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Abstract

In this paper we will present a class of rules called the almost
positive rules to show that any proof system for an intuitionistic modal
logic that consists of theses rules, the cut and the necessitation rule has
the feasible disjunction property. This method uniformly proves the
property for the usual sequent-style and Hilbert-style proof systems
for a broad range of intuitionistic modal logics, including IK, IKT,
IK4, IS4, IS5, their Fisher-Servi versions, the intuitionistic logics for
bounded depth and bounded width and the propositional lax logic.
On the negative side, though, it shows that if an intuitionistic modal
logic does not admit the Visser rules or specially does not have the
disjunction property, then it does not have a calculus consisting only
of almost positive rules, the cut rule and the necessitation rule. As
the class of these rules is a general and natural class to consider, this
negative result presents an interesting proof theoretical result about
generic proof systems and their existence.

1 Introduction

It is well-known that the intuitionistic logic enjoys the disjunction property
meaning that if A _ B is provable, then either A or B is provable. Gazing
upon this problem from the computational complexity point of view, we can
wonder about the complexity of the process that finds the proof of Aor B
from a proof of A _ B. Addressing this issue, Buss and Mints [6] and later
Buss and Pudlák [7] showed that this process for propositional intuitionistic
logic is polynomial-time or less formally feasible. More precisely, given a cal-
culus C for the intuitionistic logic, there exists a polynomial time algorithm
that reading a proof π of the formula A_B in C outputs a proof of either A
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or B in C. The calculus C considered in [6] was the natural deduction sys-
tem and in [7] was Gentzen’s sequent calculus. In both these papers, a form
of normalization or cut elimination is needed. Later, Ferrari et al. ([8] and
[9]) provided a uniform framework to study the complexity of the disjunction
property in intuitionistic logic, some modal and intuitionistic modal logics.
The method they used is based on a calculus called the extraction calculus.
The benefit of their method, compared to the previous ones, is that they do
not take the structural properties of the system C into account. Instead,
their method uses an important distinction between the calculus C that the
proof π is provided in and the extraction calculus in which the disjunction
property is proved. For the intuitionistic modal logics, the disjunction prop-
erty is defined as in intuitionistic logic. However, for modal logics, it implies
the proof of A or B from a proof of lA_lB. The feasibility of disjunction
property in several modal logics has been shown by B́ılková [5] and for Frege
systems for any extensible modal logic by Jeřábek [16].

Intuitionistic modal logics have been studied immensely due to their ap-
plications in various fields from philosophy and mathematical foundations to
computer science. They are obtained by adding modalities to the intuitionis-
tic logic. From another perspective, combining the well established classical
modal logics and superintuitionistic logics can be used to build reasonable
modal logics on an intuitionistic basis. Since the modalities l and ♦ are
not dual of each other in an intuitionistic setting, there are several ways of
defining intuitionistic modal logics (see for instance [3], [4], [10], [12], [17],
[19]). More on various intuitionistic modal logics is covered in Preliminaries.
For a nice survey on intuitionistic modal logics see [18].

Recently, Iemhoff ([14], [15]) and later the authors of the current paper
([1], [2]) studied the relation between general forms of sequent calculi and
the mathematical properties that the corresponding logic enjoys. Iemhoff
showed that if the rules in a sequent calculus for a superintuitionistic logic
are of a special form, then the corresponding logic enjoys uniform interpola-
tion. Since there are only 7 superintuitionistic logics with uniform interpo-
lation, she concluded that almost all superintuitionistic logics cannot have
a sequent calculus of the mentioned form. Later, in [1] and [2] this result
was strengthened to also cover the substructural (modal) logics. Moreover,
the form of the rules was made more general and the Craig interpolation
property was also studied. This was the birth of an approach to the study of
proof system called universal proof theory. The present paper is also in line
with the aforementioned research. We present a sequent calculus containing
a special form of the rules and prove that any sequent calculus of this form
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enjoys feasible disjunction property. Therefore, any superintuitionistic logic
that does not enjoy disjunction property cannot have a sequent calculus of
the mentioned form.

The paper is organized as follows. We begin with some preliminaries in
Section 2. Specially, we introduce a sequent calculus iK and we will use it
as the basic case of our results. In Section 3 we introduce almost positive
rules. These are the rules with a special form that we are interested in. In
Section 4, we present our main result. We show that any sequent calculus G
for an intuitionistic modal logic that is stronger than iK and only consists
of almost positive rule has the feasible disjunction property. The result is in
fact stronger. We prove that there exists a poly-time algorithm that reads
a proof of Γ, tAi Ñ BiuiPI ñ C _ D in G, where Γ is a multiset of Harrop
formulas and outputs a G-proof either for Γ ñ C or Γ ñ D or Γ ñ Ai,
for some i P I. The method we use to prove this result is inspired by the
technique that Hrubeš used in [13] to prove an exponential lower bound on
the lengths of proofs in the intuitionistic Frege system. The analogue of
this result is provided in subsections 4.1, 4.2, and 4.3 for the ♦-free, l-free,
and propositional fragments, respectively. In Section 5, the cut-free case is
discussed. A certain form of rules, called LJ-like, and a form of axioms are
introduced. Then we show that there is only one superintuitionistic logic
that has a sequent calculus consisting of these axioms and rules, and that is
the intuitionistic logic, IPC.

2 Preliminaries

In this paper, we mainly work with the language L “ t^,_,Ñ,J,K,l,♦u.
However, sometimes we also use the following three fragments of L, i.e.,
Ll “ Lzt♦u, L♦ “ Lztlu and Lp “ Lztl,♦u. Small Greek letters φ, ψ, . . .
and capital Roman letters A,B, . . . , possibly with indices, denote formulas.
Formulas in a language L are also sometimes denoted as L-formulas. Cap-
ital Greek letters (possibly with indices) denote multisets of formulas and
sometimes multiset variables, which will be clear from the text. Small roman
letters p, q, . . . possibly with indices are reserved for atomic formulas (atoms)
in the language. For a formula A, the formula  A is defined as AÑ K and
the formula©nA is recursively defined by©0A “ A and©n`1A “©©nA.
And for a multiset Γ, by ©Γ we mean t©γ | γ P Γu, where © P tl,♦u.
By a rule we mean an expression of the form:

S1 . . . Sn
S
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where S, called the conclusion, and Si’s, called the premises, are sequents in
the form

Γ1, ¨ ¨ ¨ ,Γm, A1, ¨ ¨ ¨ , An ñ B1, B2, ¨ ¨ ¨ , Br,∆1, ¨ ¨ ¨ ,∆s,

where Γi’s and ∆j’s are variables for multisets and Aa’s and Bb’s are formulas.
By an instance of a rule or an initial sequent we mean a substitution for all
multiset variables and atomic formulas. By a (sequent) calculus G we mean
a set of rules. We denote the corresponding logic of the sequent calculus G
by G. For a set of rulesR, by G`R we simply mean the calculus obtained by
adding every rule in R to G. A proof π in the calculus G for a sequnet S is
defined as a sequence of sequents tSiu

m
i“1 such that Sm “ S and each sequent

Si is an instance of an initial sequent in G or derived from an instance of a
rule in the system G from some Sj1 , . . . , Sjk where j1, . . . , jk ă i. If π is a
proof of the sequent S in G we write G $π S, and sometimes we call π a
G-proof of S. The proof that we defined is sometimes also called a general
or dag-like proof. A proof is called tree-like if every sequent in the proof is
used at most once as a hypothesis of a rule in the proof. Length (or size)
of a formula A or a proof π is defined as the number of symbols in it, and
denoted by |A| and |π|, respectively. Each Si is called a line in the proof. By
an extension of a calculus G, we mean a calculus H in which all the initial
sequents and rules of G are derivable feasibly. More precisely, there exists
a polynomial time algorithm A that for any rule in G, reads the premises
as input and outputs a proof of the conclusion. Moreover, the length of this
proof is also polynomial in the length of the input. The algorithm A also
provides a proof for each initial sequent of G, polynomial in the length of the
sequent. In this paper, we use feasible and polynomial time interchangeably.
From the complexity theoretic point of view, usually it makes a difference if
we use the tree-like proofs or the dag-like proofs. However, in the presence
of the cut rule, conjunction and implication with their intuitionistic rules, it
is possible to simulate the DAG-like proofs by the tree-like ones, feasibly [].
Therefore, throughout this paper, we always use the tree-like version of the
proof systems for simplicity.

For the intutionistic propositional logics, IPC, we use the multi-conclusion
Gentzen-style sequent calculus, LJ, which has the following rules and initial
sequents:

Initial sequents:

Γ, Añ A,∆ , Γ,K ñ ∆ , Γ ñ J,∆
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Structural Rules:

Γ ñ ∆
pLwq

Γ, Añ ∆
Γ ñ ∆

pRwq
Γ ñ A,∆

Γ, A,Añ ∆
pLcq

Γ, Añ ∆
Γ ñ A,A,∆

pRcq
Γ ñ A,∆

Γ ñ A,∆ Γ, Añ ∆
pcutq

Γ ñ ∆

Propositional Rules:

Γ, Añ ∆
pL^1qΓ, A^B ñ ∆

Γ, B ñ ∆
pL^2qΓ, A^B ñ ∆

Γ ñ A,∆ Γ ñ B,∆
pR^q

Γ ñ A^B,∆

Γ, Añ ∆ Γ, B ñ ∆
pL_q

Γ, A_B ñ ∆
Γ ñ A,∆

pR_1qΓ ñ A_B,∆
Γ ñ B,∆

pR_2qΓ ñ A_B,∆

Γ ñ A,∆ Γ, B ñ ∆
pLÑq

Γ, AÑ B ñ ∆
Γ, Añ B

pRÑq
Γ ñ AÑ B

The system LK is defined as LJ, replacing the rule pRÑq with:

Γ, Añ B,∆
pRÑqcΓ ñ AÑ B,∆

The most basic intuitionistic modal calculus that we are interested in is
the calculus iK defined as LJ` tKl, K♦u:

Γ ñ A Kl
lΓ ñ lA

Γ, Añ B
K♦

lΓ,♦Añ ♦B

Note that the necessitation rule (from the premise ñ A infer ñ lA) is
an instance of the rule pKlq, and hence present in iK.

To define some basic intuitionistic modal logics, consider the following set
of intuitionistic modal rules:

Γ ñ ♦K,∆
♦K

Γ ñ K,∆
Γ ñ ♦pA_Bq,∆

♦_
Γ ñ ♦A,♦B,∆

Γ,♦Añ lB
l Ñ

Γ ñ lpAÑ Bq

Γ ñ lA,∆
TaΓ ñ A,∆

Γ ñ A,∆
TbΓ ñ ♦A,∆

Γ ñ ♦lA,∆
BaΓ ñ A,∆

Γ ñ A,∆
BbΓ ñ l♦A,∆
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Γ ñ lA,∆
4aΓ ñ llA,∆

Γ ñ ♦♦A,∆
4bΓ ñ ♦A,∆

Γ ñ ♦lA,∆
5aΓ ñ lA,∆

Γ ñ ♦A,∆
5aΓ ñ l♦A,∆

DaΓ,lK ñ ∆
DbΓ ñ ♦J,∆

Γ ñ lp,∆
D

Γ ñ ♦p,∆

For 1 ď m ă n

Γ ñ lnp,∆
4n,m,a

Γ ñ lmp,∆
Γ ñ ♦mp,∆

4n,m,b
Γ ñ ♦np,∆

xΓ ñ lip,∆yni“0 tran,a
Γ ñ ln`1p,∆

Γ ñ ♦n`1p,∆
tran,a

Γ ñ t♦ipu0ďiďn,∆

Γ ñ ♦lp,∆ ga
Γ ñ l♦p,∆

Γ ñ ♦kllp,∆ gaklmn
Γ ñ lm♦np,∆

xΓ ñ ♦pi,∆yni“0 BWn,a
Γ ñ t♦ppi ^ ppj _ ♦pjqqui‰j,∆

xΓ ñ lppi _ ppj ^lpjqq,∆yi‰j
BWn,b

Γ ñ t♦piuni“0,∆

Define bda1 “ ♦lp and bdan`1 “ ♦plpn`1^ bd
a
n^ pnq and consider the rules:

Γ ñ bdan,∆ BDn,a
Γ ñ pn`1,∆

Γ ñ p,∆
Ha

Γ ñ lp♦pÑ pq,∆

Γ ñ ♦plp^ qq,∆
dir

Γ ñ lp♦p_ qq,∆

The calculus BLL is defined as LJ plus the following rules

Γ, Añ B

Γ,♦Añ ♦B
Γ ñ A

Γ ñ ♦A

If we add the rule p4bq to the calculus BLL, the corresponding logic of this
sequent calculus is called the propositional lax logic. As mentioned in the in-
troduction, the modalities l and ♦ are not supposed to be dual of each other
in intuitionistic modal logics. Based on this fact, there are many possibilities
to define intuitionistic modal logics. In the following, we will introduce some
well-known basic intuitionistic modal logics (e.g., see [19]) using the rules
defined in Table ??. Take the language Ll and define the sequent calculus
IntKl as LJ plus the rule pKlq. The corresponding logic is denoted by
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IntKl. Then, we can define ♦φ ”  l φ. As a consequence, ♦ is not dis-
tributed over disjunction and this relation between l and ♦ is too binding
from the intuitionistic perspective. Another interesting logic is defined by
Fischer Servi ([10], [11]). She considered the language Ll♦, where l and ♦
are distinct modalities, and imposed mild connections between l and ♦ and
defined the logic FS with the following sequent calculus:

FS :“ LJ` tpKlq, pK♦q, p♦Kq, p♦_q, pl Ñqu.

She claimed that the logic FS is the true intuitionistic analogue of the classical
modal logic K. She provided two evidences to support her claim. First,
she mapped FS to an extension of the fusion of K and S4, using a natural
generalization of Gödel’s translation. Second, using the standard translation
of modal formulas to first order formulas, in the same manner that K is
mapped into the classical first order logic, FS is mapped into the intuitionistic
first order logic. Several extensions of FS have been introduced and studied.
One important one is the logic MIPC whose sequent calculus is defined as
follows:

MIPC :“ FS` tpTaq, pTbq, p4aq, p4bq, p5aq, p5bqu.

Two other interesting logics are the intuitionistic versions of the classical
modal logics S4 and S5, denoted by IS4 and IS5, respectively [17].

Theorem 2.1. If G extends IPC, then all rules of LJ are feasibly admissible
in G, i.e., for any rule in LJ

S1 ¨ ¨ ¨Sn
S

there exists a polynomial time algorithm f such that for any G-proofs πi for
Si, fpπ1, ¨ ¨ ¨ , πnq is a G-proof of S.

Proof. It is easy!

3 Almost Positive Rules

In this section, we introduce almost positive rules. These rules have a general
form and for our main result we only consider sequent calculi consisting of
these rules. First, we need to define formulas of a special form.

Definition 3.1. The following sets of formulas are defined in L.

• The set of basic formulas is the smallest set containing atomic formulas,
the constants J and K and closed under t^,_,♦u.
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• The set of almost positive (a.p.) formulas is the smallest set containing
basic formulas and closed under t^,_,l,♦u and implications of the
form AÑ B, where A is basic and B is almost positive.

• The set of almost negative (a.n.) formulas is the smallest set containing
basic formulas and closed under t^,lu and implications of the form
AÑ B, where A is almost positive and B is almost negative.

A formula in the languages Ll, L♦ and Lp is called basic, almost positive or
almost negative, if it is basic, almost positive or almost negative as a formula
in the bigger language L.

Example 3.2. In the following, we will discuss various examples.

• Examples of formulas that are basic and hence both almost positive
and almost negative are: p^ q, p_ q, and ♦p.

• Examples of formulas that are not basic but they are both almost
positive and almost negative are: lp, pÑ q, and  p. In fact, it is easy
to see by the definition that for basic formulas A and B, both AÑ B
and lA are both almost positive and almost negative.

• Some examples of formulas that are almost positive but they are not
almost negative are: ♦lp,lp_ q, q Ñ ♦lp, and p_ p.

• And some examples of formulas that are almost negative but they are
not almost positive are: lpÑ q,♦lpÑ q, and   p.

In the next definition, we tend the letters M and N to be reminiscent of
the formulas almost positive and almost negative, respectively.

Definition 3.3. Let M,M 1
i , N,N

1
i be multisets of formulas, where M and

M 1
i only consist of almost positive formulas and N and N 1

i only consist of
almost negative formulas, for 1 ď i ď n. A rule is called

• left almost positive, when it is of the form

tΓ, N 1
i ñM 1

i ,∆u
n
i“1

Γ,M ñ ∆

with the condition that if n ą 1, then all formulas in N 1
i are basic (it

means that only when n “ 1, the formulas in N 1
1 can be almost negative

formulas that are not basic), and

• right almost positive, when it has one of the following forms
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tΓ, N 1
i ñM 1

iu
n
i“1

(context-free)

Γ ñ N

tΓ ñM 1
i ,∆u

n
i“1

(contextual)

Γ ñ N,∆

with the condition that N 1
i consist of basic formulas. Moreover, if N has at

most one formula, then it can be almost negative. Otherwise, if N has more
than one formula, then all of them must be basic.
A rule is called almost positive over the languages Ll, L♦ or Lp if it is an
almost positive rule over the bigger language L.

Example 3.4. All the rules in Table ?? are almost positive. The following
are examples of rules that are not almost positive.

Γ ñ p_ p Γ ñ p, p
Γ ñ   p

Γ ñ p

Γ, pñ K

Γ ñ p
Γ, pñ ∆ Γ, pñ ∆

Γ ñ ∆

Let us explain the last rule (i.e., the right rule in the second row). Based
on the form of the rules in Definition 3.1, if it is an almost positive rule, it
must be of the form of a left rule. However, since there are two premises in
the rule, both formulas in the antecedents must be basic, which is not the
case here, since  p is not basic. The other rules are examples of right rules
that do not satisfy the conditions mentioned in Definition 3.1. The reason,
which can be easily checked, is that p_ p is not almost negative,  p is not
basic, and   p is not almost positive. These rules show how not satisfying
the conditions in Definition 3.1 will result in emerging some rules that are
not acceptable intuitionistically.

4 Feasible Visser-Harrop Property

This section contains the main results of the paper. The goal of this section
is to show that any sequent calculus consisting of almost positive rules and
cut has feasible Visser-Harrop property. To achieve this goal, first we will
enlarge the language L with some fresh variables and define a translation
function from L to this new language. Theorem 4.5 shows how the translation
function commutes with basic, a.p., and a.n. formulas. Then, in the main
theorem, Theorem 4.12, we consider a sequent calculus only consisting of
almost positive rules and extending iK. Then, we show that if a sequent is
provable in this sequent calculus, then the translation of the sequent (with
the aid of a harmless set of formulas) is also provable in it.
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Definition 4.1. For any formula φ in L, define xφy as a new propositional
variable, which we call an angled atom, and add it to the language L. We
denote the new language with all the angled atoms by L`.

Definition 4.2. The translation function t : L Ñ L` is defined in the
following way:

‚ Kt “ K, Jt “ xJy, and for any atomic formula p define pt “ xpy;

‚ pA ˝Bqt “ pAt ˝Btq ^ xA ˝By, where ˝ P t^,_,Ñu;

‚ p©Aqt “ p©Atq ^ x©Ay, where © P tl,♦u.

For a multiset Γ, by Γt we mean the multiset consisting of the translation of
all the elements of Γ, i.e., Γt “ tγt | γ P Γu. Note the difference between the
translation of K and J, which will be more clear in the proof of Theorem 4.5.
The substitution s : L` Ñ L is called standard when it maps the angled atom
xφy to φ and preserves the non-angled atomic formulas. It is easy to check
that s can be seen as a translation function from L` to L canceling all the
changes made by the translation t, and tracing back the original formula. For
instance, for any formula A P L, we have Apxφ1y, ¨ ¨ ¨ , xφnyq

s “ Apφ1, ¨ ¨ ¨ , φnq,
using induction on the structure of A, and by definition. Finally, Γs is defined
in the usual way, namely tγs | γ P Γu.

Lemma 4.3. For any formula A in the language L, there exists a proof π
such that iK $π At ñ xAy. Moreover, the process of finding π from A is
polynomial time computable.

Proof. We first propose an algorithm A to find the proof π and then we
will address its feasibility. The algorithm works in the following manner: It
reads A as the input and outputs π. If A is atomic (including K and J),
then it writes At ñ A as the proof. Using Definition 4.2, At is either xAy
or K. In both cases, the sequent At ñ A is an instance of an initial sequent
in iK and hence provable. The length of this sequent is constant (at most
7), because the length of A is one. Otherwise, if A is not atomic, then A is
either of the form B ˝C or©B, where ˝ P t^,_,Ñu and© P tl,♦u. Using
Definition 4.2 we have pB ˝Cqt “ pBt ˝Ctq ^ xB ˝Cy “ pBt ˝Ctq ^ xAy and
p©Bqt “©Bt ^ x©By “©Bt ^ xAy. In any of these cases, using the rule
pL^2q the algorithm outputs the following proof π

xAy ñ xAy
pL^2q

D ^ xAy ñ xAy
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where D is either Bt ˝ Ct or ©Bt, depending on the case. Therefore, we
have shown that iK $ At ñ xAy. Now, let us analyze the complexity
of the algorithm. If we calculate the complexity of At, then we can easily
find the complexity of the algorithm. Using recursion, when we unfold all the
translated formulas in the definition of At, in the end we reach a formula that
only consists of angled atoms xBy, where B is a subformula of A, connectives
and modalities. It is easy to check that the number of these angles atoms
is less than or equal to the number of subformulas of A, which is at most
|A|. The length of each angled atom is also at most |A| ` 2. The number of
connectives and modalities are also each at most |A|. Therefore, we have

|At| ď |A|p|A| ` 2q ` |A| ` |A| “ |A|2 ` 4|A|.

Hence, the length of the proof π is at most |A|2`8|A|`11, which is polynomial
in |A|. This concludes the proof of the feasibility of the algorithm.

When we talk about an atom p in the language L`, we mean either the
atomic formulas in L or the new angled atoms.

Definition 4.4. The set of implicational Horn formulas is the smallest set
of L`-formulas containing atomic formulas in L` and is closed under impli-
cations of the form

Ź

Q Ñ p, where Q “ tq1, . . . , qnu is a multiset of atoms
and p an atom in L` and by

Ź

Q we mean q1 ^ . . . ^ qn. The set of modal
Horn formulas is the smallest set of formulas containing atomic formulas in
L` which is closed under l and closed under implications of the form AÑ B
where A is of the form

Źk
i“1 ♦

nip and B is a modal Horn formula.

As mentioned earlier, by ♦0p we mean p. Therefore, it is easy to see that
any implicational Horn formula is also a modal Horn formula.

The following theorem is one of the main tools in proving the feasible
Visser-Harrop property. It expresses how the translation t commutes with
the formulas based on their form. In each case, whether the formula is basic,
a.p. or a.n., a set of modal Horn formulas (depending on the formula itself)
is needed as an assistance to make the sequent provable in iK. For basic
formulas, both directions are provable. However, for a.p. and a.n. formulas,
only one direction can be proved, and in the case of a.n. formulas, even
another additional formula is needed to make the sequent provable.

Theorem 4.5. piq For any basic formula Appq P L and any formulas φ P
L`, there is a set of modal Horn formulas ΦA,φ constructed from angled
atoms such that the sequents

ΦA,φ, pApφqq
t
ñ Apφtq and ΦA,φ, Apφ

tq ñ pApφqqt
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are feasibly provable in iK in the lengths of A and φ.

piiq For any almost positive formula Appq and any formulas φ P L`, there
is a set of modal Horn formulas ΠA,φ constructed from angled atoms
such that

ΠA,φ, pApφqq
t
ñ Apφtq

is feasibly provable in iK in the lengths of A and φ.

piiiq For any almost negative formula Appq and any formulas φ P L`, there
is a set of modal Horn formulas ΥA,φ constructed from angled atoms
such that

ΥA,φ, xApφqy, Apφ
tq ñ pApφqqt

is feasibly provable in iK in the lengths of A and φ.
In each case, there exists a proof πA such that iK $πA ñ

Ź

Θs
A,φ

, where s

is the standard substitution. Moreover, the processes of finding ΘA,φ and πA
are polynomial time computable in the lengths of A and φ, for Θ P tΦ,Π,Υu.

Proof. We may use A for Apφq, B for Bpφq, and C for Cpφq, when no con-
fusion occurs. We will treat each case separately using induction on the
structure of the formula Appq. We start with piq where Appq is a basic for-
mula.
piq : For the case that Appq is either an atom p or K, for any formulas φ we
take the set ΦA,φ to be the empty set. Then the sequents are trivially true in
iK. Moreover, since

Ź

H is defined as J, we have iK $ ñ
Ź

Φs
A,φ

. For the

case that A is J then we take ΦA,φ to be txJyu, which is by definition a set of
modal Horn formulas. The sequents in this case will become xJy, xJy ñ J

and xJy,J ñ xJy, which are both provable in iK. Moreover,
Ź

Φs
A,φ

is equal

to J and hence iK $ ñ
Ź

Φs
A,φ

. Now, suppose Appq “ Bppq ^ Cppq. By

Definition 4.2, we have pApφqqt “ pBpφqqt ^ pCpφqqt ^ xBpφq ^Cpφqy. Using
induction hypothesis, there exist multisets ΦB,φ and ΦC,φ such that

ΦB,φ, pBpφqq
t
ñ Bpφtq p1q , ΦB,φ, Bpφ

tq ñ pBpφqqt p2q,

ΦC,φ, pCpφqq
t
ñ Cpφtq p3q , ΦC,φ, Cpφ

tq ñ pCpφqqt p4q.

are provable in iK. Let us first investigate the trickier sequent, namely
ΦA,φ, Apφ

tq ñ pApφqqt. Using the rules in iK, we easily get from p2q and p4q

iK $ ΦB,φ,ΦC,φ, Bpφ
tq ^ Cpφtq ñ pBpφqqt ^ pCpφqqt p5q.

12



By Lemma 4.3, both pBpφqqt ñ xBpφqy and pCpφqqt ñ xCpφqy are feasibly
provable in iK, hence is also pBpφqqt^pCpφqqt ñ xBpφqy^xCpφqy p6q. We
claim that taking ΦA,φ as

ΦB,φ Y ΦC,φ Y txBpφqy ^ xCpφqy Ñ xBpφq ^ Cpφqyu

works. Note that ΦA,φ only consists of modal Horn formulas constructed
from angled atoms. Using

xBpφqy ^ xCpφqy Ñ xBpφq ^ Cpφqy, xBpφqy ^ xCpφqy ñ xBpφq ^ Cpφqy,

and p5q and p6q we finally get

iK $ ΦA,φ, Apφ
tq ñ pApφqqt.

The other sequent, ΦA,φ, pApφqq
t ñ Apφtq, is easier. Using the rules in iK,

we easily get from p1q and p3q

iK $ ΦB,φ,ΦC,φ, pBpφqq
t
^ pCpφqqt ñ Bpφtq ^ Cpφtq.

Then, using the rule pLwq we can introduce xBpφq ^ Cpφqy and xBpφqy ^
xCpφqy Ñ xBpφq ^ Cpφqy in the antecedent and we obtain

iK $ ΦA,φ, pApφqq
t
ñ Apφtq.

By iK $ ñ pxBpφqy ^ xCpφqy Ñ xBpφq ^Cpφqyqs and induction hypothesis,
we have iK $ ñ

Ź

Φs
A,φ

.

In a similar way, we can prove that in the case that Appq “ Bppq _ Cppq
taking ΦA,φ as

ΦB,φ Y ΦC,φ Y txBpφqy Ñ xBpφq _ Cpφqy, xCpφqy Ñ xBpφq _ Cpφqyu

works. Now, let us consider the final case where Appq “ ♦Bppq. By Definition
4.3 we have pApφqqt “ ♦pBpφqqt ^ x♦Bpφqy. By induction hypothesis, there
exists a multiset ΦB,φ such that

ΦB,φ, pBpφqq
t
ñ Bpφtq p7q , ΦB,φ, Bpφ

tq ñ pBpφqqt p8q.

hold in iK. Let us investigate the more complicated case, namely the prov-
ability of the sequent ΦA,φ, Apφ

tq ñ pApφqqt in iK. The other sequent can
be proved easier. We claim that setting

ΦA,φ “ lΦB,φ Y t♦xBpφqy Ñ x♦Bpφqyu

13



works. First note that ΦA,φ consists of modal Horn formulas constructed
from angled atoms. Moreover, from iK $ ñ

Ź

pΦB,φq
s, the necessitation

rule, and iK $ ñ p♦xBpφqy Ñ x♦Bpφqyqs, we get iK $ ñ
Ź

pΦA,φq
s. Now,

to ensure that this choice of ΦA,φ works, we proceed as follows. Using the
rule pK♦q on p8q we get

lΦB,φ,♦Bpφ
tq ñ ♦pBpφqqt p9q.

By Lemma 4.3 we have pBpφqqt ñ xBpφqy. Using the rule pK♦q we get
♦pBpφqqt ñ ♦xBpφqy. Therefore, using cut and p9q we get lΦB,φ,♦Bpφ

tq ñ

♦xBpφqy. Again, by cut on the provable sequent ♦xBpφqy,♦xBpφqy Ñ x♦Bpφqy ñ
x♦Bpφqy, we get

lΦB,φ,♦Bpφ
tq,♦xBpφqy Ñ x♦Bpφqy ñ x♦Bpφqy p10q.

Using the rule pLwq on p9q and then applying the rule pR^q on the resulted
sequent and p10q we get ΦA,φ, Apφ

tq ñ pApφqqt in iK. This concludes the
proof for piq.
piiq : Here the formula Appq is almost positive. Again we use induction on

the structure of the formula. The base case, where Appq is a basic formula,
is covered in piq. The cases A “ B ˝ C or A “ ©B where ˝ P t^,_u
and © P tl,♦u are very easy and similar to the cases in piq. It is easy to
see that in the former cases setting ΠA,φ “ ΠB,φ Y ΠC,φ and in the latter
cases ΠA,φ “ lΠB,φ works. The only remaining case, which is also easy,
is when Appq “ Bppq Ñ Cppq, where Bppq is a basic formula and Cppq is
almost positive. Using Definition 4.2 we have pApφqqt “ pBpφqqt Ñ pCpφqqt^
xBpφq Ñ Cpφqy. By induction hypothesis there exist multisets ΦB,φ (using
piq) and ΠC,φ such that

ΦB,φ, Bpφ
tq ñ pBpφqqt p11q , ΠC,φ, pCpφqq

t
ñ Cpφtq p12q

hold in iK. Using the rule pLÑq on p11q and p12q and then the rule pRÑq
we get

ΦB,φ,ΠC,φ, pBpφqq
t
Ñ pCpφqqt ñ Bpφtq Ñ Cpφtq.

Now, using the rule pL^1q to introduce xBpφq Ñ Cpφqy in the antecedent of
the sequent, and setting ΠA,φ “ ΦB,φ Y ΠC,φ we get ΠA,φ, pApφqq

t ñ Apφtq,
which completes the proof for piiq.
piiiq : In this case the formula Appq is almost negative. Using induction

on the structure of Appq, the base case is covered in item piq. For the case
that Appq “ Bppq ^ Cppq, take ΥA,φ as

ΥB,φ YΥC,φ Y txBpφqy ^ xCpφqy Ñ xBpφq ^ Cpφqy,
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xBpφqy ^ xCpφqy Ñ xBpφqy, xBpφqy ^ xCpφqy Ñ xCpφqyu,

and for the case that Appq “ lBppq take

ΥA,φ “ ΥB,φ Y txlBpφqy Ñ lxBpφqyu.

It is easy to see that in both cases ΥA,φ works and moreover, it is a multiset
of modal Horn formulas and iK $ ñ

Ź

Θs
A,φ

. Now, the only case left

to investigate is Appq “ Bppq Ñ Cppq, where Bppq is almost positive and
Cppq is almost negative. By Definition 4.3 we have pApφqqt “ pBpφqqt Ñ
pCpφqqt ^ xBpφq Ñ Cpφqy. By induction hypothesis, there exist multisets
ΠB,φ and ΥC,φ such that

ΠB,φ, pBpφqq
t
ñ Bpφtq p13q , ΥC,φ, xCpφqy, Cpφ

tq ñ pCpφqqt p14q

hold in iK. We claim taking

ΥA,φ “ ΠB,φ,ΥC,φ Y tpxBpφq Ñ Cpφqy ^ xBpφqyq Ñ xCpφqyu

works. Applying the rule pLÑq on p13q and p14q we have

ΠB,φ,ΥC,φ, pBpφqq
t, xCpφqy, Bpφtq Ñ Cpφtq ñ pCpφqqt.

Using the cut rule on the above sequent and pBpφqqt, pBpφqqt Ñ xCpφqy ñ
xCpφqy and the contraction rule and pRÑq we get

ΠB,φ,ΥC,φ, pBpφqq
t
Ñ xCpφqy, Bpφtq Ñ Cpφtq ñ pBpφqqt Ñ pCpφqqt p15q

On the other hand, using the cut rule on the provable sequents

xAy, xAy ^ xBy Ñ xCy ñ xBy Ñ xCy , xBy Ñ xCy ñ pBpφqqt Ñ xCy

we get
xAy, xAy ^ xBy Ñ xCy ñ pBpφqqt Ñ xCy

in iK. Using the cut rule on the above sequent and p15q we obtain

ΠB,φ,ΥC,φ, xAy, xAy ^ xBy Ñ xCy, Bpφtq Ñ Cpφtq ñ pBpφqqt Ñ pCpφqqt.

Using the left weakening rule on xAy ñ xAy and then applying the rule pR^q
on the above sequent we get

ΥA,φ, xApφqy, Apφ
tq ñ pApφqqt,

as required. Again it is clear that ΥA,φ is a multiset of modal Horn formulas
and iK $ ñ

Ź

Θs
A,φ

. This concludes the proof of part piiiq.
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The only thing that remains to investigate is the feasibility of the al-
gorithm. Note that in each step of the induction, depending on whether
A “ B ˝ C or A “©B for ˝ P t^,_,Ñu or © P tl,♦u, we have

|ΘA,φ| “ |ΘB,φ| ` |ΘC,φ| ` cp|A| ` |φ|q or |ΘA,φ| “ |ΘB,φ| ` cp|A| ` |φ|q,

where Θ P tΦ,Π,Υu and c is a constant (take it as the largest number of
added symbols appearing in any of the cases). The number of induction
steps are at most equal to |A|. Therefore, we have |ΘA,φ| ď |A| ¨ cp|A| ` |φ|q.
Now, let us discuss the length of proofs of the sequents in each case. As an
example, we will analyse the proof for the sequent in piiiq, the others are
similar. Let us denote the proof of the sequent by πA. The number of lines
of πA, denoted by #πA is equal to #πB `#πC ` d1 or #πB ` d1, where d1

is a constant and is the largest number of the added lines to the proofs of
πB and πC (or πB) to get πA. Using |ΦA,φ| and Lemma 4.3, it is easy to see

that the length of each line of πA is polynomial in |A| and |φ|. Therefore,
the processes of finding ΘA,φ and πA are polynomial time computable in the

lengths of |A| and |φ|.

Remark 4.6. First, note that Theorem 4.5 holds for any multiset of formulas
φ, as long as the construction of the formula A is as described. Another
point to make is that in the proof of Theorem 4.5 other (sometimes simpler)
choices exist for the set of modal Horn formulas such that it maked the
sequent provable in iK. The importance of our choices for these sets of
modal Horn formulas is the condition that the standard translation of each
of their elements are provable in iK. We will use this property later in
Theorem 4.12.

Lemma 4.7. Let S be the sequent Γ ñ
Žn

i“1 pi, where Γ is a multiset of
implicational Horn formulas and p1, p2, ¨ ¨ ¨ , pn are n ě 2 atomic formulas.
If LK $ Γ ñ

Žn
i“1 pi, then, there exist an 1 ď i ď n and an LJ-proof π

such that LJ $π Γ ñ pi. The processes of finding i and π are polynomial
time computable in the length of S.

Proof. We describe the process of finding i and π and then we will show that
it is feasible. The main idea is the unit propagation rule used in the Horn
satisfiability algorithm. First, note that Γ only consists of implicational Horn
formulas, which means that they are either atomic formulas, which we call
units, or formulas of the implicational form

Ź

Q Ñ a, where Q is a non-
empty sequence of atomic formulas and a an atomic formula. The process
of finding i is the following: In the initial step, k “ 0, set Γ0 “ Γ. In the
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step k ` 1 produce a multiset Γk`1 in the following way by modifying Γk:
Pick a new (i.e., not picked in the previous steps) unit r in Γk. It is not
important which one (for instance, at the beginning the algorithm can set an
order on all the atomic formulas in the sequent S, and each time proceeds
with respect to this order). Then, check if it is any of pi’s (i.e., any of the
atoms in the succedent of the sequent Γ ñ

Žn
i“1 pi). If this is the case, halt

and output this pi. Otherwise, to produce Γk`1:

‚ For any γ P Γ, if it is of the form
Ź

QÑ r, delete γ.

‚ For any γ P Γ of the form
Ź

QÑ s for s ‰ r, if r is one of the conjuncts
inQ, delete r from the formula. With this process the implication r Ñ s
transforms to s.

Note that in this process the unit r is not deleted and we keep it. We
show that the algorithm finally halts, meaning that it finds a pi as a unit
in some stage. For the sake of contradiction, assume the algorithm never
halts. First, we show that LK $ Γk ñ

Žn
i“1 pi, for each k ě 0. We

have LJ $
Ź

Γk`1 ô
Ź

Γk, for each k. The reason is that if the chosen
unit is r, then LJ $ r ^ p

Ź

Q Ñ rq ô r and for any s ‰ r we have
LJ $ r ^ p

Ź

Q Ñ sq ô r ^ p
Ź

Q1 Ñ sq, where Q1 is Q after deleting r
from it. Second, note that in any stage k, there is always a new unit to
pick up. Assuming otherwise, it means that before reaching the stage k, we
have checked all possible units and as the algorithm has not halted, they
did not intersect with tpiu

n
i“1. Moreover, it implies that for any implication

in Γk in the form
Ź

Q Ñ p, there is a non-unit in Q, because otherwise if
Q consists of units, as each unit has been chosen before, it must have been
eliminated from Q before and hence Q must have become empty, which is
not the case. Now, to reach a contradiction with LK $ Γk ñ

Žn
i“1 pi, define

a classical valuation v by setting all the units in Γk to one and all the other
atoms to zero. It makes all implicational formulas in Γk true, because in the
antecedent of each of them there should be at least one non-unit atom. It
also satisfies all units in Γk, by definition. Hence v satisfies Γk. However,
as no pi has been occurred as a unit, we have vppiq “ 0. This contradicts
LK $ Γk ñ

Žn
i“1 pi. Therefore, there is always a new unit and since the

number of units are finite, we reach a contradiction with the assumption that
the algorithm never halts. Hence, it halts in some stage m and finds some pi
as the unit meaning pi P Γm. Hence, Γm $ pi and since LJ $

Ź

Γ0 Ø
Ź

Γm,
we obtain Γ “ pΓ0 ñ piq is provable in LJ.
Now there are two points to make. First, note that the algorithm is polyno-
mial time in the length of Γ ñ

Žn
i“1 pi, just like the original unit propagation

algorithm []. The reason simply is that it goes at most for N many steps,
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where N is the number of atomic formulas in Γ ñ
Žn

i“1 pi and in the step
k, it just scans Γk once and does some small changes that makes it shorter
in length. Second, the proof for Γ ñ pi is constructed by cuts over the LJ-
proofs

Ź

Γk ñ
Ź

Γk`1 for each 0 ď k ă m and the fact that pi P Γm. Since
m ď N , the LJ-proofs

Ź

Γk ñ
Ź

Γk`1 are easy applications of implication
rules. Hence, the intuitionistic proof for Γ ñ pi is poly-time computable in
the length of the sequent Γ ñ

Žn
i“1 pi.

Note that the algorithm uses the classical provability of the sequent Γ ñ
Žn

i“1 pi and not its proof. Moreover, it is polynomial time in the length of
the sequent itself and not its classical proof.

Definition 4.8. The set of Harrop formulas is the smallest set of L-formulas
including atomic formulas, K,J, and is closed under ^,l, and implications
of the form A Ñ B, where A is an arbitrary formula and B is a Harrop
formula. A formula in the languages Ll, L♦ and Lp is called Harrop, if it is
Harrop as a formula in the bigger language L.

Lemma 4.9. If A P L is a Harrop formula, then so is At P L`.

Proof. The proof is easy by induction on the structure of A. As an example,
consider the case where A “ B Ñ C, where B is an arbitrary formula and C
is a Harrop formula. By induction hypothesis Ct is also a Harrop formula,
and hence by definition so is Bt Ñ Ct. Since any atom is Harrop and the set
of Harrop formulas is closed under conjunction, we have pB Ñ Cqt “ pBt Ñ

Ctq ^ xB Ñ Cy is also Harrop.

Lemma 4.10. For any Harrop formula A P L, there exists a multiset ΓA
with the following conditions:

piq ΓA consists of modal Horn formulas, constructed only from K,J, and
angled atoms,

piiq iK $πA ΓA ñ At, and

piiiq iK $π
1
A
Ź

ΓsA ô A.

Furthermore, there exists a polynomial time computable algorithm that reads
A and finds ΓA, πA and π1A.

Proof. We first explain the algorithm that constructs ΓA, πA and π1A and then
we will check the feasibilty. We define ΓA by recursion on A and we prove, by
using induction on the structure of A, that the required conditions hold for
this ΓA. If A is atomic, or K, or J, then it is easy to see that Γ “ tAtu satisfies
the conditions and we can define π and π1 as the corresponding proofs by
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the axioms. If A “ B ^ C, where B and C are Harrop formulas, define ΓA
as ΓB YΓC Y txB ^Cyu. By induction hypothesis we have multisets ΓB and
ΓC , only consisting of modal Horn formulas such that iK $πB ΓB ñ Bt and
iK $πC ΓC ñ Ct. It is easy to see that iK $πA ΓB,ΓC , xB^Cy ñ pB^Cqt,
and πA and π1A are the canonical proofs constructed from πB, π1B, πC and π1C .
We can easily check that all the three conditions hold.
If A “ B Ñ C, where C is Harrop, we have a multiset for C such that
iK $ ΓC ñ Ct, or equivalently iK $

Ź

ΓC ñ Ct. By Lemma 4.3, for
the formula B, we have iK $ Bt ñ xBy. Using the rule pL Ñq, we get
iK $ Bt, xBy Ñ

Ź

ΓC ñ Ct, and using the rule pR Ñq, we have iK $

xBy Ñ
Ź

ΓC ñ Bt Ñ Ct. Using the left weakening rule and the rule pR^q,
we get iK $ xBy Ñ

Ź

ΓC , xB Ñ Cy ñ pB Ñ Cqt. The problem is that
the formula xBy Ñ

Ź

ΓC is not necessarily in the modal Horn form. But
fortunately it is possible to write a set of modal Horn formulas equivalent to
the conjunction of these two formulas. We claim

ΓA “ txB Ñ Cyu Y txBy Ñ γ | γ P ΓCu

works. Note that xB Ñ Cy is an atom (an angled one) and hence a modal
Horn formula. Moreover, any γ P ΓC is either an atom (and in this case
xBy Ñ γ is implicational Horn), or it is of the form

Ź

Q Ñ p, where p
and each q P Q are atomic. Then, xBy Ñ p

Ź

Q Ñ pq is equivalent to
pxBy^

Ź

Qq Ñ p in iK and the latter is an implicational Horn formula. For
πA and π1A, pick the canonical proofs constructed from πC and π1C .
If A “ lB, where B is Harrop, define ΓA “ lΓB, xlBy. First, obviously
ΓA cosists of modal-Horn formulas, built only from angled atoms. Sec-
ond, note that using the rule Kl, left weakening and pR^q, we have iK $

lΓA, xlBy ñ plBqt. Third, using the fact that iK $
Ź

plαiq ô lp
Ź

αiq,
we can reason iK $

Ź

plΓsBq ô lB, and hence iK $
Ź

ΓsA ô lB.
Finally, for the feasibility, first note that by induction on the structure of
A, it is easy to prove that the cardinality of ΓA is linear in the length of
|A|. Then, using this fact we can use induction again to show that |

Ź

ΓA|
is quadratic in the length of |A| and therefore, both |πA| and |π1A| are also
polynomially bounded in |A|, because their complexity are controlled by the
complexity of ΓA. Finally, note that the whole algorithm is a recursion on
the structure of A and hence it can be seen as a recursion on |A| and in each
step everything from constructing ΓA to defining πA and π1A are feasible.
Therefore, since ΓA, πA and π1A are polynomially bounded in the length of
|A|, the whole algorithm is feasible itself.

Definition 4.11. We say a sequent calculus G has the feasible Visser-Harrop
property, if there exists a poly-time algorithm that reads a proof π of Γ, tAi Ñ
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BiuiPI ñ C_D in G, where Γ is a multiset consisting of Harrop formulas and
outputs a G-proof either for Γ, tAi Ñ BiuiPI ñ C or Γ, tAi Ñ BiuiPI ñ D
or Γ, tAi Ñ BiuiPI ñ Ai, for some i P I. If the algorithm works only for
the empty Γ, we say the sequent calculus G has feasible Visser property, or
feasible VP. If I is empty, we say the sequent calculus G has feasible Harrop
property, or feasible HP and if both are empty, we say the sequent calculus
G has feasible disjunction property, or feasible DP.

Theorem 4.12. Let G be a sequent calculus extending iK consisting of al-
most positive rules, cut and Nec. Then, if G $π Γ ñ ∆ then there exist a
multiset Σπ and a G-proof σπ, such that G $ Σπ,Γ

t ñ ∆t and the following
conditions hold:

piq The formulas in Σπ are modal Horn formulas constructed from the
angled atoms;

piiq G $σπ ñ
Ź

Σs
π, where s is the standard substitution;

piiiq The process of finding Σπ and σπ from π is feasible, i.e., there exists
a polynomial time (in the length of π) algorithm that reads the proof π
and outputs the multiset Σπ and the proof σπ.

Proof. We first provide the algorithm that produces Σπ and σπ. We check
the feasibility later. The algorithm computes Σπ and σπ by recursion on the
structure of π. If the last rule is a left almost positive rule

tΓ, N 1
ipφq ñM 1

ipφq,∆ui

Γ,Mpφq ñ ∆

By induction hypothesis, we have Σ1,Γt, pN 1
ipφqq

t ñ pM 1
ipφqq

t,∆t. Now we
have two cases to consider. For the first case, if the formulas in Ni’s are
all basic formulas, we claim that Σ “ Σ1 Y

Ť

i

Ť

APM 1
i
ΠA Y

Ť

APM ΠA Y
Ť

i

Ť

BPN 1i
ΦB works, i.e., Σ,Γt, pMpφqqt ñ ∆t. First, by Lemma 4.5, note

that ΠA, pApφqq
t ñ Apφtq, for any A P M i . Hence, Σ,Γt, pN 1

ipφqq
t ñ

M 1
ipφ

tq,∆t. Moreover, by the same lemma, we have ΦB, pBpφqq
t ñ Bpφtq,

for any B P N 1
i. Hence, we have Σ,Γt, N 1

ipφ
tq ñ M 1

ipφ
tq,∆t. By the rule

itself

tΣ,Γt, N 1
ipφ

tq ñM 1
ipφ

tq,∆tui

Σ,Γt,Mpφtq ñ ∆t
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Finally, by Lemma 4.5, since ΠA, pApφqq
t ñ Apφtq, for any A P M , we have

Σ,Γt,Mpφqt ñ ∆t in iK.
For the second case (the rule is a left almost positive rule and n ď 1), we
have to address two cases n “ 0 and n “ 1. If n “ 0, by the rule itself we
have

Σ,Γt,Mpφtq ñ ∆t

since ΠA, pApφqq
t ñ Apφtq, for any A P M , we have Σ,Γt, pMpφqqt ñ ∆t

which is what we wanted.
If n “ 1, the last rule is

Γ, tN 1
jpφquj ñM 1pφq,∆

Γ,Mpφq ñ ∆

We claim that

Σ “ Σ1 Y
ď

APM 1

ΠA Y
ď

APM

ΠA Y
ď

BPN 1

ΥB Y
ď

j

p
ľ

APMpφqq

xApφqy Ñ xNjpφqyq

works, i.e., Σ,Γt, pMpφqqt ñ ∆t. First, note that any formula in Σ is con-
structed of the angled atoms and is modal Horn. Second, as ΠA, pApφqq

t ñ

Apφtq, for any A P M 1, we have Σ,Γt, tpN 1
jpφqq

tu ñ M 1pφtq,∆t. Then, by
Lemma 4.5, we have

ΥN 1j
, xN 1

jpφqy, N
1
jpφ

tq ñ pN 1
jpφqq

t,

for any j. Hence, we have

Σ,Γt, txNjpφqy, Njpφtquj ñM 1pφtq,∆t

By the rule itself

Σ,Γt, txN 1
jpφqy, N

1
jpφ

tquj ñM 1pφtq,∆t

Σ,Γt, txN 1
jpφqyuj,Mpφ

tq ñ ∆t

Since for any j, the formula p
Ź

APMpφqq
xApφqyq Ñ xN 1

jpφqy is in Σ, we have

Σ,Γt,
ľ

APMpφqq

xApφqyq,Mpφtq ñ ∆t

Finally, as pApφqqt ñ xApφqy, we have pMpφqqt ñ
Ź

APMpφqq
xApφqyq. More-

over, by Lemma 4.5, we have ΠA,φ, pApφqq
t ñ Apφtq. Hence, we have
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Σ,Γt, pMpφqqt ñ ∆t.
Now, it is enough to show that p

Ź

APMpφqq
xApφqyqs ñ xNjpφqy

s holds in G,

which is the case, because it is provable by the rule itself

tN 1
jpφquj ñM 1pφq, N 1

jpφq

Mpφq ñ N 1
jpφq

For the right rule, we also have two cases. For the context-free right rule, if
the last rule is

tΓ, N 1
ipφq ñM 1

ipφqui

Γ ñ Npφq
,

by induction hypothesis, we have Σ1,Γt, pN 1
ipφqq

t ñ pM 1
ipφqq

t. Now we have
two cases to consider. For the first case, if the formulas in N ’s are all basic
formulas, we claim that Σ “ Σ1 Y

Ť

i

Ť

APM 1
i
ΠA Y

Ť

APN ΦA Y
Ť

i

Ť

BPN 1i
ΦB

works, i.e., Σ,Γt ñ pNpφqqt. First, by Lemma 4.5, we have ΠA, pApφqq
t ñ

Apφtq, for any A P M i. Hence, Σ,Γt, pN 1
ipφqq

t ñ M 1
ipφ

tq,∆t. Moreover, by
the same lemma, we have ΦB, pBpφqq

t ñ Bpφtq, for any B P N 1
iYN . Hence,

we have Σ,Γt, N 1
ipφ

tq ñM 1
ipφ

tq. Finally, by the rule itself

Σ,Γt, N 1
ipφ

tq ñM 1
ipφ

tq

Σ,Γt ñ Npφtq

and by Lemma 4.5, we have Σ,Γt ñ pNpφqqt.
For the other case, if N is just one almost negative formula, we claim that

Σ “ Σ1 Y
ď

i

ď

APM 1
i

ΠA YΥN Y
ď

i

ď

BPN 1i

ΦB Y t
ľ

γPΓ

xγy Ñ xNpφqyu

works. With the same line of argument as before, we have Σ,Γt ñ Npφtq.
Then, by Lemma 4.5, we have

ΥN , xNpφqy, Npφtq ñ pNpφqqt

Since
Ź

γPΓxγy Ñ xNpφqy P Σ, we have Σ,Γt,
Ź

γPΓxγy ñ pNpφqqt. Finally,

as Γt ñ xγy, we have Σ,Γt ñ pNpφqqt.
Therefore, it is enough to show p

Ź

γPΓxγyq
s ñ xNpφqys which is provable as

we have Γ ñ Npφq.
For the contextual right rule, if the last rule is:
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tΓ ñM 1
ipφq,∆u

n
i“1

Γ ñ Npφq,∆

By induction hypothesis, we have Σ1,Γt ñ pM 1
ipφqq

t,∆t. Again we have two
cases. If all formulas in N are basic, set

Σ “ Σ1 Y
ď

i

ď

APM 1
i

ΠA Y
ď

i

ď

BPN

ΦB.

The proof is similar to that of the previous case. If N is just one formula,
then we claim that

Σ “ Σ1 Y
ď

i

ď

APM 1
i

ΠA YΥN Y t
ľ

i

xAfpiqy Ñ xNpφqyufPX

works, where X “ tf : t1, . . . , nu Ñ
Ť

i

Ť

M 1
i | @i fpiq P M

1
iu. Note that the

number of elements in X is constant (|X| “
`

Σni“1|M
1
i |

n

˘

). The reason is that

for the given rule, the number of premises and the number of elements in M 1
i

are determined and fixed. By Lemma 4.5, since ΠA, Apφq
t ñ Apφ

t
q, for any

A PM i, we have Γt ñM 1
ipφ

t
q,∆t. Now, by applying the rule we have

tΣ1,Γt ñM 1
ipφ

tq,∆tui

Σ1,Γt ñ Npφtq,∆t

To complete the proof we have to show that Σ,Γt ñ xNpφqy,∆t. Since
pApφqqt ñ xApφqy, for any i and A P

Ť

iM
1
i , we have Σ,Γt ñ

Ź

i

Ž

APM 1
i
A,∆

that by distributivity implies Σ,Γt ñ
Ž

fPX

Ź

i fpiq,∆. Therefore, it is

enough to prove that for any f P X, we have Σ,Γt,
Ź

ixAfpiqy ñ xNpφqy,∆

which is trivially true as
Ź

ixAfpiqy Ñ xNpφqy is in Σ. Finally, we have to

show that p
Ź

ixAfpiqyq
s ñ xNpφqyqs. This is provable by the rule

t
Ź

iAfpiq ñM 1
ipφqui

Ź

iAfpiq ñ Npφq

If the last rule used in the proof is Nec:

ñ A
ñ lA

By induction hypothesis, we have Σ1 ñ At. Using the rule Kl, we have
lΣ1 ñ lAt. Set Σ “ lΣ1 Y txlAyu. It is clear that Σ ñ plAqt. The case
where the last rule used in the proof is the cut rule, is similar. We can easily
show the feasibility of the process of finding Σπ and σπ from π, similar to the
analysis of the feasibility in Theorem 4.5.
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Definition 4.13. A calculus G is called T -free if it is valid in the irreflexive
Kripke frame of one node. It is called T -full if it is valid in the reflexive
Kripke frame of one node and extends iK ` Ta ` Tb. A calculus over the
languages Ll, L♦ and Lp is called T -free if it is T -free as a calculus over
the languages Ll, L♦ and Lp. A calculus over the languages Ll, L♦ and
Lp is called T -full if it is valid in the reflexive Kripke frame of one node and
extends iKl ` Ta, iK♦ ` Tb, and LJ, respectively.

Lemma 4.14. Let G be a T -free or a T -full calculus. Then, there is a feasible
algorithm reading a G-proof of a sequent Σ, t qju

m
j“1 ñ tpiu

n
i“1 where Σ is

a multiset of modal Horn formulas and pi’s and qj’s are atomic formulas
to compute a multiset Σ1 consisting of implicational Horn formulas and a
G-proof π such that:

• LK $ Σ1 ñ tpiu
n
i“1, tqju

m
j“1,

• G $π Σ ñ
Ź

Σ1.

Proof. If G is T -free, set Σ1 as the set of modality-free formulas in Σ.
Note that the process of computing this multisets is polynomial time in the
length of Σ, t qju

m
j“1 ñ tpiu

n
i“1. To show LK $ Σ1 ñ tpiu

n
i“1, tqju

m
j“1, if

LK & Σ1 ñ tpiu
n
i“1, tqju

m
j“1, there exists a classical model I such that I ( Σ1

but I * pi and I * qj for any 1 ď i ď n and 1 ď j ď m. We use this model
to build a Kripke model for G in the following manner: Define the Kripke
frame as the singleton set twu with the empty accessibility relation. There-
fore, w is irreflexive. Define the valuation function as V ppq “ Ippq. It is easy
to see that for any modality-free formula φ, w ( φ if and only if Ipφq “ 1.
Hence, w ( Σ1. On the other hand, since the node w is irreflexive, for any
formula C, w ( lC, and w . ♦C. Therefore, for any modal-Horn formula
D in the form ♦mq Ñ r or q Ñ lnr or lkC, for some m,n, k ě 1, we have
w ( D. Hence, w ( Σ. However, the atoms pi and qj are not satisfied in this
model, while G is valid in any model based on the irreflexive node which is
a contradiction. Hence, LK $ Σ1 ñ tpiu

n
i“1, tqju

m
j“1. The other point is clear

as Σ1 Ď Σ.
For the other case, if G is T -full, define the new multiset Σ1 as Σ but delete
every l and ♦ in any of their formulas. Hence, formulas in Σ1 are in im-
plicational Horn form. Suppose LK & Σ1 ñ tpiu

n
i“1, tqju

m
j“1. Then, again

there exists a classical model I such that I ( Σ1 and I * pi, and I * qj,
for any 1 ď i ď n and 1 ď j ď m. We use this I to build a Kripke model
in the following way: Define the Kripke frame as the singleton set twu with
the accessibility relation tpw,wqu. Therefore, w is reflexive. Define the valu-
ation function as V ppq “ Ippq. Since the model is only a reflexive node, the
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modality collapses and hence the validity of Σ1 implies the validity of Σ in w.
Therefore, w ( Σ but w * pi and w * qj, for any 1 ď i ď n and 1 ď j ď m.
Since G is valid in any model based on the reflexive node, we reach a contra-
diction. Hence, LK $ Σ ñ tpiu

n
i“1, tqju

m
j“1. For the other point, note that

G is T -full and hence it extends iK` Ta` Tb. Therefore, it proves lC ñ C
and C ñ ♦C, for any formula C. It implies that for any modal Horn formula
♦mq Ñ r or q Ñ lnr or lkC, we have G $ D ñ D1 in a feasible way, where
D1 is D after eliminating all the modalities. Hence, G $ Σ ñ

Ź

Σ1. The
feasibility part is again simple and similar to the feasibility in Theorems 4.5
and 4.12.

Now we are ready to state our main result:

Theorem 4.15. Let G be a T -free or a T -full calculus consisting only of
positive rules, the cut rule and Nec and extending iK. Then, G has feasible
Visser-Harrop property.

Proof. Suppose two formulas C and D, a multiset Γ of Harrop formulas,
a multiset of implications tAi Ñ BiuiPI and a proof π are given such that
G $π Γ, tAi Ñ BiuiPI ñ C_D. By Theorem 4.12, we can get a multiset Σπ

of modal Horn formulas constructed only from the angled atoms such that
G $ Σπ,Γ

ttpAi Ñ Biq
tuiPI ñ pC _ Dqt. Using the iK-provable sequents

Ati Ñ K ñ Ati Ñ Bt
i and xAi Ñ Biy, A

t
i Ñ K ñ pAi Ñ Biq

t, we have
G $ Σπ,Γ

t, txAi Ñ BiyuiPI , t A
t
iuiPI ñ Ct, Dt which by Lemma 4.3 implies

G $ Σπ,Γ
t, txAi Ñ BiyuiPI , t xAiyuiPI ñ xCy, xDy. Use Lemma 4.10 to find

a multiset Λ of modal-Horn formulas built from angled atoms such that the
standard substitution of Λ is equivalent to Γ in iK and hence in G. Then,
G $ Σπ,Λ, txAi Ñ BiyuiPI , t xAiyuiPI ñ xCy, xDy. By Lemma 4.14, we can
feasibly provide a multiset Ω such that LK $ Ω, t xAiyuiPI ñ xCy, xDy, and
G $σ Σπ,Λ, txAi Ñ BiyuiPI ñ

Ź

Ω. Take S “ Ω ñ xCy, xDy, txAiyuiPI . We
can use Lemma 4.7 to find τ and 1 ď i ď n, such that LJ $τ Ω ñ xAiy or
LJ $τ Ω ñ xCy or LJ $τ Ω ñ xDy. For simplicity, assume LJ $τ Ω ñ xCy.
The rest of the cases are the same. Since G extends LJ, we also have
G $ Ω ñ xCy. Using the fact that G $σ Σπ,Λ, txAi Ñ BiyuiPI ñ

Ź

Ω we
have G $ Σπ,Λ, txAi Ñ BiyuiPI ñ xCy by a feasible proof in π. The sequent
will be provable for any substitution, specially the standard substitution.
By Lemma 4.12 we have iK $ñ

Ź

Σs
π. Moreover, Lemma 4.10 states that

the standard substitution of the conjunction of Λ is equivalent to Γ, feasibly
provably in iK. Hence, we have G $ Γ, tAi Ñ BiuiPI ñ C. Note that
all the steps of the argument are implemented feasibly and hence the whole
algorithm is also feasible.
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Corollary 4.16. The usual proof systems for IK, IKT, IKB, IK4, IK5,
IKBT, IS4, IKB4, IK45, IS5, their Fisher Servei versions and their ♦-free
counterparts have feasible Visser-Harrop property and hence feasible DP.

Corollary 4.17. (Negative application) Let iK Ď L be a logic without dis-
junction property. Then, L has no calculus consisting of almost positive rules
and the cut rule and Nec.

4.1 ♦-free Fragments

Theorem 4.18. Let G be a T -free or a T -full calculus only consisting of
almost positive rules, the cut rule and Nec and extending iKl. Then, G has
feasible Visser-Harrop property.

Proof. Let G be a T -free or a T -full calculus over the language Ll “

t^,_,Ñ,J,K,lu. The technique is to pretend that G is a calculus over
the extended language L to apply Theorem 4.15 and then by collapsing ♦,
we can transfer the result to G itself. More precisely, define G˚ as G plus
the rule K♦. (If G is T -full, also add the rule Tb) over the language L. First,
note that G˚ extends iK ( in the T -full case it extends iK`Ta`Tb) and it is
clearly T -free or T -full. Second, notice that G˚ is feasibly conservative over
G. To see this, it is enough to pick a proof in G˚ for a ♦-free formula and
substitute all ♦A in the proof by J. As this substitution transforms the rule
K♦ (and Tb) to a valid rule in iKl, we get a G-proof for the same sequent in
polynomial time. Now, we can apply Theorem 4.15 on G˚ to prove the fea-
sible Visser-Harrop property for G˚. However, as G˚ is feasibly conservative
over G, this implies the feasible Visser-Harrop property for G.

Corollary 4.19. The usual proof systems for IK, IKT, IKB, IK4, IK5,
IKBT, IS4, IKB4, IK45, IS5 have feasible Visser-Harrop property and
hence feasible DP.

Corollary 4.20. (Negative application) Let iK Ď L be a logic without dis-
junction property. Then, L has no calculus consisting of almost positive rules
and the cut rule and Nec.

4.2 l-free Fragments

Theorem 4.21. Let G be a T -full calculus consisting only of almost positive
rules and the cut rule extending BLL. Then, G has feasible Visser-Harrop
property.

26



Proof. Let G be a T -full calculus over the language L♦ “ t^,_,Ñ,J,K,♦u.
The technique is again to pretend that G is a calculus over the extended
language L to apply Theorem 4.15 and then by collapsing l, we can transfer
the result to G itself. More precisely, define G˚ as G plus the rule Kl, K♦

and the rules

Γ ñ A
Γ ñ lA

Γ ñ lA
Γ ñ A

over the language L. First, note that G˚ extends iK and it is clearly T -full.
Second, notice that G˚ is feasibly conservative over G. It is just enough to
pick a proof in G˚ for a l-free formula and substitute lA by A. As this
substitution transforms the rule Kl and K♦ to valid rules in BLL, we get a G-
proof for the same sequent in polynomial time. Now, we can apply Theorem
4.15 on G˚ to prove the feasible Visser-Harrop property for G˚. However,
as G˚ is feasibly conservative over G, this implies the feasible Visser-Harrop
property for G.

Corollary 4.22. The sequent calculus for the propositional lax logic, defined
in Preliminaries, has feasible Visser-Harrop property and hence feasible DP.

Corollary 4.23. (Negative application) Let BLL Ď L be a T -full logic without
disjunction property. Then, L has no calculus consisting of almost positive
rules and the cut rule.

4.3 Propositional Fragment

Theorem 4.24. Let G be a calculus for a superintuitionistic logic only con-
sisting of almost positive rules and the cut rule . Then, G has feasible Visser-
Harrop property.

Proof. Define G˚ as G plus the rules Kl and K♦ over the language L. It is
clear that G extends iK. The calculus G˚ is valid in an irreflexive node, as
G capture an intermediate logic and hence is valid in the one node Kripke
model, specially the irreflexive one. Hence, G˚ is T -free. Finally, it is enough
to note that G˚ is feasibly conservative over G; for that matter, for any
formula A, we substitute each lA and ♦A by A.

Corollary 4.25. LJ has the feasible Visser-Harrop property and hence fea-
sible DP.

Corollary 4.26. (Negative application) Let L be a superintuitionistic logic
without disjunction property. Then, L has no calculus consisting of almost
positive rules and the cut rule.
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5 The Cut-free Case

Definition 5.1. A sequent is called a strongly focused axiom if it has one of
the following forms:

p1q Γ, φñ φ,∆

p2q Γ, φñ ∆

p3q Γ ñ φ,∆

where Γ and ∆ are multiset variables, in p3q, the formulas in φ have no
variables and in p2q, any two formulas in φ have the same variables. A rule
is called LJ-like if it has one of the forms right context-free pr.cfq, or right
contextual pr.cq, or a left rule plq:

tΓ, φi ñ ψiui
pr.cfq

Γ ñ φ

tΓ ñ φi,∆ui
pr.cq

Γ ñ φ,∆

tΓ, φi ñ ∆ui tΓ ñ ψjuj
plq

Γ, φñ ∆

where in the left rule |∆| ď 1.

Example 5.2. All the axioms of LJ are strongly focused and all of its rules
are LJ-like. Therefore, IPC clearly has a calculus consisting of strongly fo-
cused axioms and LJ-like rules. An example of an axiom which is not strongly
focused is pΓ ñ φ, φ,∆q, since otherwise it would have been an instance
of p3q, which is not possible. The reason is that φ can have a variable, and
by definition, in a sequent of the form p3q formulas in the succedent must be
variable free. An example of a rule that is not LJ-like is the left and right
implication rules in LK.

Definition 5.3. Let G be a sequent calculus. G has the disjunctive interpo-
lation property, if for any k and any sequent S “ pΣ,Π ñ Λ1, ¨ ¨ ¨ ,Λkq, if S is
provable in G, there exist formulas Cr, for 1 ď r ď k such that Σ ñ C1, ¨ ¨ ¨Ck
and pΠ, Cr ñ Λrq are provable in G and V pCrq Ď V pΣqXV pΠ ñ Λrq, where
V pAq is the set of the atoms of A.

Theorem 5.4. Let G be a sequent calculus for a superintuitionistic logic L.
If G has the disjunctive interpolation property, then L has both the Craig
interpolation property and disjunction property.

Proof. For the Craig interpolation property, assume AÑ B P L. Then, G $

AÑ B. Set Σ “ A, Π “ H, k “ 1 and Λ1 “ B. Then, there exists a formula
C1 such that G $ A ñ C and G $ C ñ B and V pCq Ď V pAq X V pBq.
Therefore, AÑ C,C Ñ B P L.
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For the disjunction property, assume A _ B P L. Then, G $ñ A,B. Set
Σ “ Π “ H, k “ 2 and Λ1 “ A and Λ2 “ B. Then, there are C1 and C2 such
that G $ñ C1, C2, G $ C1 ñ A, G $ C2 ñ B and V pC1q “ V pC2q “ H.
As G extends LJ and in LJ, any variable-free formula is equivalent to J or
K, the formulas C1 and C2 are equivalent to J or K in G. As G $ñ C1, C2,
we have C1_C2 P CPC. Therefore, at least one of C1 and C2 is equivalent to
J. Therefore, by G $ C1 ñ A, G $ C2 ñ B and the fact that IPC Ď L and
the closure of L under modus ponens we have either A P L or B P L.

Theorem 5.5. (Disjunctive interpolation) Let G be a sequent calculus con-
sisting of strongly focused axioms and LJ-like rules, extending LJ. Then, G
has the disjunctive interpolation property.

Proof. The proof uses induction. For axioms, we will consider the strongly
focused axioms one by one:

p1q In this case the sequent S is of the form pΓ, φ ñ φ,∆q. Let φ P Λ1.
There are two cases to consider. If φ P Σ, then set C1 “ φ and Cr “ K,
for r ‰ 1. By the axiom itself Σ ñ C1, C2, ¨ ¨ ¨ , Ck. Moreover, as
Cr “ K, we have Π, Cr ñ Λr, for r ‰ 1. For r “ 1, as φ P Λ1, we have
Π, C1 ñ Λ1. For the variable condition, as V pCrq “ H, for r ‰ 1, the
only thing to check is that V pC1q Ď V pΣq X V pΠ ñ Λ1q which is clear.
If φ P Π, then set C1 “ J and Cr “ K, for r ‰ 1. It is clear that Σ ñ
C1, C2, ¨ ¨ ¨ , Ck and Π, Cr ñ Λr, for r ‰ 1. For r “ 1, as φ P Λ1XΠ, we
have Π, C1 ñ Λ1. As V pCrq “ H, for any r, there is nothing to check
for variable conditions.

p2q If S is of the form Γ, φ ñ ∆ define Cr “ K. First, note that we
have Σ, φñ K,K, ¨ ¨ ¨ ,K, where in the succedent we have k many K’s.
The reason is that this sequent is an instance of the axiom p2q itself.
Moreover, for every r we have Π,K ñ Λr since it is an instance of the
axiom K. And again V pCrq “ H.

p3q If S is of the form pΓ ñ φ,∆q define Cr “
Ž

pΛr X φq. It is easy to see
that this Cr works. Because, Π, Cr ñ Λr is an instance of an axiom.
We also have Σ ñ C1, ¨ ¨ ¨ , Ck, since in the succedent we will have the
formula φ (together with some other formulas which we will treat as
the context) and it will become an instance of the same axiom. Note
that since V pφq “ H, there is nothing to check for the variables.

For the rules, there are three cases to consider based on the last rule of the
proof.
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˝ If the last rule used in the proof is a right context-free LJ-like rule,
then it is of the following form:

tΓ, φi ñ ψiui
Γ ñ φ

By induction hypothesis we have Σ ñ Di and Π, Di, φi ñ ψi. Define
C “

Ź

iDi. We have Σ ñ C and Π, C, φi ñ ψi. Therefore, by the rule
itself, we have Π, C ñ φ.

˝ If the last rule used in the proof is a right contextual LJ-like rule, then
it is of the following form:

tΓ ñ φi,∆ui
Γ ñ φ,∆

where Λ1, ¨ ¨ ¨ ,Λk are given such that
Ťk
j“1 Λj “ ∆ Y tφu. W.l.o.g.

suppose φ P Λ1 and we denote Λ1´tφu by Λ11. By induction hypothesis
we have Σ ñ Di1, Di2 ¨ ¨ ¨ , Dik and Π, Di1 ñ φi,Λ

1
1 and for any r ‰ 1

we have Π, Dir ñ Λr. Define C1 “
Ź

iDi1 and for any r ‰ 1, define
Cr “

Ž

iDir. For any r ‰ 1, it is clear that Π, Cr ñ Λr. For r “ 1,
as Π, C1 ñ φi,Λ

1
1, by the rule itself we have Π, C1 ñ φ,Λ11. Finally,

as Γ ñ Di1, Di2 ¨ ¨ ¨ , Dik, we have Γ ñ Di1, C2 ¨ ¨ ¨ , Ck. Hence, Γ ñ

C1, C2 ¨ ¨ ¨ , Ck.

˝ If the last rule used in the proof is a left LJ-like rule, then it is of the
form:

tΓ, φi ñ ∆ui tΓ ñ ψjuj

Γ, φñ ∆

There are two cases to consider. First, if φ P Π. Set Π1 “ Π ´ tφu.
Then, by induction hypothesis there are formulas Di and Ej such that

Σ ñ Di , Π1, φi, Di ñ ∆

Σ ñ Ej , Π1, Ej ñ ψj

Define C “
Ź

iDi ^
Ź

j Ej. Then, we have Σ ñ C and Π1, C ñ ψj
and Π1, C, φi ñ ∆. By the rule itself, we have Π1, φ, C ñ ∆.
If φ P Σ, then set Σ1 “ Σ ´ tφu. By IH, there are formulas Di and Ej
such that
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Π, Di ñ ∆ , Σ1, φi ñ Di

Π ñ Ej , Σ1, Ej ñ ψj

Set C “
Ź

j Ej Ñ
Ž

iDi. We have Σ1,
Ź

j Ej ñ ψj and Σ1, φi,
Ź

j Ej ñ
Ž

iDi. Hence, by the rule Σ1, φ,
Ź

j Ej ñ
Ž

iDi that implies Σ1, φ ñ
C. Moreover, as Π,

Ź

j Ej Ñ
Ž

iDi ñ ∆, we have Π, C ñ ∆.

Corollary 5.6. (Characterization Theorem for IPC) A superintutionistic
logic L has a calculus only consisting of strongly focused axioms and LJ-like
rules iff L “ IPC.

Proof. It is a clear consequence of Theorem 5.5 and the fact that IPC is the
only superintuitionistic logic with both Craig interpolation and disjunction
property.
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