation.

Example 11.14. (Numbers) To represent the natural numbers by λ-terms,
one clever and useful idea is encoding the number n with the function that
iterates a given function n many times. This encoding is called the nth
Church numeral defined as n̄ ≡ λfx.fn(x), where fn(x) is f(f(· · · (fx) · · · ))

55



with n many f ’s. Using this encoding for natural numbers, then we can define
the successor function as Succ ≡ λnfx.f(nfx). By the following reductions
we can see that this λ-term captures the behavior of the successor function:

Succ n̄ ≡ (λnfx.f(nfx))(λfx.fnx)→β λfx.f((λfx.fnx)fx)

→β λfx.f(fnx) ≡ λfx.fn+1x ≡ n+ 1

Moreover, we can define the addition and the multiplication functions by the
λ-terms Add ≡ λnmfx.nf(mfx) Mult ≡ λnmf.n(mf). The first inter-
prets the addition of m and n as “n iterations after m iterations” and the
second interprets the multiplication of m and n as “n many iterations of the
m iterations.”

Exercise 11.15. Show that the Add 2̄ 3̄ =β 5̄.

Exercise 11.16. Show that the λ-term Succ′ ≡ λnfx.nf(fx) represents
the successor function.

Exercise 11.17. Find a λ-term that represents the function Exp(m,n) =
mn.

Example 11.18. (Wisdom teeth trick) How to represent the predecessor
function? Actually, Church himself thought that it may be impossible to
represent this function, till his student Kleene found out how to do it, while
having his wisdom teeth pulled, so his trick for defining the predecessor
function is sometimes referred to as the “wisdom teeth trick”. Let us explain
the trick. The idea is that the λ-term n̄ represents the operation of n many
iterations. So, if we do these many iterations on an appropriate function, we
might find a way to represent the predecessor function. Let S be the λ-term
that maps a pair (m, l) to (l, l + 1). Then, if we iterate S, n many times on
(0, 0) we get (n−1, n). Then, by projection, we can easily extract n−1. More
precisely, define S ≡ λp.〈p1p,Succ(p1p)〉. Then, Pred ≡ λn.p0(nS〈0̄, 0̄〉).

Example 11.19. (Subtraction) Define Psub ≡ λxy.y Pred x. Then, we
have

Psub m̄ n̄�β n̄ Pred m̄�β Psub(m,n)

Example 11.20. Define IsZero ≡ λnxy.n(λz.y)x as a λ-term that checks
whether a given Church numeral is zero or not. More precisely, we have

IsZero 0̄ ≡ (λnxy.n(λz.y)x)0̄ �β λxy.0̄(λz.y)x�β λxy.x ≡ T

and for n+ 1 we have

IsZero n+ 1 ≡ (λnxy.n(λz.y)x)n+ 1 �β λxy.n+ 1(λz.y)x�β λxy.y ≡ F
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Example 11.21. (Equality and inequality) Define IsLeq ≡ λxy.IsZero (Psubyx).
This defines m ≤ n. Therefore, for equality we have

Eq ≡ λxy.(and (IsLeqxy) (IsLeqyx)).

11.3 Representing All Computable Functions

In this section we prove that all computable functions over natural num-
bers are representable in lambda calculus. To prove that, we use Kleene’s
machine-independent characterization from the previous section.

Definition 11.22. Suppose f : Nk → N is a k-ary function and F is a λ-
term. We say that F represents f when for any n1, . . . , nk ∈ N, if (n1, · · · , nk)
is in the domain of f , we have Fn̄1 · · · n̄k =β f(n1, · · · , nk) and if it is not in
the domain, the λ-term Fn̄1 · · · n̄k has no normal form. In this situation the
function f is called representable in lambda calculus.

Theorem 11.23. All total computable functions are representable in lambda
calculus.

For the basic functions we just use Z ≡ λx.0̄, Succ ≡ λnfx.f(nfx)
and Iin ≡ λx1 · · · xn.xi. For composition, if h(~x) = f(g1(~x), · · · , gk(~x)) and
F and Gi’s are the representing λ-terms for f and gi’s, respectively, then
it is enough to define H as λ~x.F(G1~x)(G2~x) · · · (Gk~x). Now, we have to
address the other two operations: the primitive recursion and the unbounded
search. Let us first explain the idea with an example. Consider the primitive
recursive function e(n) = 2n, defined by the recursive definition: e(0) = 1
and e(n + 1) = e(n) + e(n). To find a λ-term e representing e, it is enough
to find e such that

e =β λx.if IsZero(x) then 1̄, else (Add e(Pred x) e(Pred x))

because then we can see that

e 0̄ =β if IsZero(0̄) then 1̄, else (Add e(Pred 0̄) e(Pred 0̄)) =β 1̄

and

e n+ 1 =β if IsZero(n+ 1) then 1̄, else (Add e(Pred n+ 1) e(Pred n+ 1))

=β (Add e(Pred n+ 1) e(Pred n+ 1))

Now, if we defineM ≡ λx.if IsZero(x) then 1̄, else Add (y(Pred x) y(Pred x)
then the λ-term e can be set as a fixed point of M . The need for such a fixed
point leads us to the following theorem:
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Theorem 11.24. (Fixed Point Theorem) Let A ≡ λxy.y(xxy) and define
Θ ≡ AA. If F is a λ-term then N ≡ ΘF is a fixed point of F , i.e., FN =β N .

Proof. This is shown by the following calculation: N ≡ ΘF ≡ AAF ≡
(λxy.y(xxy))AF =β F (AAF ) ≡ F (ΘF ) ≡ FN .

Exercise 11.25. Write down a λ-term F representing the Ackermann func-
tion.

Exercise 11.26. Show that the e 2̄ =β 4̄.

For primitive recursion, if f is defined by g and h in the following way:{
f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(x, ~y, f(x, ~y))

and g and h are representable by G and H, respectively, then we can represent
f by any λ-term F satisfying

F =β λx~y.(if IsZero(x) then G~y, else (H x ~y (F (Pred x) ~y)))

This is possible by defining F as the fixed point of the operator

Mz ≡ λx~y.(if IsZero(x) then G~y, else (H x ~y (z (Pred x) ~y)))

Exercise 11.27. Without using the fixed points, prove the primitive recur-
sive case of the theorem.
Hint: Define j as j(n, ~m) = (n, ~m, f(n, ~m)) and represent j as n many
iterations of some appropriate λ-term.

Finally, it is remained to represent the µ operator. Assume g is repre-
sentable by the λ-term G and f(~y) is defined as µx.[g(x, ~y) = 1], then

H =β λx~y.(if IsEq(Gx~y, 1̄) then x, else H (Succ x) ~y)

It is not hard to see that H0̄~y checks whether IsEq(G0̄~y, 1̄), if yes it return
0̄, otherwise it goes one level higher and sets H0̄~y as H1̄~y. Then, it does the
same procedure to check whether IsEq(G1̄~y, 1̄), if yes it return 1̄, otherwise
it goes one level higher and sets H1̄~y as H2̄~y and it keeps going till finding
the first n such that IsEq(Gn̄~y, 1̄) and then we know that the value H0̄~y
must be Hn̄~y that is n̄. Therefore, it is enough to define F as λ~y.H0̄~y.
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11.4 Church-Rosser Property

In this section we study the general behavior of computation namely the
reductions in lambda calculus. The main goal is to show the coherency
condition that if a λ-term is reducible to a normal form, then the normal
λ-terms is unique.

Theorem 11.28. (Church-Rosser) Suppose M , N , and P are λ-terms such
that M �β N and M �β P . Then there exists a λ-term Q such that
N �β Q and P �β Q.

Corollary 11.29. If M =β N , then there exists some P such that M,N �β

P .

Proof. If M =β N , then there exists a sequence of λ-terms M0, M1, · · · , Mn

such that M ≡ M0, Mn ≡ N and for any 0 ≤ i < n, either Mi →β Mi+1 or
Mi+1 →β Mi. Use induction on n to prove the claim. For n = 0, we have
M ≡ N and there is nothing to prove. For n + 1, by induction hypothesis
there exists Q such that M �β Q and Mn �β Q. Then, if Mn+1 →β Mn,
there is nothing to prove as Mn+1 �β Q. If Mn →β Mn+1, then by Church
Rosser property, there exists R such that Mn+1 �β R and Q �β R. Since
M �β Q and Q�β R we have M �β R.

Corollary 11.30. If N is normal and M =β N , then M �β N .

Proof. Since M =β N , by Corollary 11.29, there exists a λ-term P such that
M,N �β P . Since N is normal, N =α P which implies that M �β N .

Corollary 11.31. If M and N are normal and M =β N , then M =α N .

Proof. By Corollary 11.30, we have M �β N . But M is also normal, hence
M =α N .

This shows the consistency of the system in the sense that it is impossible
to show 0̄ =β 1̄ in lambda calculus. The reason simply is that both of these
two λ-terms are normal and by Corollary 11.31, if 0̄ =β 1̄, then 0̄ =α 1̄ which
is impossible.

Exercise 11.32. Show that there is no λ-term F such that F (MN) =β M ,
for all λ-terms M and N .

Exercise 11.33. Assume that for some λ-terms M and N and some x not
occurring in M and N , we have Mx =β Nx. Does it necessarily imply that
M =β N?
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Theorem 11.34. All representable functions are computable.

Proof. If F represents the function f , then f is computable by the algorithm
that searches for a series of reductions starting with Fn̄1 · · · n̄k and ending in
a normal λ-term in the form m̄. Then, the algorithm returns the number m.
First, note that this m is unique, if it exists, thanks to the Church-Rosser
property. Secondly, note that since it is unique, it must be f(n1, · · · , nk) by
the assumption and thirdly, f(n1, · · · , nk) is defined iff such a normal λ-terms
exists. Therefore, the algorithm computes the function f .

Theorem 11.35. (i) The subset of all λ-terms that have a normal form
is undecidable.

(ii) The relation =β is undecidable.

Proof. First, note that if H(m,n) is the halting predicate, then χ′H is com-
putable and hence representable in lambda calculus by a λ-term F. For (i), if
the set is decidable, then there is an algorithm to decide whether the λ-term
Fm̄n̄ has a normal form or not. By the definition of representability, this is
equivalent to the existence of (m,n) in the domain of χ′H or equivalently to
H(m,n). Since halting is undecidable, (i) follows. For (ii), if =β is decidable,
then Fm̄n̄ =β 1̄ is decidable while it is equivalent to H(m,n).
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