## On the Existence of Proof Systems

Amirhossein Akbar Tabatabai

Department of Philosophy, Utrecht University

June 21, 2021

A. Akbar Tabatabai

June 21, 2021 1 / 15

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

### An Impossibility Problem

Is it possible to prove that some logics do not have a nice proof system?

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

## An Impossibility Problem

Is it possible to prove that some logics do not have a nice proof system?

As usual with the negative results we have to go through the following three steps. Given a **family of logics**:

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

### An Impossibility Problem

Is it possible to prove that some logics do not have a nice proof system?

As usual with the negative results we have to go through the following three steps. Given a **family of logics**:

 Proposing a convincing formalization of what we mean by nice proof systems,

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

### An Impossibility Problem

Is it possible to prove that some logics do not have a nice proof system?

As usual with the negative results we have to go through the following three steps. Given a **family of logics**:

- Proposing a convincing formalization of what we mean by nice proof systems,
- Finding an invariant, i.e., a property that the logic of a nice proof system enjoys,

*Nice proof systems* lie in the heart of proof theory, from decidability of a logic and its complexity to proving the consistency and investigating the admissible rules. But we, proof theorists, know that these nice systems are rare and extremely hard to find.

### An Impossibility Problem

Is it possible to prove that some logics do not have a nice proof system?

As usual with the negative results we have to go through the following three steps. Given a **family of logics**:

- Proposing a convincing formalization of what we mean by nice proof systems,
- Finding an invariant, i.e., a property that the logic of a nice proof system enjoys,
- And finally, proving that the property is **rare**, i.e., almost all logics in the family do not enjoy the property.

By focussing on **substructural logics** (including *super-intuitionistic* and *modal* extensions):

By focussing on **substructural logics** (including *super-intuitionistic* and *modal* extensions):

• We first define **semi-analytic rules** and **focussed axioms** as our candidate for the nice sequent-style rules and axioms.

- By focussing on **substructural logics** (including *super-intuitionistic* and *modal* extensions):
  - We first define **semi-analytic rules** and **focussed axioms** as our candidate for the nice sequent-style rules and axioms.
  - Then, we connect the form of the rules to some variants of interpolation property of the logic that the system captures.

- By focussing on **substructural logics** (including *super-intuitionistic* and *modal* extensions):
  - We first define **semi-analytic rules** and **focussed axioms** as our candidate for the nice sequent-style rules and axioms.
  - Then, we connect the form of the rules to some variants of interpolation property of the logic that the system captures.
  - As interpolation is a **rare** property, we prove that nice proof systems are rare.

• Left semi-analytic rule:

$$\frac{\langle \langle \Pi_j, \bar{\psi}_{j\mathfrak{s}} \Rightarrow \bar{\theta}_{j\mathfrak{s}} \rangle_{\mathfrak{s}} \rangle_j}{\Pi_1, \cdots, \Pi_m, \Gamma_1, \cdots, \Gamma_n, \phi \Rightarrow \Delta_1, \cdots, \Delta_n}$$

where  $\Pi_i$ ,  $\Gamma_i$  and  $\Delta_i$ 's are meta-multiset variables and

• Left semi-analytic rule:

$$\frac{\langle \langle \Pi_j, \bar{\psi}_{js} \Rightarrow \bar{\theta}_{js} \rangle_s \rangle_j}{\Pi_1, \cdots, \Pi_m, \Gamma_1, \cdots, \Gamma_n, \phi \Rightarrow \Delta_1, \cdots, \Delta_n}$$

where  $\Pi_j$ ,  $\Gamma_i$  and  $\Delta_i$ 's are meta-multiset variables and  $\bigcup_{i,r} V(\bar{\phi}_{ir}) \cup \bigcup_{j,s} V(\bar{\psi}_{js}) \cup \bigcup_{j,s} V(\bar{\theta}_{js}) \subseteq V(\phi).$  • Left semi-analytic rule:

$$\frac{\langle \langle \Pi_j, \bar{\psi}_{js} \Rightarrow \bar{\theta}_{js} \rangle_s \rangle_j}{\Pi_1, \cdots, \Pi_m, \Gamma_1, \cdots, \Gamma_n, \phi \Rightarrow \Delta_1, \cdots, \Delta_n}$$

where  $\Pi_j$ ,  $\Gamma_i$  and  $\Delta_i$ 's are meta-multiset variables and  $\bigcup_{i,r} V(\bar{\phi}_{ir}) \cup \bigcup_{j,s} V(\bar{\psi}_{js}) \cup \bigcup_{j,s} V(\bar{\theta}_{js}) \subseteq V(\phi).$ 

## Example

$$\begin{array}{c} \overline{\Gamma, \phi \Rightarrow \Delta} & \overline{\Gamma, \psi \Rightarrow \Delta} \\ \overline{\Gamma, \phi \lor \psi \Rightarrow \Delta} & \overline{\Gamma_1, \phi \Rightarrow \Delta_1} & \overline{\Gamma_2, \psi \Rightarrow \Delta_2} \\ \hline \overline{\Gamma_1, \Gamma_2, \phi + \psi \Rightarrow \Delta_1, \Delta_2} \\ \\ \hline \frac{\Pi \Rightarrow \phi}{\Gamma, \Pi, \phi \to \psi \Rightarrow \Delta} \end{array}$$

• Right semi-analytic rule:

$$\frac{\langle \langle \Gamma_i, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir} \rangle_r \rangle_i}{\Gamma_1, \cdots, \Gamma_n \Rightarrow \phi}$$

-

・ロト ・ 日 ト ・ 田 ト ・

• Right semi-analytic rule:

$$\frac{\langle\langle \Gamma_i, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir} \rangle_r \rangle_i}{\Gamma_1, \cdots, \Gamma_n \Rightarrow \phi}$$



イロト イ団ト イヨト イヨト 三日

• Right semi-analytic rule:

$$\frac{\langle\langle \Gamma_i, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir} \rangle_r \rangle_i}{\Gamma_1, \cdots, \Gamma_n \Rightarrow \phi}$$



• Left multi-conclusion semi-analytic rule:  $\frac{\langle \langle \Gamma_i, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir}, \Delta_i \rangle_r \rangle_i}{\Gamma_1, \cdots, \Gamma_n, \phi \Rightarrow \Delta_1, \cdots, \Delta_n}$ 

• Right semi-analytic rule:

$$\frac{\langle\langle \Gamma_i, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir} \rangle_r \rangle_i}{\Gamma_1, \cdots, \Gamma_n \Rightarrow \phi}$$



• Left multi-conclusion semi-analytic rule:  $\frac{\langle \langle \Gamma_{i}, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir}, \Delta_{i} \rangle_{r} \rangle_{i}}{\Gamma_{1}, \cdots, \Gamma_{n}, \phi \Rightarrow \Delta_{1}, \cdots, \Delta_{n}}$ • Right multi-conclusion semi-analytic rule:  $\frac{\langle \langle \Gamma_{i}, \bar{\phi}_{ir} \Rightarrow \bar{\psi}_{ir}, \Delta_{i} \rangle_{r} \rangle_{i}}{\Gamma_{1}, \cdots, \Gamma_{n} \Rightarrow \phi, \Delta_{1}, \cdots, \Delta_{n}}$ 

#### Example

The following rules are semi-analytic:

- The usual conjunction, disjunction and implication rules for IPC;
- All the rules in sub-structural logic FL<sub>e</sub>, weakening and contraction rules;
- The following rules for exponentials in linear logic:

$$\frac{\Gamma, !\phi, !\phi \Rightarrow \Delta}{\Gamma, !\phi \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, !\phi \Rightarrow \Delta}$$

#### Example

- The cut rule; since it does not meet the variable occurrence condition.
- the following rule in the calculus of **KC**:

$$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \to \psi, \Delta}$$

in which  $\Delta$  should consist of negation formulas is not a multi-conclusion semi-analytic rule, simply because the context is not free for all possible substitutions.

## Focused axioms

A sequent is called a *focused axiom* if it has the following form:

- (1)  $(\phi \Rightarrow \phi)$
- (2)  $(\Rightarrow \bar{\alpha})$
- (3)  $(\bar{\beta} \Rightarrow)$
- (4)  $(\Gamma, \bar{\phi} \Rightarrow \Delta)$
- (5)  $(\Gamma \Rightarrow \bar{\phi}, \Delta)$

where  $\Gamma$  and  $\Delta$  are meta-multiset variables and in (2) – (5) the variables in any pair of elements in  $\bar{\alpha}$  or  $\bar{\beta}$  or  $\bar{\phi}$  are equal.

## Focused axioms

A sequent is called a *focused axiom* if it has the following form:

- (1)  $(\phi \Rightarrow \phi)$
- (2)  $(\Rightarrow \bar{\alpha})$
- (3)  $(\bar{\beta} \Rightarrow)$
- (4)  $(\Gamma, \bar{\phi} \Rightarrow \Delta)$
- (5)  $(\Gamma \Rightarrow \bar{\phi}, \Delta)$

where  $\Gamma$  and  $\Delta$  are meta-multiset variables and in (2) - (5) the variables in any pair of elements in  $\bar{\alpha}$  or  $\bar{\beta}$  or  $\bar{\phi}$  are equal.

#### Example

$$(\Rightarrow 1)$$
 ,  $(0\Rightarrow)$  ,  $(\Gamma\Rightarrow \top)$  ,  $(\Gamma, \bot\Rightarrow \Delta)$ 

## Example

$$\begin{array}{ccc} \neg 1 \Rightarrow & , & \Rightarrow \neg 0 \\ \phi, \neg \phi \Rightarrow & , & \Rightarrow \phi, \neg \phi \\ \Gamma, \neg \top \Rightarrow \Delta & , & \Gamma \Rightarrow \Delta, \neg \bot \end{array}$$

Q

## Example

$$\neg 1 \Rightarrow$$
 ,  $\Rightarrow \neg 0$ 

$$\phi, \neg \phi \Rightarrow$$
 ,  $\Rightarrow \phi, \neg \phi$ 

$$\Gamma, 
eg op op \Delta$$
 ,  $\Gamma \Rightarrow \Delta, 
eg ot$ 

#### Example

The initial sequent  $\Gamma, p, \neg p \land q \Rightarrow \Delta$  is not focussed as the variables of p and  $\neg p \land q$  are not equal.

#### Theorem

- (i) If FL<sub>e</sub> ⊆ L, and L has a (terminating) single-conclusion sequent calculus consisting of semi-analytic rules and focused axioms, then L has Craig (uniform) interpolation.
- (ii) If CFL<sub>e</sub> ⊆ L, and L has a (terminating) multi-conclusion sequent calculus consisting of semi-analytic rules and focused axioms, then L has Craig (uniform) interpolation.

As a positive application we have the following:

### Corollary

The logics  $FL_e$ ,  $FL_{ew}$ ,  $CFL_e$ ,  $CFL_{ew}$ , CPC, and their E, M, MC, EN, MN, K and KD modal versions have the uniform interpolation property.

As a positive application we have the following:

### Corollary

The logics  $FL_e$ ,  $FL_{ew}$ ,  $CFL_e$ ,  $CFL_{ew}$ , CPC, and their E, M, MC, EN, MN, K and KD modal versions have the uniform interpolation property.

As the more interesting negative application we have:

### Corollary

None of the following logics can have a nice proof system:

- Many substructural logics  $(\underline{k}_n, \underline{k}_\infty, R, BL, \cdots)$ ;
- Almost all super-intuitionistic logics (except at most seven of them);
- Almost all extensions of S4 (except at most thirty seven of them);
- The non-normal modal logics **EC** and **ENC**.

Is it possible to address nice systems in a more systematic way, covering their different flavours, comparing the extent to which they can be considered as nice and finally their existence?

Is it possible to address nice systems in a more systematic way, covering their different flavours, comparing the extent to which they can be considered as nice and finally their existence?

#### Nice Systems (informal)

A system is called **nice** if any provable formula  $\phi$  has an "analytic" proof, i.e., a proof that is only "based on" the *subformulas* of  $\phi$ .

Is it possible to address nice systems in a more systematic way, covering their different flavours, comparing the extent to which they can be considered as nice and finally their existence?

#### Nice Systems (informal)

A system is called **nice** if any provable formula  $\phi$  has an "analytic" proof, i.e., a proof that is only "based on" the *subformulas* of  $\phi$ .

Usually, having an analytic Hilbert-style proof is too much to expect. But if we enhance the proofs by some **meta-structures**, we may reach the full analyticity.

イロト イヨト イヨト イヨ

• Sequents use the meta-structure  $\phi_1, \dots, \phi_n \Rightarrow \psi$ . Represented as formulas, we have the class  $S = \{(\bigwedge_{i=1}^n \phi_i) \rightarrow \psi \mid n \in \mathbb{N}\}.$ 

- Sequents use the meta-structure  $\phi_1, \dots, \phi_n \Rightarrow \psi$ . Represented as formulas, we have the class  $S = \{(\bigwedge_{i=1}^n \phi_i) \rightarrow \psi \mid n \in \mathbb{N}\}.$
- Hypersequents use the meta-structure

 $\phi_{11}, \cdots, \phi_{1m_1} \Rightarrow \psi_1 \mid \cdots \mid \phi_{n1}, \cdots, \phi_{nm_n} \Rightarrow \psi_n$ . Represented as formulas, we have the class  $\mathcal{H} = \{\bigvee_{i=1}^n [(\bigwedge_{1=1}^{m_i} \phi_{ij}) \to \psi_i] \mid n \in \mathbb{N}\}.$ 

- Sequents use the meta-structure  $\phi_1, \dots, \phi_n \Rightarrow \psi$ . Represented as formulas, we have the class  $S = \{(\bigwedge_{i=1}^n \phi_i) \rightarrow \psi \mid n \in \mathbb{N}\}.$
- **Hypersequents** use the meta-structure  $\phi_{11}, \dots, \phi_{1m_1} \Rightarrow \psi_1 \mid \dots \mid \phi_{n1}, \dots, \phi_{nm_n} \Rightarrow \psi_n$ . Represented as formulas, we have the class  $\mathcal{H} = \{\bigvee_{i=1}^n [(\bigwedge_{1=1}^{m_i} \phi_{ij}) \rightarrow \psi_i] \mid n \in \mathbb{N}\}.$
- **Nested sequents** use the meta-structure that represent all propositional meta-formulas...

- Sequents use the meta-structure  $\phi_1, \dots, \phi_n \Rightarrow \psi$ . Represented as formulas, we have the class  $S = \{(\bigwedge_{i=1}^n \phi_i) \rightarrow \psi \mid n \in \mathbb{N}\}.$
- **Hypersequents** use the meta-structure  $\phi_{11}, \dots, \phi_{1m_1} \Rightarrow \psi_1 \mid \dots \mid \phi_{n1}, \dots, \phi_{nm_n} \Rightarrow \psi_n$ . Represented as formulas, we have the class  $\mathcal{H} = \{\bigvee_{i=1}^n [(\bigwedge_{1=1}^{m_i} \phi_{ij}) \rightarrow \psi_i] \mid n \in \mathbb{N}\}.$
- Nested sequents use the meta-structure that represent all propositional meta-formulas...
- In a nice sequent-style system, a provable formula  $\phi$  has a proof not consisting of subformulas of  $\phi$ , but by the formulas in the form  $(\bigwedge_{i=1}^{n} \phi_i) \rightarrow \psi$ , where  $\phi_i$  and  $\psi$  are *subformulas* of  $\phi$ .

- Sequents use the meta-structure  $\phi_1, \dots, \phi_n \Rightarrow \psi$ . Represented as formulas, we have the class  $S = \{(\bigwedge_{i=1}^n \phi_i) \rightarrow \psi \mid n \in \mathbb{N}\}.$
- **Hypersequents** use the meta-structure  $\phi_{11}, \dots, \phi_{1m_1} \Rightarrow \psi_1 \mid \dots \mid \phi_{n1}, \dots, \phi_{nm_n} \Rightarrow \psi_n$ . Represented as formulas, we have the class  $\mathcal{H} = \{\bigvee_{i=1}^n [(\bigwedge_{1=1}^{m_i} \phi_{ij}) \rightarrow \psi_i] \mid n \in \mathbb{N}\}.$
- **Nested sequents** use the meta-structure that represent all propositional meta-formulas...
- In a nice sequent-style system, a provable formula  $\phi$  has a proof not consisting of subformulas of  $\phi$ , but by the formulas in the form  $(\bigwedge_{i=1}^{n} \phi_i) \rightarrow \psi$ , where  $\phi_i$  and  $\psi$  are *subformulas* of  $\phi$ .
- In a nice nested sequent-style system ...

### Definition

For a class of formulas  $\mathcal{F}$ , a system consisting of **LJ** and some initial sequents is called  $\mathcal{F}$ -analytic if any provable formula  $\phi$  has a proof where all formulas in the proof is the result of a substitution of a subformula of a formula in  $\mathcal{F}$  by the subformulas of  $\phi$ .

## Definition

For a class of formulas  $\mathcal{F}$ , a system consisting of **LJ** and some initial sequents is called  $\mathcal{F}$ -analytic if any provable formula  $\phi$  has a proof where all formulas in the proof is the result of a substitution of a subformula of a formula in  $\mathcal{F}$  by the subformulas of  $\phi$ .

### An Embedding Theorem

We can rewrite any cut-free hypersequent proof system as an  $\mathcal{H}$ -analytic sequent calculus. Specifically, **LC** has a  $\{(p \rightarrow q) \lor (q \rightarrow p)\}$ -analytic sequent calculus.

## Definition

For a class of formulas  $\mathcal{F}$ , a system consisting of **LJ** and some initial sequents is called  $\mathcal{F}$ -analytic if any provable formula  $\phi$  has a proof where all formulas in the proof is the result of a substitution of a subformula of a formula in  $\mathcal{F}$  by the subformulas of  $\phi$ .

## An Embedding Theorem

We can rewrite any cut-free hypersequent proof system as an  $\mathcal{H}$ -analytic sequent calculus. Specifically, **LC** has a  $\{(p \rightarrow q) \lor (q \rightarrow p)\}$ -analytic sequent calculus.

To separate the level of sequents and hypersequents:

#### A Separation Theorem

The logic **LC** has no S-analytic sequent calculus.

Image: A match a ma

# Thank you for your attention!