
Mining the Surface: The NP-Search Problems
of Arithmetic

Amirhossein Akbar Tabatabai
Utrecht University, the Netherlands

Abstract

One of the elegant achievements in the history of proof theory is the
characterization of the provably total recursive functions of the strong
theories of arithmetic. This characterization relates the provability of
the totality of a function on the one hand and its computability via the
ordinal recursion on the theory’s proof theoretic ordinal, on the other.
Unfortunately, this correspondence is not sufficiently fine-grained to
also understand the bounded world of the bounded low complexity
functions, i.e., the bounded functions with low complexity definitions.

In this paper we intend to develop a refined version of the men-
tioned correspondence. We will characterize the provably total low
complexity functions of a theory via a suitable family of syntactical
ordinal-based algorithms. More precisely, we will show that a fea-
sibly defined function is provably total in a theory iff there exists a
sequence of PV-provable polynomial time reductions with the length
of the proof theoretic ordinal of the theory, starting in a feasibly com-
putable value and ending in the value of the function itself. This
characterization is useful in the classification of the feasibly defined
bounded functions in a theory. More specifically, it is useful in gen-
eralizing the Beckmann’s characterization [1] of the total NP-search
problems of PA to any theory with a reasonable ordinal analysis.

1 Introduction

One of the elegant achievements in the history of proof theory is the charac-
terization of the provably total recursive functions of the different theories of
arithmetic. This characterization employs the ordinal recursion on the proof
theoretic ordinal of the theory, to first relate the provability and the growth

1

rate and then to establish the independence of some Π0
2 formulas from some

strong arithmetical theories such as IΣn and PA.

Trying to extend this characterization and hence its independence tech-
nique to some weaker fragments of formulas, one can observe that in the
bounded world, the mentioned correspondence totally breaks down. First
because in some formulas such as ∀xA(x) where A is an atomic formula,
there is no essentially existential quantifier to witness and secondly, even
if we have a bounded existential quantifier in the formula, for instance in
∀x∃y ≤ tB(x, y) where B is atomic, the characterization does not lead to a
characterization of these functions withlow complexity definitions. The rea-
son is the following: The best thing we can learn from the characterization is
the existence of an ordinal recursive computation to find the bounded y. But
this is much weaker than the provability of the formula ∀x∃y ≤ tB(x, y) that
we had. Because based on the recursive algorithm that we have, the function
is represented by a formula of the form ∃wC(x,w, y), where w encodes the
ordinal recursive computation. But despite the bounded value of the func-
tion, this computation can be extremely huge and hence unbounded by the
basic simple terms in the language. Hence, there is a difference between the
representable bounded functions and the functions representable by bounded
formulas.

In this paper we try to provide a generalization of this correspondence
to also cover the low complexity statements. For this purpose, we de-
velop a more faithful characterization of the provable formulas of the form
∀x∃yA(x, y) where A is a polynomial time computable predicate. This char-
acterization provides a canonical decomposition of the proof to an ordinal-
length PV-provable implications. It then leads to a representation for all
universal formulas on the one hand and an algorithm to compute a witness
for the existential formulas on the other. In the latter case, the algorithm
reveals much more information than the previously known upper bounds.
It replaces the growth rate of a function with a concrete algorithm for its
computation to relate provability with a more fundamental notion of compu-
tational complexity. Therefore, this characterization will be useful in cases
that the existential quantifier is bounded or even when we lack these quan-
tifiers altogether.

Note that there is nothing specific to polynomial time predicates, the
technique actually works for any strong enough complexity class and any
theory for which we have a reasonable ordinal analysis. However, for sim-
plicity we will only focus on polynomial time computation which makes our

2

main result as the following:

Theorem 1.1. Let A(~x, y) be a polynomial time computable predicate and
T an arithmetical theory with the proof theoretic ordinal αT . Then T `
∀~x∃yA(~x, y) iff there exists β ≺ αT , a polynomial time computable predicate

G(γ, ~x, ~z) and polynomial time computable functions ~N , q and p such that:

(i) PV ` G(β, ~x,~i(~x)),

(ii) PV ` γ 6= 0→ q(γ, ~x, ~z) ≺ γ,

(iii) PV ` γ 6= 0→ [G(γ, ~x, ~z)→ G(q(γ, ~x, ~z), ~x, ~N(γ, ~x, ~z))],

(iv) PV ` G(0, ~x, ~z)→ A(~x, p(~x, ~z)).

To prove this characterization, we will pursue the following strategy:
First, in the next section, we will use a sequence of reductions mainly based on
Mints’ style technique of continuous cut elimination [5] to transfer the prov-
able low complexity consequences of T to a simpler theory in the language of
PV axiomatized by transfinite induction on the universally quantified poly-
nomial time computable formulas. Then, we will continue the process of
reductions to reduce the provability of these low complexity statements to a
uniform ordinal-length sequence of PV-implications. The latter is called an
ordinal flow and we will devote the last section to investigate its behaviour.
Finally, using the witnessing in the theory PV we can prove the characteri-
zation that we have mentioned.

This characterization has its useful applications. For instance, it is useful
to characterize the total NP-search problems of a theory for which we have
a reasonable ordinal analysis. It generalizes the known characterization of
the total NP-search problems of PA that is based on polynomial local search
problems defined on ordinals less than ε0. (See [1]). We will generalize this
characterization to any theory with the proof theoretic ordinal α that has a
polynomial time computable representation.

2 A Bridge of Reductions

Let us start with a theory T with a reasonable ordinal analysis. (The precise
definition will be presented in a moment). And assume that the language of
T has a function symbol for any polynomial time computable function (in
the sense of PV) and T itself extends the theory PV. This condition makes

3

it possible to talk about the low complexity predicates.

First let us define what we mean by a reasonable ordinal analysis of an
arithmetical theory T . For this purpose we need the usual primitive recursive
representation of the ordinals:

Definition 2.1. A primitive recursive representation of the ordinal α is a
structure A = (A,≺A,+A, ·A, x 7→ ωx) such that:

(i) A is an infinite primitive recursive subset of N.

(ii) ≺A is a primitive recursive binary relation on A.

(iii) +A, ·A are binary, and x 7→ ωx is unary, primitive recursive functions
on A.

(iv) PRA proves that A satisfies all the usual order and algebraic properties
of an initial segment of ordinals that are defined in detail in [5].

(v) The structure A is isomorphic to the structure (α,≺α,+α, ·α, β 7→ ωβ)
where the order and the functions in the latter structure are the usual
ordinal theoretic order and the usual operations. Note that this condi-
tion implies that the ordinal α is closed under the operation β 7→ ωβ.

Remark 2.2. From now on, when we work with an ordinal α, we always fix
a primitive recursive representation for it and later also a polynomial time
computable representation. We use the lower Greek alphabets both for the
ordinals and their numeral representations. For instance, by the arithmetical
formula H(γ, ~x) we mean c ∈ A∧H(c, ~x) and by the quantifier ∀β we actually
mean ∀b ∈ A.

After arithmetizing the needed ordinal, we are ready to recall the defini-
tion of the Π0

2-proof theoretical ordinal of the theory T :

Definition 2.3. Let T be a theory of arithmetic. We say that α is a Π0
2-

proof theoretical ordinal of T when T ≡Π0
2

PA +
⋃
β≺α TI(≺β), where TI(≺β)

means the full transfinite induction up to the ordinal β:

∀γ ≺ β(∀δ ≺ γA(δ)→ A(γ))→ ∀γ ≺ βA(γ)

The rest of this section is devoted to a sequence of reductions that transfer
the low complexity consequences of the theory T to simpler more feasibly pre-
sented theories. This sequence consists of two steps. First we start with the
following continuous cut elimination technique to reduce the full transfinite
induction to the non-existence of decreasing primitive recursive sequences of
ordinals. Then we continue with introducing a new totally feasibly repre-
sented system and interpreting this non-existence in that system:

4

Theorem 2.4. [5] Let T be a theory of arithmetic and α its Π0
2-proof theo-

retical ordinal. Then

T ≡Π0
2

PRA +
⋃
β≺α

PRWO(≺β)

where PRWO(≺β) is the scheme

∀~x∃y[f(~x, y + 1) ⊀ f(~x, y) ∨ f(~x, y) /∈ A ∨ f(~x, y) ⊀ β]

for any function symbol f in the language of PRA.

For the second step, we need to improve our ordinal representation system
from its primitive recursive setting to a polynomial time computable one:

Definition 2.5. Let α be an ordinal with a given primitive recursive repre-
sentation. Then we say

A = (A,≺A,+A, ·A, .−A, dA, oA, ωA)

is a polynomial time representation of the ordinal α when A and ≺A are
polynomial time relations, +A, ·A, .−A, dA(·, ·) and oA are polynomial time
functions and ωA is a constant, such that:

(i) The structure A = (A,≺A,+A, ·A, .−A, dA, oA, ωA) is isomorphic to the
structure (α,≺α,+α, ·α, .−α, dα, oα, ωα) where +α, ·α are the usual ad-
dition and product of ordinals and .−α, dα are subtraction and division
from left, i.e., for γ � β we have β .−α γ = δ where γ +α δ = β and
otherwise, β .−α γ = 0. For division, if γ 6= 0, by dα(β, γ) we mean the
unique δ where β = γ ·α δ +α λ and λ ≺ γ. Finally, oα is a function
that sends a natural number to the ordinal of that order type and ωα
is the ordinal ω.

(ii) PV proves the axioms of discrete ordered semi-rings for the structure
A without the commutativity of addition and the axioms which state
that ≺A is preserved under left addition and left multiplication by a
non-zero element. And finally, o is an isomorphism between (N, <) and
({x ≺ ωA},≺ωA

).

(ii) PRA proves that (A,≺A) is equivalent to the primitive recursive rep-
resentation of (α,≺α) i.e., their being an ordinal predicates and their
order predicates are equivalent over PRA.

5

Definition 2.6. The class ∀1 of formulas is inductively defined as the least set
of formulas in the language of PV that includes atomic formulas and is closed
under conjunction, disjunction, implication with quantifier-free precedents
and universal quantifiers.

And finally, we need a theory completely defined in the language of PV:

Definition 2.7. Let LPV be the language of PV. Define the system TI(∀1,≺)
as the theory PV together with the ∀1-transfinite induction on ≺, i.e.,

∀δ(∀γ ≺ δ A(γ)→ A(δ))→ A(θ)

for any constant θ, where≺ is the polynomial time computable representation
of α.

Remark 2.8. Firstly, note that the theory TI(∀1,≺) proves

∀δ ≺ θ(∀γ ≺ δ A(γ)→ A(δ))→ ∀δ ≺ θA(δ)

where θ ∈ A is a constant ordinal. It is enough to use the induction in the
system on B(δ) = δ � θ → ∀η ≺ δA(η).

Secondly, note that it is possible to present the theory TI(∀1,≺) in the
sequent-style calculus by adding the axioms of PV and the following induction
rule for any constant θ ∈ A to the usual first order sequent calculus:

Γ,∀γ ≺ δ A(γ)⇒ ∆, A(δ)
(Indα)

Γ⇒ ∆, A(θ)

Note that by the usual methods, it is easy to prove the free-cut elimination
theorem to show that if Γ ∪∆ ⊆ ∀1, then if Γ⇒ ∆ is provable in TI(∀1,≺)
then it has a TI(∀1,≺)-proof consisting only of ∀1 formulas.

Thirdly, for some practical reasons, sometimes it is useful to change the
induction rule by the rule

Γ,∀γ ≺ δ A(γ)⇒ ∆,∀γ ≺ δ + 1 A(γ)
(Ind′α)

Γ⇒ ∆, A(θ)

In the presence of the other first order rules specifically the ∀1-cut rule, the
equivalence of these two induction rules is trivial.

Lemma 2.9. TI(∀1,≺) is an LPV-extension of the theory PRA+
⋃
β≺α PRWO(≺β

), i.e., for any A ∈ LPV, if PRA+
⋃
β≺α PRWO(≺β) ` A then TI(∀1,≺) ` A.

6

Proof. Note that the primitive recursive representation of the ordinal α is
equivalent to its polynomial time representation provably in PRA we can use
this representation in PRWO(≺β). Then define ∃1 as the class of formulas log-
ically equivalent to the negations of ∀1 and also define I∃1 and I∀1 as PV plus
the usual induction on ∃1 and ∀1 formulas, respectively. Note that the prim-
itive recursive functions are ∃1-definable in the theory I∃1 more or less in the
same way that they are represented in IΣ1 via Σ1 formulas. More precisely,
for any function symbol f , we claim that there existences a quantifier-free
PV-formula Af (~x, w, y) such that ∃wAf (~x, w, y) plays the role of the defini-
tion of f in I∃1 and w encodes the computation of f on input ~x with the
result y. The proof is by induction on the structure of f . The basic functions
and composition cases are easy. For the recursion case if f(~x, y) is defined via
recursive equations f(~x, 0) = g(~x) and f(~x, y + 1) = h(~x, y, f(~x, y)), define
Af (~x, y, 〈u, v〉, z) as Ag(~x, u0, v0) ∧ ∀i ≤ l(v)Ah(~x, i, vi, ui+1, vi+1) ∧ vl(v) = z
in which v stands for the sequence that encodes all f(~x, i) for any i ≤ y, l(v)
means the length of this sequence and u encodes the sequence of computa-
tions ui in which u0 reads ~x and compute v0 = f(~x, 0) and ui+1 reads ~x, i
and f(~x, i) and compute f(~x, i + 1) via the function h. Note that the pred-
icate ∀i ≤ l(v)Ah(~x, i, vi, ui, vi+1) is polynomial computable since l(v) ≤ |v|
where |v| is the binary length of v. Hence there exists a polynomial time
function symbol in PV like F such that PV proves that F (~x, u, v) = 1 iff
∀i ≤ l(v)Ah(~x, i, vi, ui, vi+1). Therefore, Af can be written in a quantifier-
free form. The fact that these definitions are functional and total in I∃1 is
similar to what we had for the similar representation in IΣ1.

Now note that with the usual technique to show IΠ1 = IΣ1 we can
similarly show that I∀1 = I∃1. Hence all primitive recursive functions are
interpretable in I∀1. Therefore, we can extend the language of TI(∀1,≺) to
the whole language of PRA to extend the transfinite induction even for ∀1

formulas that include PRA-function symbols.

So far, we have handled the equational axioms of PRA. For the induction
of PRA, note that the strong induction

∀x(∀y < xA(y)→ A(x))→ ∀xA(x)

for PRA-quantifier-free formulas A is more stronger than the usual induction
in PRA. On the other hand, the function o translates this strong induction
in PRA to the transfinite induction up to ω which is available in TI(∀1,≺).
Now, as the last step it is enough to prove that TI(∀1,≺) ` PRWO(≺β).

7

Assume

∀y[f(~x, y + 1) ≺ f(~x, y) ∧ f(~x, y) ∈ A ∧ f(~x, y) ≺ β]

Now use ≺β-induction to prove A(γ, ~x) = ∀y(f(~x, y) 6= γ). For γ = 0
the claim is clear because if f(~x, y) = 0 then f(~x, y + 1) ≺ 0 which is
impossible. Now if ∀δ ≺ γA(δ, ~x) then if f(~x, y) = γ we have f(~x, y+1) ≺ γ.
But non of the elements below γ is in the image of f , hence we have a
contradiction. Therefore, we have A(γ, ~x). Hence, by transfinite induction
on ≺β, ∀γ ≺ βA(γ, ~x) which for γ = f(~x, 0) ≺ β implies ∀y(f(~x, y) 6= f(~x, 0))
which is a contradiction.

Putting the two steps together, we have the following characterization of
Π0

2(LPV) = LPV ∩ Π0
2 consequences of the theory T :

Corollary 2.10. Let α be the Π0
2-ordinal of the theory T with the polynomial

time representation ≺, then we have T ≡Π0
2(LPV) TI(∀1,≺) i.e., for any A ∈

Π0
2(LPV), T ` A iff TI(∀1,≺) ` A.

Proof. Note that TI(∀1,≺) is a sub-theory of PA +
⋃
β≺α TI(≺β) which is

Π0
2-equivalent to T by Theorem 2.4. For the converse use Theorem 2.4 and

Theorem 2.9.

3 Ordinal Flows

In this section we use the notion of an ordinal flow to witness the provable
sequents of the theory TI(∀1,≺). This witnessing leads to the algorithm that
we explained in the Introduction.

Definition 3.1. Let A(~x), B(~x) and H(δ, ~x) be some formulas in ∀1. A pair
(H, β) where β ≺ α is called an α-flow if:

(i) PV ` A(~x)↔ H(0, ~x).

(ii) PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H(γ, ~x)→ ∀γ ≺ δ + 1 H(γ, ~x)].

(iii) PV ` H(β, ~x)↔ B(~x).

We denote the existence of an α-flow from A to B by ABα B and we abbre-
viate

∧
Γ Bα

∨
∆ by Γ Bα ∆. Moreover, when it is clear from the context,

we omit the subscript α everywhere.

In order to use the ordinal flows, it is more convenient to develop a high
level calculus for this new notion. The following lemmas are devoted to this
current task.

8

Lemma 3.2. (Conjunction Application) Let C(~x) ∈ ∀1 be a formula. If
A(~x) BB(~x) then A(~x) ∧ C(~x) BB(~x) ∧ C(~x).

Proof. Since A(~x)BB(~x), then by Definition 3.1 there exist an ordinal β and
a formula H(γ, ~x) ∈ ∀1 such that we have the conditions in the Definition
3.1. Define β′ = β and H ′(γ, ~x) = H(γ, ~x)∧C(~x). It is clear that the (H ′, β′)
is an α-flow from A(~x) ∧ C(~x) to B(~x) ∧ C(~x). The main point here is that
the fact

PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H(γ, ~x)→ ∀γ ≺ δ + 1 H(γ, ~x)]

implies

PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H(γ, ~x) ∧ C(~x)→ ∀γ ≺ δ + 1 H(γ, ~x) ∧ C(~x)]

Lemma 3.3. (Disjunction Application) Let C(~x) ∈ ∀1 be a formula. If
A(~x) BB(~x) then A(~x) ∨ C(~x) BB(~x) ∨ C(~x).

Proof. The proof is similar to the proof of the Lemma 3.2.

Lemma 3.4. (i) (Weak Gluing) If A(~x) B B(~x) and B(~x) B C(~x), then
A(~x) B C(~x).

(ii) (Strong Gluing) If for δ � λ we have ∀γ ≺ δ A(γ, ~x) B ∀γ ≺ δ +
1 A(γ, ~x), then for any θ � λ we have ∀γ ≺ λ A(γ, ~x) B A(θ, ~x).

Proof. For (i), since A(~x) B B(~x) there exist an ordinal β and a formula
H(γ, ~x) ∈ ∀1 such that PV proves the conditions in the Definition 3.1. On
the other hand since B(~x) B C(~x) we have the corresponding data for B(~x)
to C(~x) which we denote by β′ and H ′(γ, ~x). Define β′′ = β + β′ and

H ′′(γ, ~x) =

{
H(γ, ~x) γ � β

H ′(γ .− β, ~x) β ≺ γ � β + β′

It is easy to check that (β′′, H ′′) is an α-flow from A(~x) to C(~x). The reason
is simple. First note that H ′′(β + β′, ~x) is equivalent to H ′(β′, ~x) which is
equivalent to C(~x). Moreover, we have

PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H ′′(γ, ~x)→ ∀γ ≺ δ + 1 H ′′(γ, ~x)]

because if δ � β then the claim reduces to the same claim for H. If
β ≺ δ, then it is enough to prove H ′′(δ, ~x) or equivalently H ′(δ .− β, ~x) from

9

∀γ ≺ δ H ′′(γ, ~x) which is stronger than ∀β � γ ≺ δ H ′′(γ, ~x) or equivalently
∀γ ≺ δ H ′(γ, ~x).

For (ii) first let us prove ∀γ ≺ λ A(γ, ~x)B ∀γ ≺ θ+ 1 A(γ, ~x). If we have
∀γ ≺ δA(γ, ~x)B∀γ ≺ δ+1 A(γ, ~x) then there exists β and H(η, δ, ~x) such that
we have the conditions of the Definition 3.1. Define β′ = β× (θ+ 1 .−λ) and
I(τ, ~x) = H(τ .− βd(τ, β), λ+ d(τ, β), ~x). It is easy to see that (I, β′) is an α-
flow from ∀γ ≺ λ A(γ, ~x) to ∀γ ≺ θ+1 A(γ, ~x). Now since ∀γ ≺ θ+1 A(γ, ~x)
implies A(θ, ~x) by weak gluing we have an α-flow from ∀γ ≺ λ A(γ, ~x) to
A(θ, ~x) which completes the proof.

Remark 3.5. Note that if for some formulas A,B ∈ ∀1 we have PV ` A→
B, then we will have ABB. It is enough to define β = 1 and H(γ, ~x) = (γ =
0 → A(~x)) ∧ (γ = 1 → B(~x)). Having this observation, by the assumptions
(PV ` A→ B), (BBC) and (PV ` C → D) and by the weak gluing we will
have ABD. We will use this special case of weak gluing, frequently.

Lemma 3.6. (Conjunction and Disjunction Rules)

(i) If Γ, AB ∆ or Γ, B B ∆, then Γ, A ∧B B ∆.

(ii) If Γ0 B ∆0, A and Γ1 B ∆1, B, then Γ0,Γ1 B ∆0,∆1, A ∧B.

(iii) If Γ B ∆, A or Γ B ∆, B, then Γ B ∆, A ∨B.

(iv) If Γ0, AB ∆0 and Γ1, B B ∆1, then Γ0,Γ1, A ∨B B ∆0,∆1.

Proof. For (i) and (iii), note that we have A∧B → A, A∧B → B, A→ A∨B
and B → A∨B provable in PV. Then by the Remark 3.5, we have what we
wanted.

For (ii) and (iv), we just prove (ii). The proof for (iv) is just dual to the
one for (ii). If Γ0 B ∆0, A, then by definition we have

∧
Γ0 B

∨
∆0 ∨ A. By

conjunction application, we have
∧

Γ0∧
∧

Γ1B (
∨

∆0∨A)∧
∧

Γ1. Moreover,
we have

∧
Γ1 B

∨
∆1 ∨B and by conjunction application we have∧

Γ1 ∧ (
∨

∆0 ∨ A) B (
∨

∆1 ∨B) ∧ (
∨

∆0 ∨ A).

Therefore, by weak gluing∧
Γ0 ∧

∧
Γ1 B (

∨
∆1 ∨B) ∧ (

∨
∆0 ∨ A).

But we also have

PV ` (
∨

∆1 ∨B) ∧ (
∨

∆0 ∨ A)→
∨

∆1 ∨
∨

∆0 ∨ (A ∧B).

10

Hence by the Remark 3.5 we have∧
Γ0 ∧

∧
Γ1 B

∨
∆0 ∨

∨
∆1 ∨ (A ∧B).

which means
Γ0,Γ1 B ∆0,∆1, (A ∧B).

Lemma 3.7. (Cut and Induction Rule)

(i) If Γ0 B ∆0, A and Γ1, AB ∆1 then Γ0,Γ1 B ∆0,∆1.

(ii) If Γ,∀γ ≺ δ A(γ, ~x) B ∀γ ≺ δ + 1 A(γ, ~x),∆, then Γ B A(θ, ~x),∆.

Proof. For (i), Since Γ0 B ∆0, A and Γ1, AB ∆1 then
∧

Γ0 B
∨

∆0 ∨ A and∧
Γ1 ∧AB

∨
∆1. Apply conjunction with

∧
Γ1 on the first one and disjunc-

tion with
∨

∆0 on the second one to prove
∧

Γ1∧
∧

Γ0B(
∨

∆0∨A)∧
∧

Γ1 and
(
∧

Γ1∧A)∨
∨

∆0B
∨

∆1∨
∨

∆0. Since (
∨

∆0∨A)∧
∧

Γ1B(
∧

Γ1∧A)∨
∨

∆0,
by using gluing we will have

∧
Γ1 ∧

∧
Γ0 B

∨
∆0 ∨

∨
∆1.

For (ii) we reduce the induction case to the strong gluing case. Since

Γ, ∀γ ≺ δ A(γ, ~x) B ∀γ ≺ δ + 1 A(γ, ~x),∆

define B(δ, ~x) = ∀γ ≺ δ A(γ, ~x). By definition,
∧

Γ∧B(δ, ~x) B
∨

∆∨B(δ +
1, ~x). Therefore, by disjunction application we have

(
∧

Γ ∧B(δ, ~x)) ∨
∨

∆ B
∨

∆ ∨B(δ + 1, ~x) ∨
∨

∆

and we know

PV `
∨

∆ ∨B(δ + 1, ~x) ∨
∨

∆→
∨

∆ ∨B(δ + 1, ~x).

Hence by the Remark 3.5,

(
∧

Γ ∧B(δ, ~x)) ∨
∨

∆ B
∨

∆ ∨B(δ + 1, ~x).

Then by conjunction introduction and the fact that (
∧

Γ∧B(δ, ~x))∨
∨

∆)B∧
Γ ∨

∨
∆,

((
∧

Γ∧B(δ, ~x))∨
∨

∆), (
∧

Γ∧B(δ, ~x))∨
∨

∆)B(
∨

∆∨B(δ+1, ~x))∧(
∧

Γ∨
∨

∆)

Moreover we have

PV ` (φ ∨ ψ) ∧ (σ ∨ ψ)→ (φ ∧ σ) ∨ ψ.

11

Hence, by using the contraction which leads to something PV-equivalent with
the left side, we have

(
∧

Γ ∧B(δ, ~x)) ∨
∨

∆ B (
∧

Γ ∧B(δ + 1, ~x)) ∨
∨

∆.

But since for δ 6= 0, the left and the right sides are PV-equivalent to

∀γ ≺ δ[(
∧

Γ ∧ A(γ, ~x)) ∨
∨

∆]

and
∀γ ≺ δ + 1[(

∧
Γ ∧ A(γ, ~x)) ∨

∨
∆]

respectively, for δ 6= 0 we have

∀γ ≺ δ[(
∧

Γ ∧ A(γ, ~x)) ∨
∨

∆] B ∀γ ≺ δ + 1[(
∧

Γ ∧ A(γ, ~x)) ∨
∨

∆]

hence by strong gluing we will have

∀γ ≺ 1(
∧

Γ ∧ A(1, ~x)) ∨
∨

∆] B (
∧

Γ ∧ A(θ, ~x)) ∨
∨

∆]

Since the left side is PV-equivalent to (
∧

Γ ∧ A(0, ~x)) ∨
∨

∆] we have

(
∧

Γ ∧ A(0, ~x)) ∨
∨

∆] B (
∧

Γ ∧ A(θ, ~x)) ∨
∨

∆]

By assumption we have Γ B A(0, ~x),∆ and since Γ B
∧

Γ by propositional
rules

Γ,Γ B (
∧

Γ ∧ A(0, ~x)),∆

Since Γ,Γ is PV-equivalent to Γ, we have

Γ B (
∧

Γ ∧ A(0, ~x)) ∨
∨

∆

and by weak gluing

Γ B (
∧

Γ ∧ A(θ, ~x)) ∨
∨

∆]

and since the right side implies A(θ, ~x))∨
∨

∆ in PV we have ΓBA(θ, ~x),∆.

Lemma 3.8. (Negation and Implication Rules)

(i) If Γ B ∆, A then Γ,¬AB ∆.

(ii) If Γ, AB ∆ then Γ B ∆,¬A.

12

(iii) If Γ0 B ∆0, A and Γ1, B B ∆1 then Γ0,Γ1, A→ B B ∆0,∆1.

(iv) If Γ, AB ∆, B then Γ B ∆, A→ B.

Proof. For (i), since ΓB∆, A by conjunction application
∧

Γ∧¬AB (
∨

∆∨
A) ∧ ¬A. Since (

∨
∆ ∨ A) ∧ ¬A implies

∨
∆ we have

(
∨

∆ ∨ A) ∧ ¬AB
∨

∆

and hence by weak gluing Γ,¬AB ∆. The proof for (ii) is similar. For (iii)
and (iv), note that A → B and ¬A ∨ B are equivalent in PV and hence we
have A → B B ¬A ∨ B and ¬A ∨ B B A → B. Then by cut it is possible
to reduce (iii) and (iv) to the same things for ¬A∨B. But these claims are
provable by negation and disjunction rules.

Theorem 3.9. (Soundness) If Γ ∪ ∆ ⊆ ∀1 and TI(∀1,≺) ` Γ ⇒ ∆, then
there exists an α-flow from Γ to ∆.

Proof. We prove the lemma by induction on the length of the proof of
Γ(~x) ⇒ ∆(~x) using the induction rule mentioned in the Remark 2.8. Note
that the proof consists only of ∀1 formulas by definition.

1. (Axioms). If Γ(~x)⇒ ∆(~x) is a logical axiom then the claim is trivial.
If it is a non-logical axiom then the claim will be also trivial because all
non-logical axioms are provable in PV. Therefore there is nothing to prove.

2. (Structural Rules). These are derivable from the same rules available
in PV.

3. (Cut). See the Lemma 3.7.

4. (Propositional). The conjunction and disjunction cases are proved in
the Lemma 3.6. The implication and negation cases are proved in the Lemma
3.8.

5. (Universal Quantifier, Right). If Γ(~x) ⇒ ∆(~x),∀zB(~x, z) is proved
by the ∀R rule by Γ(~x) ⇒ ∆(~x), B(~x, z), then by IH, Γ(~x) B ∆(~x), B(~x, z).
Therefore, there exist an ordinal β and a formula H(γ, ~x, z) ∈ ∀1 such that
the conditions of the Definition 3.1 are provable in PV. Define β′ = β and
H ′(γ, ~x) = ∀zH(γ, ~x, z). Since H(γ, ~x, z) ∈ ∀1 we have ∀zH(γ, ~x, z) ∈ ∀1.
The other conditions to ensure that the new sequence is an α-flow from

13

∀z[
∧

Γ(~x)] to ∀z[B(~x, z) ∨
∨

∆] is a straightforward consequence of the fact
that if

PV ` ∀γ ≺ δH(γ, z, ~x)→ ∀γ ≺ δ + 1 H(γ, z, ~x),

then
PV ` ∀γ ≺ δ∀zH(γ, z, ~x)→ ∀γ ≺ δ + 1∀zH(γ, z, ~x).

Finally, note that Γ ∪ ∆ does not have a free z variable and hence ∀z[
∧

Γ]
and ∀z[B(~x, z) ∨

∨
∆] are equivalent to

∧
Γ and

∨
∆ ∨ ∀zB(~x, z), provably

in PV which completes the proof.

6. (Universal Quantifier, Left). If Γ(~x),∀zB(~x, z) ⇒ ∆(~x) is proved
by the ∀L rule by Γ(~x), B(~x, s(~x)) ⇒ ∆(~x), then since PV ` ∀zB(~x, z) →
B(~x, s(~x)), and

Γ(~x), B(~x, s(~x)) B ∆(~x),

we have
Γ(~x),∀zB(~x, z) B ∆(~x).

7. (Induction). See the Lemma 3.7.

And also like in the bounded case we have the completeness theorem:

Theorem 3.10. (Completeness) If Γ∪∆ ⊆ ∀1 and ΓB∆, then TI(∀1,≺) `
Γ⇒ ∆.

Proof. If there exists an α-flow from Γ to ∆ then it means that there exists
(H, β) such that

(i) PV `
∧

Γ(~x)↔ H(0, ~x).

(ii) PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H(γ, ~x)→ ∀γ ≺ δ + 1 H(γ, ~x)].

(iii) PV ` H(β, ~x)↔
∨

∆(~x).

Therefore, using induction on H(δ, ~x) we have

TI(∀1,≺) ` H(0, ~x)⇒ H(β, ~x),

and thus TI(∀1,≺) `
∧

Γ(~x)⇒
∨

∆(~x).

Therefore, we have the following corollary as the characterization of the
implications of the low complexity universal statements based on an ordinal-
length sequence of PV implications that can be also witnessed by the poly-
nomial time computable functions in PV.

14

Definition 3.11. Let A(~x, y) be a polynomial time computable predicate,
α be an ordinal with a polynomial time representation and β ≺ α. Then by
a PLS(≺β) program for A we mean the following data:

(i) An initial sequence of polynomial time functions ~i(~x),

(ii) A polynomial time predicate G(γ, ~x, ~z) which intuitively means that ~z
is a feasible solution for the input ~x,

(iii) A sequence of polynomial time functions ~N(γ, ~x, ~z),

(iv) A sequence of polynomial time functions q(γ, ~x, ~z),

(v) A polynomial time computable function p(~x, ~z).

such that:

(i) PV ` G(β, ~x,~i(~x)),

(ii) PV ` γ 6= 0→ q(γ, ~x, ~z) ≺ γ,

(iii) PV ` γ 6= 0→ [G(γ, ~x, ~z)→ G(q(γ, ~x, ~z), ~x, ~N(γ, ~x, ~z))],

(iv) PV ` G(0, ~x, ~z)→ A(~x, p(~x, ~z)).

By PLS(�β) we mean the class of all formulas ∀~x∃yA(~x, y) such that there
exists a PLS(�β) program for A.

Theorem 3.12. Let A(~x, y) be a polynomial time computable predicate and
T an arithmetical theory with the proof theoretic ordinal αT with a polynomial
time representation. Then T ` ∀~x∃yA(~x, y) iff there exists β ≺ αT and a
PLS(�β) program for A.

Proof. First it is clear that the existence of a PLS(�β) program for A implies
the existence of an α-flow from ∀y¬A(~x, y) to⊥ and hence T ` ∀y¬A(~x, y)→
⊥ which prove the claim. For the converse, assume that T ` ∀~x∃yA(~x, y)
whereA(~x, y) is quantifier-free in the language of PV. Then we have ∀y¬A(~x, y)B
⊥. Hence there exists (H, β) such that:

(i) PV ` ∀y¬A(~x, y)→ H(0, ~x).

(ii) PV ` ∀ 1 � γ ≺ β [∀δ ≺ γ H(δ, ~x)→ ∀δ ≺ γ + 1 H(δ, ~x)].

(iii) PV ` H(β, ~x)→ ⊥.

15

Since H ∈ ∀1 we have H(γ, ~x) ≡PV ∀~zG(γ, ~x, ~z) where G is quantifier-free.
On the other hand, all the conditions are provable in PV which means that we
can witness the existential quantifiers by polynomial time functions. Hence,
there are polynomial time functions Y (~x, ~z), ~Z(~x, ~z, δ), ∆(~x, ~z, δ) and ~W (~x)
such that:

(i′) PV ` ¬A(~x, Y (~x, ~z))→ G(0, ~x, ~z).

(ii′) PV ` ∀ 1 � γ ≺ β [∆(~x, ~z, δ) ≺ γ → G(∆(~x, ~z, δ), ~x, ~Z(~x, ~z, δ)) → δ ≺
γ + 1→ G(δ, ~x, ~z)].

(iii′) PV ` G(β, ~x, ~W (~x))→ ⊥.

Put δ = γ in (ii′), then we have

PV ` ∀γ ≺ β [(∆(~x, ~z, γ) ≺ γ → G(∆(~x, ~z, γ), ~x, ~Z(~x, ~z, γ))→ G(γ, ~x, ~z)].

Define

q(~x, γ, ~z) =

{
∆(~x, ~z, γ) if ¬G(~x, γ, ~z)

0 if G(~x, γ, ~z)

and ~i(~x) = ~W (~x). It is easy to see that this new data is a PLS(�β) program
for A.

We can use the ordinal PLS programs to characterize the total NP search
problems of any theory with the proof theoretic ordinal α.

Definition 3.13. By a total NP-search problem of a theory T , we mean all
consequences of T of the form ∀~x∃yA(~x, y) where A is a polynomial time

computable predicate and PV ` A(~x, y)→ |y| ≤ p(~|x|) where p is a polyno-
mial. We denote the class of all these formulas by TFNP(T) and the class
PLS(�β) ∩ TFNP(N) by PLSb(�β).

We believe that the notation system introduced in [2] actually provides
a polynomial time representation of the ordinal ε0. Given this fact, as a
corollary we will have:

Corollary 3.14. (i) ([1]) TFNP(PA) =
⋃
β≺ε0 PLSb(�β).

(ii) Let α be an ordinal and ε(α) be the least ε number after α with a
polynomial-time representation. Then

TFNP(PA + TI(α)) =
⋃

β≺ε(α)

PLSb(�β)

16

References

[1] A. Beckmann, A Characterisation of Definable NP Search Problems
in Peano Arithmetic, Logic, Language, Information and Computation,
16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24,
2009.

[2] A. Beckmann, S. R. Buss, C. Pollett, Ordinal Notations and Well-
Orderings in Bounded Arithmetic, Annals of Pure and Applied Logic
120(2002), 197-223.

[3] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986.

[4] S. A. Cook, Feasibly constructive proofs and the propositional calcu-
lus, in: Proceedings of the 7th Annual ACM Symposium on Theory of
Computing, (1975), pp. 83-97. ACM Press.

[5] H. Friedman and S. Sheard, Elementary descent recursion and proof
theory, Annals of Pure and Applied Logic 71 (1995) 145.

17

	Introduction
	A Bridge of Reductions
	Ordinal Flows
	References

