
Mathematical Structuralism

Amir Tabatabai

July 29, 2021

1 Category Theory

Definition 1.0.1. A category C is the following data:

• a colection of objects, denoted by ob(C),

• a collection of morphisms, denoted by Mor(C),

• for any morphism f ∈Mor(C), an object s(f) called the source of f ,

• for any morphism f ∈Mor(C), an object t(f) called the target of f ,

• for any object A ∈ ob(C), a morphism idA,

• for any two morphisms f, g ∈ Mor(C) such that s(f) = t(g), a mor-
phism f ◦ g,

satisfying the following properties:

• s(idA) = t(idA) = A,

• s(f ◦ g) = s(g) and t(f ◦ g) = t(f),

• f ◦ idA = f = idB ◦ f , if s(f) = A and t(f) = B,

• f ◦ (g ◦ h) = (f ◦ g) ◦ h.

For any f ∈ Mor(C), we summarize the data s(f) = A and t(f) = B by
f : A → B. For any two objects A,B ∈ ob(C) by C(A,B) or HomC(A,B),
we mean the collection of all morphisms f : A → B. A category is called
small if Mor(C) is a set. It is called locally small if HomC(A,B) is a set, for
any two objects A,B.

1

D

A B

C

h

f

g

i

j

k

if=ig=ih

jf=jg=jh

Philosophical Note 1.0.2. To have some informal interpretation in mind,
read objects as the entities of a given discourse and maps as the transforma-
tions between them, composition as the composition of the transformations
and the identity as the do-nothing transformation. Note that in a category,
an object is just an abstract node that bears no information except what is
encoded in the maps starting from or ending in the object itself. In this sense,
the only way to inspect an object is by using its behaviour in the context of
the other objects, other than that, it is just one abstract node.

Example 1.0.3. The collection of all sets as the objects and the usual func-
tions as the morphisms with the usual composition and identity constitutes
a category. This category is denoted by Set. If we restrict ourselves to the
finite sets, then the result is the category FinSet.

Example 1.0.4. The collection of all sets as the objects and the binary
relations R ⊆ A×B as the morphisms from A to B, together with the relation
composition as the composition and equality as the identity constitutes a
category. This category is denoted by Rel.

Example 1.0.5. (Discrete Categories) A category C is called discrete if it
only has the identity maps. Therefore, any set can be considered as a small
discrete category.

A B C

idA idB idC

Example 1.0.6. (Some Finite Categories) These are some finite categories:

0 :

2

1 : •

2 : • •

3 : • • •

Example 1.0.7. (Preorders) A small category C is called a preorder if for
any two objects A,B ∈ ob(C), the collection HomC(A,B) has at most one
element. Spelling out the definition of a category in this special case, a
preorder is actually a set, usually denoted by P with a binary relation ≤
⊆ P × P such that x ≤ x, for any x ∈ P and if x ≤ y and y ≤ z then
x ≤ z. There are many concrete examples of preorders. For instance, the set
of integers Z with its usual order is a preorder. This set with the divisibility
relation is another preorder. The prototype example of preorders is a set of
subsets of some set X with inclusion as the order.

•

• • •

• •

•

• • •

• • •

Remark 1.0.8. It is useful to think of preorders as the shadow of the
usual categories, reducing all transformations between two objects to just
one transformability between them. In the logical reading, this means that
we collapse all the proofs between two statements to one provability map.
Hence, in this sense logic can be considered as a special case of categories.

Example 1.0.9. (Monoids) A small category C is called a monoid if it has
exactly one object. Spelling out the definition of a category in this special
case, a monoid is actually a set, usually denoted byM with a binary operation

3

· : M ×M → M and an element e ∈ M such that e · x = x · e = x, for any
x ∈ M and x · (y · z) = (x · y) · z, for any x, y, z ∈ M . There are many
concrete examples of monoids. For instance, the set of natural numbers N or
R+ with their usual products are monoids. Moreover, any sets of endomaps
of some set X that includes the identity and is also closed under composition
is a monoid. This example is the prototype example of monoids.

Philosophical Note 1.0.10. A category is a combination of the two afore-
mentioned extreme cases, a preorder and a monoid. The first handles the
existence of different objects in a category and the second addresses different
maps between any two objects.

Exercise 1.0.11. Check with all the details that all the previously claimed
categories are actually categories.

Exercise 1.0.12. Show that the identity map of a given object is unique.

Now, it is reasonable to see the categorical formalization of some of the
notions we talked about in the first session.

Example 1.0.13. (Euclidean Geometry of the Plane) The collection of all
polygons P in R2 as the objects and fT : P → Q as maps, where fT is some
formal map assigned to a distance preserving function T : R2 → R2 such that
T [P] = Q, together with the usual composition and identity is a category.

Example 1.0.14. (The Geometry of Maxwell’s equations) The collection of
all the subsets U of the set of the lines going through the origin in R5 as
objects and fT : U → V , where fT is some formal map assigned to the
function T : R5 → R5 that preserves [x,y] = x0y0 +x1y1 +x2y2−x3y3−x4y4

and T [U] = V , together with the usual composition and identity is a category.

Example 1.0.15. (Vectors and tensors) The collection {v}v∈Rn as the ob-
jects and A : v → w as maps, where A is an n×n invertible matrix such that
Av = w, together the usual composition and identity is a category. More
generally, for any pair (p, q), the collection {T}T∈Rnp+q as the objects and
R : T → S as maps, where R is an invertible n× n matrix R such that

S
i′1,··· ,i′p
j′1,··· ,j′q

=
∑

i1,··· ,ip,j1,··· ,jq

(R−1)
i′1
i1
· · · (R−1)

i′p
ip
T
i1,··· ,ip
j1,··· ,jq R

j1
j′1
Rj1
j′1
· · ·Rjq

j′q
.

together with the usual composition and identity is a category.

Philosophical Note 1.0.16. A category can be interpreted in two different
ways. In its face, any category is just a structured graph interpretable as

4

a syntactic algebraic theory describing the behaviour of some arrows. How-
ever, it is also possible to interpret it in a more semantical and geometrical
manner. Here, there are two general approaches. The petit and the gros
interpretations. In the first interpretation, we read the objects as an admis-
sible family of models and maps as the structure preserving transformations.
This covers the following more specific interpretations:

• (Logical interpretation) Objects as the statements and maps as the
conditional proofs, i.e., the map f : A→ B is a proof for B, using the
assumption A,

• (Bourbaki interpretation) Objects as the structures of a given type and
morphisms as the structure preserving transformations,

• (Computer science interpretation) Objects as the data types and mor-
phisms as the computable transformations.

It is also possible to read the category itself as one huge model whose objects
are the admissible parts of the model that are small enough to get observed
and its maps are the admissible transformations between the parts. The
following is a specific example of such interpretation:

• Objects as the points of a space and maps as the paths between them,
i.e., a map f : A→ B is interpreted as a path from A to B.

• Objects as the subspaces of a space and morphisms as the spatial maps
between them.

• Objects as the linear subspaces of a linear space and morphisms as the
linear maps between them.

Example 1.0.17. For instance, a monoid is just a syntactical entity con-
sisting of a set together with a fixed element and a binary product satisfying
some properties. The interpretation reads the one object of the category as
a concrete set X, the morphisms as a set of concrete functions over X and
the identity and composition as their usual concrete counterparts. In this
sense, the interpretation tries to realize the abstract graph-like category by
concrete notions.

Here are two examples of the categories that admit both the petit and
gros interpretations:

Example 1.0.18. Let X be an infinite set and Fin(X) be the poset of all fi-
nite subsets of X with the inclusion as its partial order. As we have observed,

5

any preorder including (Fin(X),⊆) can be transformed to a category. Using
the petit interpretation, this category will be read as the category of some
sort of models, here the finite sets, while the gros interpretation reads it as
the category of the finite approximations of the “huge” set X.

Example 1.0.19. Consider the category FinVect, constituting of Rn, for
any n ∈ N, as the objects and the linear maps as the morphisms with the
usual identity and composition. This category can be interpreted both as
the category of all finite dimensional vector spaces (the models) or as the
category of all finite dimensional approximations of an infinite dimensional
vector space (the “huge” model).

Example 1.0.20. (Variable Sets) The collection of functions

A1

A0

f

as the objects and the morphisms α : f → g as the pair of functions (α0, α1),
where α0 : A0 → B0 and α1 : A1 → B1 such that α1f = gα0:

A1 B1

A0 B0

f

α1

α0

g

with the evident composition and identity, constitutes a category denoted
by Set→. Any object of the category can be interpreted as a variable set,
varying over the discrete structure of time {0 ≤ 1}. The set A0 is the set of
all the elements available at the moment t = 0 and the set A1 is the set of
the elements at the moment t = 1. Moving from t = 0 to t = 1, there are
three main possibilities. Either some elements is created or some elements
remain intact (up to some name change) or some of the distinct elements
in A0 become equal. These possible scenarios is formalized by a function f .
The elements outside the range of f are the new elements in t = 1, while the
elements in the range come from t = 0, with the latter two possible changes.
Any map between these variable sets is naturally a pair of two maps, each
for each moment of time, respecting the change of the sets through time.

6

Remark 1.0.21. In the previous example, there is nothing special about
the structure {0, 1} and it can be replaced by any other preorder or even by
any other small category. Generalizing the variable sets in this way leads
to very interesting conceptions of the incomplete sets growing over different
structures of time. It also leads to some new models of the usual classical set
theory. For that matter, it is enough to pick the variable sets and restrict
ourselves to a subclass of complete ones. It is not easy to define these com-
plete sets in one line. But to have an intuition, think about the variable sets
so complete that in each moment of time, the set in that moment is large
enough to have all the imaginable elements in that moment. For instance,
the Cohen forcing to prove the independence of the axiom of choice is just
the result of such a process: First setting a suitable structure to encode the
growth of time and then letting the sets vary on that structure to finally
harvest all the completed sets as a model of the usual classical set theory.

Example 1.0.22. (Dynamical Systems) The collection of functions

A

f

as the objects and the morphisms α : f → g as a function α : A → B such
that αf = gα

A Bα

f g

with the evident composition and identity constitutes a category, denoted by
Seta. Any object of this category can be interpreted as a dynamical system
consisting of a set A and a function f : A → A, encoding the dynamism of
the system. Of course, any map between the dynamic systems must be a
function from the base sets preserving the dynamism.

Example 1.0.23. (Quivers) Quivers are the directed multi-graphs as in the

7

following figure:

•

• •

formalized by

E V
t

s

The set V is the set of vertices, the set E is the set of the edges and the two
maps s, t : E → V are to encode the source and the target of any edge. The
quiver morphisms then are the pairs of two functions mapping the vertices
and the edges of the quivers, respecting the sources and the targets as in:

• • •

• •

Formally, the quiver morphisms are the pairs of two functions αV : V0 → V1

and αE : E0 → E1 commuting with the source and the target functions, i.e.,
αV s0 = s1αE and αV t0 = t1αE:

E0 V0

E1 V1

s0

t0

s1

t1

αE αV

Example 1.0.24. (2-quivers) How to formalize the higher-order geometrical
version of quivers as in the following figure?

8

α

β

A
B

Cqp

r

It is easy to follow the formalization of the quivers again: A set V of the
vertices, a set E of edges, and another set T of triangles with two maps
s, t : E → V to encode the source and the target of any edge and three face
maps f, g, h : T → E, to record the different faces of a triangle.

T E V
h

f

g
t

s

In the figure, V = {A,B,C}, E = {f, g, h}, T = {α, β}, canonical sources
and targets and f(α) = f(β) = p, g(α) = g(β) = q and h(α) = h(β) = r. For
morphisms, it is enough to have a triple (αV , αE, αT) such that αV : V0 → V1,
αE : E0 → E1 and αT : T0 → T1 commuting with the source, the target and
the face functions, i.e., the following diagram becomes commutative:

T0 E0 V0

T1 E1 V1

h0

f0
g0

t0

s0

t1

s1

h1

f1
g1

αE αVαT

Leaving the many examples we had, we are ready to introduce the first
categorical notion. We have seen that any map f : A → B can be inter-
preted as a transformation, changing the object A to the object B. Given
this interpretation, one natural question is that when this transformation is
reversible. Here is the categorical formulation:

Definition 1.0.25. A map f : A → B is called an isomorphism, if there
exists a morphism g : B → A such that fg = idB and gf = idA. This g is
called an inverse of f .

9

Exercise 1.0.26. Prove that the inverse of a map is unique. Hence, it is
well-defined to denote the inverse of f by f−1.

Exercise 1.0.27. Prove that idA : A→ A is an isomorphism and if f : A→
B and g : B → C are isomorphisms, then so is g ◦ f : A→ C.

Exercise 1.0.28. Prove that in Set, the isomorphisms are the bijective
maps. What are the isomorphisms in posets, monoids, Set→ and Seta?

Definition 1.0.29. (Groupoids and Groups) A groupoid is a category whose
morphisms are all isomorphisms. A group is a groupoid with just one object.
Spelling out the definition in this special case, a group is a monoid, usually
denoted by G, such that for any x ∈ G, there exists y ∈ G such that x · y =
y · x = e.

Example 1.0.30. The category of all sets and bijective maps as morphisms
with the usual composition and identity is a groupoid.

All the Examples 1.0.13, 1.0.14, 1.0.15 are groupoids.

Example 1.0.31. The prototype example of groups is a set of invertible
functions over some set X that includes the identity and is closed under
composition and inversion.

Philosophical Note 1.0.32. Groupoids can be interpreted as the formal-
izations of equality, where f : A → B is read as a proof or witness to show
why A is equal to B. With this interpretation, it is easy to see that the
group axioms are the natural conditions the reflexivity, the symmetry and
the transitivity of the equality induce on the witnesses.

Definition 1.0.33. A function f : G→ H is called a group homomorphism
if it preserves the product. The category of groups and homomorphisms is
denoted by Grp.

1.1 A digression: the representation theorems and the
baby Erlangen program

1.1.1 Representation theorems

We have explained that how any category can be interpreted as the collection
of the different ways that we can inspect a huge model. Is it possible to make
this interpretation more formal? Let us begin with the two easy cases: the
posets and the monoids. In theses case, we should ask if any poset is a
poset of subsets of a concrete set and if any monoid is a monoid of concrete
functions over a concrete set. The answer in both cases is positive.

10

Theorem 1.1.34. (Cayley’s Representation Theorem) Any monoid (group)
is isomorphic to a monoid (group) of concrete functions over a concrete set.

Proof. Let M be a monoid. Define the set X as the monoid itself and consider
N as the set of all functions fm : X → X defined by fm(x) = mx, for m ∈M .
It is easy to see that fe = id, since e is the left identity and fmn = fm ◦fn(x),
since the product is associative. Hence, the map F : M → N defined by
F (m) = fm is a homomorphism. By definition, F is clearly onto. It is also one
to one, because if F (m) = F (n), then fm = fn which implies fm(e) = fn(e).
Hence, by the fact that e is also the right identity, we have m = n. For
groups, note that if M is also a group, then fm−1 = f−1

m . Therefore, the set
N is also a group.

Theorem 1.1.35. Any poset is isomorphic to a poset of subsets of a concrete
set.

Proof. Let (P,≤) be a poset. Set X as the set of all the subsets of P of the
form Ia = {x ∈ P | x ≤ a}. Define F : P → X by F (a) = Ia. Note that if
a ≤ b then F (a) ⊆ F (b), because if x ≤ a, then x ≤ b, by the transitivity of
the order. F is clearly onto. It is also one to one, because if F (a) = F (b),
then Ia = Ib. By reflexivity, a ≤ a. Hence, a ∈ Ia = Ib. Therefore, a ≤ b. By
a similar argument, b ≤ a. Therefore, by anti-symmetry a = b. This means
the inverse function G : X → P sending Ia to a is well-defined. To show that
G preserves the order, we have to show that if F (a) ⊆ F (b), then a ≤ b.

Remark 1.1.36. It is worth mentioning that the previous theorems need
and also use all the conditions in the definition of a monoid and a poset,
respectively. Therefore, they imply that the conditions are necessary and
sufficient to capture the abstract behaviour of a family of functions over a
set, including the identity and being closed under composition and a set of
subsets of a given set, respectively.

As the next natural step, we generalize the previous two cases to any
category:

Theorem 1.1.37. Any small category is “isomorphic” to a category of con-
crete sets with concrete functions.

Proof. Let C be category. To any object A of C assign the set A∗ = {g :
B → A | g ∈ Morph(C)} and to any map f : A → B, the function f∗ :
A∗ → B∗ defined by f∗(g) = fg. Now consider the category D consisting of
A∗ as objects and f∗ : A∗ → B∗ as morphisms. Then, defining F : C → D
by sending A to A∗ and f : A → B to f∗ : A∗ → B∗ we can reach an

11

isomorphism. It is easy to see that F preserves composition and identity.
F is also one-to-one on objects and morphisms. For objects the claim is
obvious. For morphisms, if f, g : A → B and f∗ = g∗ : A∗ → B∗, then since
idA ∈ A∗ we have f∗(idA) = g∗(idA), which implies f = g. Now, it is easy
to define the converse of F and check that it the respects identity and the
composition.

Now, it is natural to extend the previous representation theorems to all
categories to see if it is possible to represent any category as a category of sets
together with some concrete functions as morphisms? This time the answer
is negative and its proof is beyond the scope of this section. However, it
is worth mentioning that this negative result seriously affects the universal
applicability of Bourbaki’s set-based approach to structures.

1.1.2 Baby Erlangen program

So far, we have seen that any monoid (group) is actually a monoid (group)
of concrete functions over a concrete set. Therefore, any group is a group of
transformations over some set. Now, following Klein’s Erlangen program, it
is reasonable to ask that given the group of transformations, what different
geometries it may be possible.

Definition 1.1.38. Let X be a set and Aut(X) be the group of all per-
mutations of X, i.e., the bijections from X to itself. A homomorphism
from F : G → Aut(X) is called an action of G on X. Sometimes, for
simplicity, we write gx for F (g)(x). Two actions F : G → Aut(X) and
F ′ : G→ Aut(Y) are called isomorphic if there exists a bijection φ : X → Y
such that F (g)φ = φF ′(g), for any g ∈ G.

Example 1.1.39. The trivial example of an action of the group G is the
action of G on itself, defined by F : G → Aut(G), where F (g) = fg and
fg(x) = gx. For a more sophisticated example, let us do the trivial example in
a modular manner. Let N be a subset of G closed under some operations that
we meet later. Then, we call two elements f, g ∈ G congruent modulo N if
f−1g ∈ N . It is reasonable to expect that the congruence to be an equivalence
relation and if we denote the set of the equivalence classes by G/N , the
function G → Aut(G/N) defined by g[h] = [gh] becomes an action. These
expectations are not automatically true. To make them true, N must be
closed under product, inverse and all the operations in the form x 7→ g−1(x)g,
for any g ∈ G.

Example 1.1.40. The trivial example of an action of the group G is the
action of G on itself, defined by F : G → Aut(G), where F (g) = fg and

12

fg(x) = gx. For a more sophisticated example, let us do the trivial example in
a modular manner. Let N be a subset of G closed under some operations that
we meet later. Then, we call two elements f, g ∈ G congruent modulo N if
f−1g ∈ N . It is reasonable to expect that the congruence to be an equivalence
relation and if we denote the set of the equivalence classes by G/N , the
function G → Aut(G/N) defined by g[h] = [gh] becomes an action. These
expectations are not automatically true. To make them true, N must be
closed under product, inverse and all the operations in the form x 7→ g−1xg,
for any g ∈ G.

In group theory literature, there is a characterization theorem, stating
that any G-action is the “disjoint union” of the G-actions introduced in
Example 1.1.40. We will repeat the usual argument here. Let F : G →
Aut(X) be a G-action. Define the reachability relation R on X by (x, y) ∈ R,
if there exists g ∈ G such that gx = y. It is not hard to prove that the relation
R is an equivalence relation, using the fact that G is actually a group. Each
equivalence class inherits a G-action from the original G-action F . The
reason simply is that if x is an element in the class and g ∈ G, the result of
the action, namely gx, is in the same class as x. Finally, we will show that
each of these restricted G-actions on the equivalence classes is isomorphic to
a G-action of the type introduced in the Example 1.1.40. Let Y be one of
these classes. Set an arbitrary element o ∈ Y :

• g

g−1h

Y

o

y
h

•

Define N = {g ∈ G | go = o}. It is easy to see that N has the required closure
properties, namely the closure under product, inverse and the operations

13

x 7→ g−1xg, for any g ∈ G. Define φ : G/N → Y by φ([g]) = go. The
function is well-defined and one-to-one, because φ([g]) = φ([h]) iff go = ho
iff g−1ho = o iff g−1h ∈ N iff [g] = [h]. It is not hard to see that φ is
an isomorphism between the G-actions. The important thing is that the
function is surjective, because any y in the class is reachable from o and
hence go = y, for some g ∈ G.

Remark 1.1.41. Note that the above construction has some unsatisfactory
elements. First, some of its parts are chosen in a non-canonical manner,
like the element o ∈ Y . These choices do not affect the construction, but
makes the construction tricky at best and resistant to generalizations at
worst. Secondly, although the notion of action is equivalently meaningful for
monoids, the above construction seriously uses the fact that G is a group
and hence it does not suggest any way to handle the monoid case, as well.

To overcome the issues mentioned above, let us provide a characteriza-
tion theorem again. This time, we use the canonical approach consisting of
simple, intuitive and justifiable steps that uses no ingredient except what it
is essentially required. As a result, this time, everything is more transparent
so much so that we can even address the case of monoids.

Definition 1.1.42. Let X be a set and End(X) be the monoid of all func-
tions on X. A homomorphism F : M → End(X) is called an action of M on
X or an M -action, for short. Sometimes, we write mx for F (m)(x), for sim-
plicity. Two M -actions F : M → End(X) and F ′ : M → End(Y) are called
isomorphic, if there exists a bijection φ : X → Y such that F (m)φ = φF ′(m),
for any m ∈M .

The trivial example of an M -action is the action of M on itself, defined
by F : M → End(M), where F (m) = fm and fm(x) = mx. To provide
a characterization theorem, we will introduce two methods to construct the
new M -actions from the old. First, the “disjoint union”. Let {Fi : M →
End(Xi)}i∈I be a family of M -actions. Define X =

∑
i∈I Xi = {(i, x) | i ∈

I, x ∈ Xi} with the fibrewise M -action m(i, x) = (i,mx). This is clearly an
M -action:

14

• f
x

y•
X1

X0
•
z

w
•

g

The second method, the “quotient” operation, picks one M -action and glue
some of its elements together to get a new one. More precisely, let F :
M → End(X) be an M -action and R ⊆ X ×X be a set of the pairs of the
elements of X that we want to glue to each other. It is possible to provide
the minimal M -action in which these intended equalities are forced to hold.
It is enough to define the equivalence relation ∼ as the least equivalence E,
extending the relation R and respecting the M -action, i.e., if (x, y) ∈ E then
(mx,my) ∈ E, for any m ∈ M . (Why does such an equivalence relation
exist?) Then, define Y as the set of the equivalence classes with respect to
∼ and define m[x] = [mx]. (Why is it well-defined, i.e., independent of the
representative of the classes?)

•
m

x

mx• X

z•

mz
•m

•
y

15

To prove that any action is constructible from the basic action via disjoint
union and quotient operations, let F : M → End(X) be an arbitrary M -
action. Then, define Z as the quotient of the disjoint union Y =

∑
x∈XM

by the set {((x,m), (y, n)) ∈ Y 2 | mx = ny} and define φ : Z → X by
φ[(x,m)] = mx. It is clearly well-defined and one-to-one. It is also surjective
since φ([(x, e)]) = x. It will be easy to define the converse function and show
that it is an M -action.

Now, again, it is a natural question that if it is possible to generalize the
aforementioned characterization to any small category. The answer is again
positive. But we first need the right notions of an action (realization) and
isomorphism between these actions (realizations), for categories. The first is
called a functor and the second is natural isomorphism. We will spend some
time on these notions to set the scene to provide a characterization theorem
for the small categories.

1.2 new categories from the old

Example 1.2.43. (Opposite Category) Let C be a category. By its dual
(opposite), Cop, we mean a category with same collection of objects and
morphisms as of C with the source and the target assignment swapped and
f ◦′ g = g ◦ f :

A A

C : Cop :

B C B C

g gh=f◦g

f f

h=g◦′f

Exercise 1.2.44. Show that if f : A→ B is an isomorphism in C, then it is
also an isomorphism in Cop. Use this fact to show that the dual of a groupoid
is also a groupoid.

Example 1.2.45. (Arrow Category) Let C be a category. Then, by the
arrow category C→, we mean the category with the morphisms of C as the
objects and the pair of morphisms (α0, α1) : f → g of C as the morphism,
where α0 : A0 → B0 and α1 : A1 → B1 such that gα0 = α1f :

16

A0 B0

A1 B1

α0

f

α1

g

Example 1.2.46. (Slice Category) Let C be a category and A be an object.
Then, by the slice category or over category C/A, we mean the category
with the morphisms f : B → A of C with the target A as the objects and
α : f → g as the morphism, where α : B → C is a morphism in C such that
gα = f :

B C

A

α

f g

As a concrete example, note that in any poset (P,≤), the slice P/a is just
P restricted to the elements less than or equal to a. As another example,
observe that Set/{0, 1} is actually the category of partitioned sets into two
parts, i.e., (A,A0, A1), where A = A0∪A1 and A0∩A1 = ∅ and functions, i.e.,
f : (A,A0, A1)→ (B,B0, B1), where f : A→ B is a function and f [Ai] ⊆ Bi,
for any i ∈ {0, 1}. The reason simply is that any map m : A → {0, 1} is
nothing but the partition of A into m−1(0) and m−1(1) and any commutative
triangle means respecting these parts.

Example 1.2.47. (Coslice Category) Let C be a category and A be an object.
Then, by the coslice category or under A/C, we mean the category with the
morphisms f : A → B of C with the source A as the objects and α : f → g
as the morphism, where α : B → C is a morphism in C such that g = αf :

A

B Cα

f g

17

As a concrete example, note that in any poset (P,≤), the coslice a/P is
just P restricted to the elements greater than or equal to a. As another
example, observe that {0}/Set is actually the category of pointed sets, i.e.,
(A, a), where a ∈ A and pointed functions, i.e., f : (A, a) → (B, b), where
f : A → B is a function and f(a) = b. The reason simply is that any
map {0} → A is nothing but the choice of an element and any commutative
triangle means respecting this chosen element.

Example 1.2.48. (Product of Categories) Let C and D be two categories.
Then by C × D, we mean the category with the pairs (C,D) as the objects,
where C and D are the objects of C and D, respectively and the pair (f, g) :
(C,D) → (E,F) as the morphisms, where f : C → E and g : D → F are
morphisms in C and D, respectively:

(C,D) (E,F)
(f,g)

Note that this construction generalizes the product of monoids and groups
on the one hand and the product of sets on the other.

Example 1.2.49. (Coproduct of Categories) Let C and D be two categories.
Then by C +D, we mean the category with (0, C) and (1, D) as the objects,
where C and D are the objects of C and D, respectively and (0, f) : (0, C)→
(0, C ′) and (1, g) : (1, D) → (1, D′) as the morphisms, where f : C → C ′

and g : D → D′ are morphisms in C and D, respectively. Note that this
construction generalizes the disjoint union of sets.

1.3 Functors and Natural Transformations

To find the natural formalization of realizations for categories, note that a
realization of a monoid (or a group) is an assignment that maps the only ab-
stract object of the monoid (or the group) to a concrete set and any abstract
morphism (i.e., the elements of the monoid) to a concrete function on the
set, respecting the identity and the composition:

Definition 1.3.50. (Functors) Let C and D be two categories. By a functor
F : C → D, we mean a pair of two assignments F0 and F1, such that F0

maps any object A of C to an object of D, denoted by F0(A) and F1 maps
any morphism f of C to a morphism in D, denoted by F1(f), respecting the
source, the target, the identity and the composition operations:

18

A F (A)

B C F (B) F (C)

h

idA

i

f

F

g

F (h)

F (f)=F (g)

F (i)

F (idA)=idF (A)

Usually, for simplicity, one drops the subscript in F0 and F1 and denote both
by F .

Philosophical Note 1.3.51. It is possible to interpret a functor F : C → D
as a way to interpret the discourse C in the discourse D, as a way to realize
C in D, as a C-indexed family in D or a C-variable object in D. For instance,
any M -action F : M → End(X) is a functor M → Set, realizing the only
abstract object of M by X and the morphisms of M by real functions over
X, according to F . As another example, it is possible to see that any variable
set in Set→ is actually a functor from 2 to Set, realizing the abstract graph

2 : • •

by the concrete sets and functions. Similarly, any quiver is a functor from
the category

• •

to Set, realizing the abstract points as concrete sets of vertices and edges
and abstract arrows as concrete source and target functions. For an example
of the other interpretation, we have already seen that any object in Set→ can
be read as a variable set over the structure of time, encoded by the category
2.

Example 1.3.52. Any homomorphism between two monoids is a functor.
Any order-preserving map between two posets is a functor. It is worth men-
tioning that functors are the right common generalization of composition-
and order-preserving maps.

Example 1.3.53. The assignment mapping any set A to its powerset P (A)
and any function f : A → B to the function P (f) : P (A) → P (B), defined

19

by P (f)(S) = f [S] = {f(a) | a ∈ S} is a functor from Set to itself. Similarly,
the functor P ◦ : Setop → Set, mapping any set A to its powerset P (A) and
any function f : A → B to the function P ◦(f) : P (B) → P (A), defined by
P ◦(f)(S) = f−1(S) = {a ∈ A | f(a) ∈ S} is a functor.

Example 1.3.54. The assignment mapping any object (A,B) in Set× Set
to A × B and any morphism (f, g) : (A,B) → (C,D) of Set × Set to the
function f × g : A × B → C ×D defined by [f × g](a, b) = (f(a), g(b)) is a
functor.

Example 1.3.55. The assignment mapping any object (A,B) in Set× Set
to A + B = {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B} and any morphism (f, g) :
(A,B)→ (C,D) of Set×Set to the function f +g : A+B → C+D defined
by [f + g](0, a) = (0, f(a)) and [f + g](1, b) = (1, g(b)) is a functor.

Example 1.3.56. (Exponentiation) Let A be a fixed set. Define the assign-
ment (−)A : Set → Set, mapping a set B to BA = {f : A → B} and a
function f : B → C to a function fA : BA → CA defined by fA(g) = fg.
Then, (−)A is a functor, generalizing the finite power functor A 7→ An gener-
ated by the iteration of the product functor. Similarly, it is possible to define
the functor A(−) : Setop → Set, mapping a set B to AB = {f : B → A} and
a map f : B → C to a function Af : AC → AB defined by Af (g) = gf . Then,
A(−) is a functor, generalizing the functor P ◦ = 2(−). Any combination of
the product, the sum, and the functor (−)A, for different fixed sets A such
as F (X) = A0 ×XN0 +A1 ×XN1 + · · ·+Ak ×XNk is a polynomial functor.
The notion of polynomial functor, though, is more general than this.

Remark 1.3.57. (Algebras) Algebras are sets equipped with some opera-
tions that have some properties. For instance, a monoid is a set M with an
element e and a binary operation such that the latter is associative and the
former is the identity element for the latter. The operational data (not the
properties) can be stored in one function a : Fm(M)→ M , where Fm(X) =
1 + X2 is a functor, storing the type of the algebra and a(0, ∗) = e and
a(1,m, n) = mn, storing the operations. By type we mean the number and
the arity of the operations (in the monoid case it is one nullary and one binary
operations). Some examples may be helpful here. A group (G, e, (−)−1, ·) is a
set G with a function a : Fg(G)→ G, where Fg(X) = 1+X+X2, a(0, ∗) = e,
a(1,m) = m−1 and a(2,m, n) = mn; the basic structure of natural numbers,
i.e., (N, s, 0) is a function a : Fi(N) → N, where Fi(X) = 1 + X, a(0, ∗) = 0
and a(1, n) = s(n) = n + 1 and the structure (W, s0, s1, ε) of binary strings
can be described by a function a : Fs(W)→W, where Fs(X) = 1 +X +X,
a(0, ∗) = ε, a(1, w) = s0(w) = w0 and a(2, w) = s1(w) = w1. To have a

20

general notion of algebra, we use a functor F : Set → Set to formalize the
type of the algebra and then by an F -algebra, (an algebra of type F), we
mean a function a : F (A)→ A. This also suggest a generalization for homo-
morphisms. Generally, a homomorphism is a function that preserves all the
operations in the type of the algebra. With our generalization here, an F -
algebra homomorphism from the F -algebra aA : F (A)→ A to the F -algebra
aB : F (B)→ B is a function f : A→ B such that

F (A) A

F (B) B

fF (f)

aA

aB

It is easy to check that in the familiar cases it really captures the notion of
homomorphism.

Example 1.3.58. (Forgetful Functors) Sometimes, we have a category and
we will forget some of the structures that the objects posses and the maps
preserve, to think somewhat loosely about the same data that we originally
had. Let us provide three examples of such phenomenon. First, the forgetful
assignment mapping any group G and any homomorphism f : G → H in
Grp to themselves in Set, forgetting that there is the group structure there,
is a functor. For the second example, take the two forgetful functors from
Set→ to Set, forgetting that a variable set actually varies, by making two
snapshots of a variable set in the two possible moments. More precisely,
for any i ∈ {0, 1}, define pi : Set→ → Set, by mapping any f : A0 → A1

to Ai and any α : f → g to αi : Ai → Bi, where f : A0 → A1 and
g : B0 → B1. Both p0 and p1 are functors. Finally, as the third example,
define V : Quiv→ Set, by mapping any quiver to its set of elements and any
quiver morphism to its underlying function on vertices. This V is a functor.
We can do the same thing to define the edge functor E.

Example 1.3.59. (Free Functors) In some cases, we want to put a struc-
ture on an object in a free way, meaning we want it to be free from any
unexpected relations. For instance, let X be a set. Then, F (X) as the set
of all finite sequences of the elements of X (including the empty sequence)
with concatenation is a free-monoid constructed from X. It is a monoid,
since concatenation is associative and the empty sequence is an identity. It
is free because we add all possible products of the elements of X, and there
is no non-trivial relation on the elements of F (X), except what the monoid

21

structure dictates. This assignment F gives rise to a functor Set → Mon,
mapping any set X to the monoid F (X) and any map f : X → Y to the
homomorphisms F (f) : F (X)→ F (Y) such that F (f)(σ) = f(σ0) · · · f(σn),
for any finite sequence σ = σ0σ1 · · · σn.

Example 1.3.60. Let C be a category. Then, the identity functor idC : C →
C mapping any object and morphism to itself is a functor. Moreover, if A is
a fixed object in C, the constant assignment ∆A : C → C, mapping all objects
to A and all morphisms to identity is another functor.

Example 1.3.61. Let C be a groupoid. Then, the inverse assignment inv :
C → Cop, defined by inv(A) = A and inv(f) : B → A as inv(f) = f−1, for
f : A→ B, is a functor.

Example 1.3.62. Let C be a locally small category. The assignment HomC :
Cop × C → Set, defined by HomC(A,B) = {f : A → B | f ∈ Mor(C)} and
HomC(g, h) : HomC(A,B)→ HomC(C,D) as HomC(g, h)(f) = hfg, for any
f : A → B, g : C → A and h : B → D, is a functor. This functor captures
the whole structure of the category C.

Example 1.3.63. Let C be a locally small category. For any object A
in C, there is a canonical functor HomC(A,−) : C → Set, capturing the
behavior of the maps above A. It is defined by B 7→ HomC(A,B) and
Hom(A, f) : HomC(A,B) → HomC(A,C) as HomC(A, f)(g) = fg, for any
f : B → C. Similarly, there is a canonical functor yA = HomC(−, A) : Cop →
Set, capturing the behavior of the maps below A. It is defined by yA(B) =
HomC(B,A) and yA(f) : HomC(C,A) → HomC(B,A) as yA(f)(g) = gf ,
for any f : B → C. These functors are the localized version of the concrete
representation we have introduced for the small categories, mapping an object
A to A∗ = {g : C → A | g ∈ Mor(C) and f : A → B to f∗ : A∗ → B∗ by
f∗(g) = fg. The current act of localization has no point except to handle the
size issue that in a locally small category the collection A∗ is not necessarily
a set.

Example 1.3.64. Let C be a category and f : A→ B be a morphism. The
assignment mapping an object g : X → A in C/A to the object fg : X → B
in C/B and mapping to themselves is a functor from C/A to C/B. We denote
this functor by f∗ : C/A→ C/B.

Example 1.3.65. Let C, D and E be some categories and F : D → E and
G : C → D be two functors. Then, the composition FG : C → E with the
canonical definition is also a functor.

22

Note that all small categories with functors as morphisms constitute a
category. We denote this category by Cat. The same is true for the category
of all small groupoids that we denote by Groupoid.

Example 1.3.66. Let C be a small category. Then, the assignment mapping
an object A to the category C/A and morphism f : A → B to the functor
f∗ : C/A→ C/B is a functor from C to Cat.

Exercise 1.3.67. Prove that functors preserve isomorphisms, i.e., if F : C →
D is a functor and f : A → B is an isomorphism in C, then F (f) : F (A) →
F (B) is an isomorphism in D.

Definition 1.3.68. A functor F : C → D is called faithful if for any f 6= g :
A→ B, we have F (f) 6= F (g) : F (A)→ F (B). In other words, F is faithful
if F : HomC(A,B) → HomD(F (A), F (B)) is one-to-one. It is called full if
any h : F (A)→ F (B) is equal to F (f) for some f : A→ B. In other words,
F is full if F : HomC(A,B)→ HomD(F (A), F (B)) is surjective.

Example 1.3.69. An order-preserving map f : (P,≤P)→ (Q,≤Q) between
two posets is always faithful. It is full iff it is an order-embedding, i.e.,
a ≤P b iff f(a) ≤Q f(b). A homomorphism between two monoids is faithful
iff it is one-to-one and it is full iff it is surjective. The forgetful functor
U : Grp→ Set is faithful but not full.

Exercise 1.3.70. The product functor (−) × (−) : Set × Set → Set is
faithful but not full.

Exercise 1.3.71. Let f : A → B be a morphism in a category C. When is
f∗ : C/A→ C/B faithful? When is it full?

Exercise 1.3.72. Let C be a locally small category. Is HomC(−,−) : Cop ×
C → Set full or faithful?

Exercise 1.3.73. Let C be a locally small category. Is HomC(−,−) : Cop ×
C → Set full or faithful?

Exercise 1.3.74. Let F : C → D be a full and faithful functor. Show that
if F (A) and F (B) are isomorphic, then so are A and B.

Example 1.3.75. (Baby Schemes) Let R be the category of all subsets R of
C, including 1 and closed under addition and multiplication with morphisms
as the functions that preserve the element 1 and these two operations. Let
I(~x) = I(x0, . . . , xn) be a set of equations between polynomials in variables
x0 . . . , xn with coefficients in Z. For instance, we can take I(x0, x1) = {x2

0 +

23

x2
1 = 1}. Define the assignment VI : R → Set by mapping R to VI(R) =
{~r ∈ Rn+1 | all equations in I(~x) hold for ~x = ~r} and any f : R → S to the
function VI(f) : VI(R) → VI(S) defined by VI(f)(~x) = (f(x0), . . . , f(xn)).
The function VI(f) is well-defined, because when ~r is the root for an equation,

then so is ~f(r), simply because f preserves 1, addition and multiplication.
This assignment is clearly a functor. It is reasonable to think of VI as a
method to keep track of all the possible realizations (models) of the set of
equations in all possible worlds. It is the semantical way to capture the
syntactic data I(~x).

Remark 1.3.76. Note that VI is not a full and faithful semantical apparatus.
For instance, for the different sets of equations I(x) = {x = 0} and J(x) =
{x2 = 0}, we have VI(R) = VJ(R) = {0}.

Example 1.3.77. (Fundamental set Π0) Let Quiv be the category of quivers
(directed multi-graphs). For any quiver Q, define the equivalence relation ∼
on V (Q) by v ∼ w iff there exist two paths of edges in E(Q) (including the
paths with length zero), one starting from v and ending in w and one starting
from w and ending in v. (Why is it an equivalence relation?) Define the
assignment Π0 : Quiv → Set on objects by Π0(Q) as the set of equivalence
classes in V (Q) and on quiver morphism f : Q→ Q′ by Π0(f)([v]) = [f(v)].
(Why is it well-defined?) The assignment Π0 is a functor. It measures how
connected the quiver is. It is also possible to use a more refined version in
which the functor returns not only the set Π0(Q) but also its underlying
order, defined by [v] ≤ [w] iff there exists a path from v to w. (Why is it a
well-define poset order?) It is not hard to see that Π0(f) also respects this
order. Denote this functor by Πd

0 : Quiv→ Poset.

Remark 1.3.78. Note that Π0 is not full and faithful as it sends any two
connected quivers to a singleton. The same also holds for Πd

0.

Philosophical Note 1.3.79. Non-full-and-faithful functors provide some
room to simplify the original object A in a discourse C to a simpler object
F (A) in D. When F (A) is “computable” in a relatively easy way, F can
be useful in showing that two given objects in C are not isomorphic. The
strategy is as follows: Assume that an isomorphism f : A→ B exists between
two given objects A and B. Then, by the application of the functor F , we
must have an isomorphism between F (A) and F (B) in D. Now, compute
both F (A) and F (B) and show that they can not be isomorphic. The basic
version of this argument is when we find an “easy-to-check” property P such
that it is invariant under the given isomorphisms and A and B disagree on
this property P . For instance, to prove that the two groups (Z,+) and (Q,+)

24

are not isomorphic, it is enough to observe that the latter has the property
P = ∀x∃y(x = y+ y), while the former lacks it. Note also that P is a group-
theoretic property, meaning it is invariant under all group isomorphisms.
This argument is a special kind of the argument above, using a groupoid C
of objects together with their isomorphisms and the functor P : C → {0, 1}
to capture the invariant-under-isomorphism property P , where {0, 1} is a
discrete category encoding true and false values.
It is also possible to have more complex examples, using more sophisticated
categories for D. For instance, consider the following quivers:

• • •

Q : Q′ :

• • • •

They are not isomorphic, since the forgetful functor V : Quiv → Set maps
Q to a three element set (the set of vertices) and Q′ to a four element set.
These two sets can not be isomorphic in Set. Hence, Q and Q′ are not
isomorphic as quivers. Note that the functor V is easy to compute and
this is the key element that makes it useful here. Moreover, it is important
to observe that showing two sets are not isomorphic boils down to an easy
cardinality argument. However, as the functor is not faithful, it has its own
blind spots. For instance, in the following situation

• •

P : P ′ :

• • • •

both functors V and E are blind to the difference. In such cases, it is reason-
able to use more sophisticated functors. But, remember, they must remain
relatively easier to handle than the original object. In this case, we use the
functor Π0. Since, Π0(P) is a three element set while Π0(P ′) is just a single-
ton, P and P ′ are not isomorphic as quivers. As the last example, consider

25

the following two quivers:

• • • •

R : R′ :

• • • •

Here, all the three functors V , E and Π0 agree. However, Πd
0(R) is a lozenge

while Πd
0(R′) is just a line.

As another example, consider the category R of Example 1.3.75. To show
that Q and R are not isomorphic in R, it is enough to consider the forgetful
functor F : R → Set, since F (Q) is countable, while F (R) is uncountable
and they can not be isomorphic as sets. However, to show that R and C are
not isomorphic in R, the forgetful functor does not work, as the underlying
sets have equal cardinality. In this case, it is useful to have the more refined
functor VI , for I(x) = {x2 + 1 = 0}. Here, we have VI(R) = ∅, while
VI(C) = {i,−i} and these two sets are not isomorphic.

Example 1.3.80. (Fundamental Groupoid Π1) Let Top be the category of
all topological spaces with continuous functions. For any topological space
X, consider the set of paths in X from x to y, i.e., all continuous functions
p : [0, 1] → X such that p(0) = x and p(1) = y, denoted by PathX(x, y).
First, note that it is again possible to define the functor Π0 : Top→ Set by
setting Π0(X) as X up to the equivalence ∼ defined by x ∼ y if there exists
a path in X from x to y. The function Π0(f) is also defined canonically as
before. The functor Π0 measures how connected the space X can be. Now,
to define another functor, lift these considerations one level up, i.e., define
the equivalence relation ∼ on PathX(x, y) by p ∼ q iff there exists a surface
in X filling between p and q, i.e., a continuous function H : [0, 1]× [0, 1]→ X
such that H maps {0} × [0, 1] to x, {1} × [0, 1] to y and the restrictions of
H to [0, 1] × {0} and [0, 1] × {1} becomes p and q, respectively. (Why is it
an equivalence relation?)

26

•

•

p

q

X

•
•

r

s

z

w x

y

H

In the figure, the image of H is depicted by the green area and hence
p ∼ q, while r and s can not be in the same class as the white hole in
the middle prevents any surface between r and s. Now, define Π0(X) as
the groupoid with the objects as the elements of X, the morphisms from x
to y as PathX(x, y) and composition and identity as the canonical pasting
paths to each other and the class of the constant path. (Why is composition
well-defined? Why is the constant map the identity morphism?) Define the
assignment Π1 : Top → Groupoid on objects by Π1(X) and on a mor-
phism f : X → Y by the functor Π1(f) defined by Π1(f)(x) = f(x) and
Π1(f)([p]) = f [p]. (Why is it well-defined?) The assignment Π1 is a functor.
It is possible to simplify the functor Π1 with some non-canonical choice for
a base point. Let X be a space and x ∈ X be a point in X. Now, restrict
the groupoid Π(X) to the object x and the morphisms over x. This is also a
functor, usually denoted by π1, this time from the category of pointed spaces,
denoted by Top∗ to the category Grp. Both Π1 and π1 measure the 2-holes in
a space X as Π0 measured 1-holes. (1-hole means disconnectedness. Right?)
For instance, for the space B2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1} and any possible
choice for the base point a ∈ B2, the group π1(B2, a) is just a singleton, as
any path over a in B2 can be filled and B2 (why?) or in other words as B2 has
no holes. At the same time, for the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1},
the group π1(S1, a) for any base point a ∈ S1 is Z, as any path over a in S1

is uniquely determined by the number it goes around S1. (Why?) These are
not obvious claims. But intuitively, they are just clear.

Philosophical Note 1.3.81. It is possible to interpret any topological space
X as a set with multiplicities, any path p : x → y as a proof of equality

27

between x and y, any surface between two paths p, q : x → y as a proof of
equality between p and q and so on. With this interpretation, while Π0(X)
computes the set of distinct elements of X, the functor Π1(X) computes the
distinct proofs between two equal elements.

Example 1.3.82. (Application of the Fundamental Groups) We want to
prove Brouwer’s fixed point theorem for 2-ball B2 = {(x, y) ∈ R2 | x2 + y2 ≤
1} that states that any continuous function f : B2 → B2 has a fixed point.
For the sake of contradiction, assume f does not have a fixed point. Then, for
any (x, y) ∈ B2, we have f(x, y) 6= (x, y). Define r : B2 → S1 in the following
way: Take the directed line L, connecting f(x, y) to (x, y) and define r(x, y)
as the intersection of L and the border of B2 which is S1. By definition,
the restriction r to S1 is the identity function. Therefore, if we denote the
inclusion of S1 in B2 by i : S1 → B2, we have:

S1 B2 S1i r

idS1

Since π1 : Top∗ → Grp is a functor, if we pick an arbitrary a ∈ S1, we have:

π1(S1, a) π1(B2, a) π1(S1, a)
π1(i) π1(r)

idπ1(S1,a)

which is impossible, as π1(S1, a) is isomorphic to Z, while π1(B2, a) is a
singleton group.

Remark 1.3.83. In almost all the applications of the fuctors we have seen so
far, except maybe the previous example, the only thing we used was the fact
that the functors from one discourse to the other preserve isomorphisms, as
they are expected to preserve the corresponding notion of “sameness”. Fol-
lowing such observations, one may find it tempting to restrict category theory
to groupoids as the formalization of a discourse equipped with its notion of
sameness. The previous example is just a simple instance to show that this
temptation is somewhat naive. Morphisms and not just isomorphisms are
important to capture the behavior of an object and it is useful if we know
how to transfer them from one discourse to another.

Definition 1.3.84. (Natural Transformations) Let C and D be two cate-
gories and F,G : C → D be two functors. By a natural transformation
α : F ⇒ G, depicted as

28

C D

G

F

α

we mean an assignment mapping any object of C to a morphism αC : F (C)→
G(C) in D such that for any morphism f : A→ B in C, the following diagram
commutes:

F (A) G(A)

F (B) G(B)

αA

F (f) G(f)

αB

Philosophical Note 1.3.85. If we read functors F,G : C → D as two
C-variable objects in D, then any natural transformation α : F ⇒ G is a
transformation between these variable objects. Naturally, any transformation
between variable objects must specify the way we change the object F (C)
to the object G(C) in D, for each parameter C ∈ ob(C). These changes can
not be arbitrary. They must respect the changes in parameter in C:

F (B)

B F (A) F (C)

A C G(B)

G(A) G(C)

f g

F (f) F (g)

G(f) G(g)

αA

αB

αC

F

G

Philosophical Note 1.3.86. Let us read two functors F,G : C → D as two
construction methods that read an object in C and transform it to an object
in D. When can we call F and G “equal” as two methods of construction?
Of course we do not want to restrict ourselves to the very strict equality that
demands the functors to be equal both on the objects and the morphisms.
This is just too restrictive. For instance, consider F,G : Set → Set as
F (A) = A×{0} and G(A) = A×{1}. In this case, although F and G are not

29

strictly equal, they must be considered as the same methods of construction,
as they are only different up to an isomorphism. Using this criterion, one
natural candidate for the intended equality between F and G is the existence
of an isomorphism between F (A) and G(A), for any object A in C. However,
it is clear that any random assignment of isomorphisms between F (A) and
G(A) does not work. The isomorphisms must be assigned in a uniform way,
as we want F and G to be equal as two methods of constructions not two mere
structureless assignments. This uniformity demands the isomorphisms to be
somewhat independent of the choice of the object A. Of course, one may
object that the isomorphisms clearly depend on the object A (the source and
the target of the isomorphism, for instance), but at same time it is intuitively
meaningful to talk about the constructions that apply the same method
to different objects. An example may be more illuminating. Consider the
canonical isomorphism sA,B : A × B → B × A defined by sA,B(a, b) = (b, a)
that shows the order in the product of two sets is not important. This map
clearly depends on the choice of A and B, but at the same time it is defined
in a uniform way of “swapping the elements in a pair” which dos not use the
sets in an essential way. Natural transformations is historically developed for
the sole purpose of capturing this very intuition of uniformity.

Example 1.3.87. The assignment s : idSet ⇒ P defined by sA : A→ P (A)
as sA(a) = {a} is a natural transformation. It is natural simply because if
f : A→ B maps a ∈ A to f(a) ∈ B, then P (f) maps {a} to f [{a}] = {f(a)}.

A P (A) a {a}

B P (B) f(a) {f(a)}

f f [−]

{−}

{−}

f

{−}

{−}

f [−]

Example 1.3.88. The assignment i : idSet ⇒ (P ◦)◦ defined by iA : A →
PP (A) as iA(a) = {S ⊆ A | a ∈ S} is a natural transformation:

A P (P (A)) a {S ⊆ A | a ∈ S}

B P (P (B)) f(a) {T ⊆ B | f(a) ∈ T}

f P ◦(P ◦(f))

iA

iB

f

iA

iB

P ◦(P ◦(f))

Note that P ◦(P ◦(f))(S) = (P ◦(f))−1(S) = {T ⊆ B | f−1(T) ∈ S} which
maps {S ⊆ A | a ∈ S} to {T ⊆ B | f(a) ∈ T}.

30

Example 1.3.89. Let Ex : Set×Set→ Set×Set be the exchange functor,
i.e, Ex(A,B) = (B,A) and Ex(f, g) = (g, f) and (−) × (−) : Set × Set →
Set be the product functor. Then, the assignment s : (−) × (−) ⇒ [(−) ×
(−)] ◦ Ex defined by s(A,B) : A × B → B × A as sA×B(a, b) = (b, a) is a
natural transformation:

A×B B × A (a, b) (b, a)

C ×D D × C (f(a), g(b)) (g(b), f(a))

f×g g×f

s(A,B)

s(C,D)

f×g

s(A,B)

s(C,D)

g×f

Exercise 1.3.90. Prove that α : ((−) × (−)) × (−) ⇒ (−) × ((−) × (−))
defined by αA,B,C : (A×B)×C → A× (B×C) such that αA,B,C((a, b), c) =
(a, (b, c)) is a natural transformation.

Example 1.3.91. The assignment (−)−1(1) : Hom(−, 2) ⇒ P ◦(−) defined
by f 7→ f−1(1) is a natural transformation:

Hom(B, 2) P (B) g g−1(1)

Hom(A, 2) P (A) gf (gf)−1(1)

(−)◦f f−1(−)

(−)−1(1)

(−)−1(1)

(−)◦f

(−)−1(1)

(−)−1(1)

f−1(−)

Example 1.3.92. The assignment (−)(0) : Hom(1,−) ⇒ idSet defined by
g 7→ g(0) is a natural transformation:

Hom(1, A) A g g(0)

Hom(1, B) B fg fg(0)

f◦(−) f

(−)(0)

(−)(0)

f◦(−)

(−)(0)

(−)(0)

f

Similarly, for the category of groups, we have:

Hom(Z, G) U(G) g g(1)

Hom(Z, H) U(H) fg fg(1)

f◦(−) f

(−)(1)

(−)(1)

f◦(−)

(−)(1)

(−)(1)

f

31

where U : Grp → Set is the forgetful functor, (−)(1) : Hom(Z,−) ⇒ U
defined as g 7→ g(1). We also have the same phenomenon in VecR, i.e.,

Hom(R, V) U(V) g g(1)

Hom(R,W) U(W) Tg Tg(1)

f◦(−) T

(−)(1)

(−)(1)

T◦(−)

(−)(1)

(−)(1)

T

Example 1.3.93. The assignment ! : ∆1 ⇒ Hom(−, 1) defined by !A(0) =
consA is a natural transformation, where consA : A → 1 is the constant
function, mapping everything to zero:

1 Hom(B, 1) 0 y 7→ 0

1 Hom(A, 1) 0 x 7→ 0

id1 (−)◦f

!B

!A

id1

!B

!A

(−)◦f

Exercise 1.3.94. Prove that α : p1 ⇒ Hom(−,−) defined by αA,B : A →
Hom(B,A) such that αA,B(a) = consA,B,a is a natural transformation, where
p1 : Setop × Set→ Set is the projection on the second element functor and
consA,B,a : B → A maps every element in B to a.

Example 1.3.95. The assignment (∗, id(−)) : idSet ⇒ 1 × (−) defined by
a 7→ (∗, a) is a natural transformation:

A 1× A a (∗, a)

B 1×B f(a) (∗, f(a))

f id1×f

(∗,idA)

(∗,idB)

f

(∗,idA)

(∗,idB)

id1×f

Example 1.3.96. Let B and C be two fixed sets. Then, the assignment
α : (−)B+C ⇒ (−)B × (−)C defined by αA(g) = (g|B, g|C) is a natural
transformation:

AB+C AB × AC g (g|B, g|C)

A′B+C A′B × A′C fg (fg|B, fg|C)

f◦(−) f◦(−)×f◦(−)

αA

αB

f◦(−)

αA

αB

f◦(−)×f◦(−)

32

Exercise 1.3.97. Prove that α : (−)(−)+(−) ⇒ (−)(−) × (−)(−) defined by
αA,B,C(g) = (g|B, g|C) is a natural transformation.

Exercise 1.3.98. Prove that α : ((−) × (−))(−) ⇒ (−)(−) × (−)(−) defined
by αA,B,C : (A × B)C → AC × BC such that αA,B,C(g) = (p0 ◦ g, p1 ◦ g) is a
natural transformation, where p0 : A× B → A and p1 : A× B → B are the
projection functions.

Exercise 1.3.99. Prove that α : Hom((−), (−)(−)) ⇒ Hom(− × −,−) de-
fined by αA,B,C : Hom(A,CB)→ Hom(A×B,C) such that αA,B,C(g) = ĝ is
a natural transformation, where ĝ : A×B → C maps (a, b) to g(a)(b).

Philosophical Note 1.3.100. Looking inside the world of categories, there
are three sorts of data: First, the categories as the nodes or the zero-
dimensional data; the functors between the categories as the edges or the
1-dimensional data and finally, natural transformations as the surfaces or
the 2-dimensional data. In this sense, the world of categories is at least
2-dimensional in some intuitive sense. One may ask to go further to de-
fine morphisms between natural transformations, morphisms between these
morphisms and so on. This is possible. However, these higher level data
trivialize after the second level of natural transformations and this is the
reason why category theory stops here. The world of categories is somehow
like the 2-dimensional plane. Of course, it is possible to find “three dimen-
sional” spaces in the plane. It is just enough to map the three dimensional
cube inside the plane by a continuous map. The important thing, though, is
that as the plane is too restricting for such a map, one dimension of the cube
would collapse, inevitably. Hence, the three dimensional spaces inside the
plane are all degenerate, which implies that there is no need to keep track of
them.
To make the comparison with the topological space more precise, let us re-
strict ourselves to categories and isomorphisms as the morphisms. With
this restriction we can eliminate the direction from the picture. Now, this 2-
dimensional groupoid has different connective components; the sub-groupoids
in which all objects are connected to each other. There are some possible
scenarios. Some of these components are just zero-dimensional points. The
others are divided in 1-dimensional spaces (with or without holes) and 2-
dimensional spaces (with or without holes). We will complete this picture by
providing some examples of these spaces.

Example 1.3.101. (Non-natural transformations) Let α be an assignment
of a map αA : A → A to any set A. Then, α : idSet ⇒ idSet is a natural
transformation iff αA = idA. It is clear that αA = idA is a natural transfor-
mation. For the converse, assume α is a natural transformation and consider

33

the following commutative diagram:

{0} {0}

A A

α{0}

â â

αA

where a ∈ A and â(0) = a. It is clear that α{0} = id{0}. Hence, αA ◦ â = â.
Applying both sides on 0, we have αA(a) = a. Hence, αA = idA.

Exercise 1.3.102. Recall that a functor F : C → D is an isomorphism iff
there exists a functor G : Set→ Set such that F ◦G = G ◦F = idSet and in
this situation C and D is called isomorphic. Then, prove that if E and F are
two categories isomorphic to Set and F0, F1 : E → F be two isomorphisms,
then there exists exactly one natural transformation from F to F ′.

Philosophical Note 1.3.103. Reading the groupoid of categories as a 2-
dimensional space, Exercise 1.3.102 implies that the connective component
of the category Set is 1-dimensional, as the level of natural transformations
collapses in this component. Moreover, it has no holes, as any space between
two isomorphisms can be filled by a natural transformation. Therefore, it
may be reasonable to think of this component as a straight line.

Example 1.3.104. Let G and H be two groups and F, F ′ : G → H be
two group homomorphisms. Then, a natural transformation α : F ⇒ F ′,
by definition is an element α∗ = h ∈ H such that F (g)h = hF ′(g), for any
g ∈ G.

F (∗) F ′(∗)

F (∗) F ′(∗)

α∗

F (g) F ′(g)

α∗

Exercise 1.3.105. Prove that there is no natural transformation from id(Z,+)

to −id(Z,+).

Exercise 1.3.106. Let C be a category. By the center of C, denoted by
Z(C), we mean the class of all natural transformation α : idC ⇒ idC. Show
that for any group G considered as a category, Z(G) corresponds to the set
{g ∈ G | ∀h ∈ G gh = hg}. Use this characterization to show that for
any non-trivial abelian groups G and H, if G ' H and F : G → H is an

34

isomorphism, there are at least two different natural transformations over F .
Moreover, find a group G such that between any two isomorphisms over G,
there is at most one morphism.

Example 1.3.107. Let G ' H be two groups and Z(G) = Z(H) = {e}.
Then, for any group homomorphisms F, F ′ : G → H, there is at most one
natural transformation α : F ⇒ F ′. To prove this claim, let α, β : F ⇒ F ′

be two natural transformations. Then, α∗ = i ∈ H and β∗ = j ∈ H such
that for any g ∈ G, we have F (g)i = iF ′(g) and F (g)j = jF ′(g). We
claim that i−1j ∈ Z(H). Let h ∈ H be an arbitrary element. Then, there
exists g ∈ G such that F ′(g) = h. Hence, F (g) = ihi−1 = jhj−1. Therefore,
i−1jh = hi−1j, for any h ∈ H. Hence, i−1j ∈ Z(H) which mean that ij−1 = e
and hence i = j.

Philosophical Note 1.3.108. Exercises 1.3.106 implies that the connective
component of any non-trivial abelian group is truly 2-dimensional, while
1.3.107 ensures that the connective component of a group G, where Z(G) =
{e} is 1-dimensional. This may explain why the abelian groups are easier to
work with, or more generally, why the groups become more complex, as soon
as their centers start to shrink.

Example 1.3.109. Let (P,≤P) and (Q,≤Q) be two posets and F,G : (P,≤P
) → (Q,≤Q) be two poset morphisms. Then, a natural transformation α :
F ⇒ G is necessarily unique, as there is at most one map from F (p) to G(p),
for any p ∈ P . This unique natural transformation exists iff F (p) ≤Q G(p),
for any p ∈ P : The similar thing happens if we replace (P,≤P) with any
other category.

Exercise 1.3.110. Consider the poset (Z+Z,≤), where ≤ is the usual order
on each component. Then, take the isomorphism F = [+1,−1] : (Z + Z,≤
) → (Z + Z,≤) define by F (0, a) = a + 1 and F (1, b) = b − 1. Prove that
there is no natural transformations α : id(Z+Z,≤) ⇒ F and β : F ⇒ id(Z+Z,≤).

Philosophical Note 1.3.111. Consider the groupoid of all locally small
categories with isomorphism as the morphisms. Then, the previous consid-
erations imply that the “topological” picture of this category must be like:

35

•

•
Set

(Z,+)

(Z,≤) + (Z,≤)
•
{0}

•

•
−idZ

idZ

n

[+1,−1]

idZ
(Z,+)

where n in the green area means that for any number n ∈ Z, there is one
surface there and the discrete category {0} is depicted as a zero-dimensional
object as there is no non-trivial isomorphism over {0}.

Example 1.3.112. Let G be a group. Recall that a G-action is a group ho-
momorphism from G to Aut(X), where Aut(X) is the group of all bijections
on the set X. A morphism between two G-actions is a function φ : X → Y
such that φ(F (g)(x)) = F ′(g)(φ(x)), for any g ∈ G and x ∈ X. Then, any G-
action is just a functor G→ Set and any morphism between two G-actions
is a natural transformation:

X = F (∗) F ′(∗) = Y

X = F (∗) F ′(∗) = Y

φ

φ

F (g) F ′(g)

Example 1.3.113. Let (−)∗ : VecR → VecopR be the functor mapping V to
V ∗ = {T : V → R | T is linear} and S : V → W to (−) ◦ S : W ∗ → V ∗.
Then, the assignment i : idVecR ⇒ ((−)∗)∗ defined by iV (v) : Hom(V,R)→ R

36

as iV (v)(T) = T (v) is a natural transformation:

V V ∗∗ v [S 7→ S(v)]

W W ∗∗ T (v) [R 7→ R(T (v))]

T T ∗∗

iV

iV

T

iV

iW

T ∗∗

because, if we spell out the definition of T ∗∗ : V ∗∗ → W ∗∗, we see T ∗∗(F)(f) =
F (f ◦ T), where F ∈ Hom(V,R)→ R and f ∈ Hom(W,R).

Remark 1.3.114. It is well-known that any finite-dimensional vector space
V is isomorphic to its dual V ∗, using the map αV (v) = v̂, where v̂(w) =
〈w, v〉 in which 〈−,−〉 is the usual inner product. This transformation is
not natural, simply because the functors idVecR : VecR → VecR and (−)∗ :
VecR → VecopR don’t have the same codomain. One may find this reason
quite artificial, as the map iV seems quite natural, indeed. To address this
issue, let us restrict ourselves to the subcategory of VecR, where all morphism
are isomorphisms. Denote this subcategory by iVecR. Then, it is possible
to make the directions right, using the functor inv : iVecR → iVecopR that
fixes the objects and maps any isomorphism to its inverse. Now, we have the
following possibly natural transformation:

iVecR iVecopR

(−)∗

inv

α

However, it is still not natural, as if we check the naturality condition, it
requires:

W W ∗ w [u 7→ 〈u,w〉]

V V ∗ T−1(w) [v 7→ 〈v, T−1(w)〉]

T−1 (−)◦T

αW

αV

αW

αV

T−1 (−)◦T

meaning, 〈T (v), w〉 = 〈v, T−1(w)〉, which is not the case. One can easily check
that this equation holds for any T : V → W that preserves the inner product.
Therefore, if we restrict the categories more to invertible linear maps that

37

preserve inner product (orthogonal transformations), then our assignment α
finally will be a natural transformation. Note that this restricted category
actually captures the Euclidean geometry as it works with maps that respect
distance and angle. Therefore, we can read the naturality of α as “angles are
natural in Euclidean geometry, while they are not in linear world”.

Example 1.3.115. (No-deleting theorem) There is only one natural trans-
formation α : (−) × (−) → pr1. This natural transformation is the trivial
αB,A = ∅. First, it is clear that this assignment is a natural transforma-
tion. Conversely, assume such an α exists. Then, we have the following
commutative diagram:

B × A A

B × A A

αB,A

αB,A

S×R R

for any set A and B and any relations R ⊆ A2 and S ⊆ B2. Set R = {(a, a) |
a ∈ A} and S = ∅. Then, αB,A must be empty. It is useful to check why the
usual projection function does not work in this case. If we spell out all the
details, the reason boils down to the fact that the relations can be partial.

Example 1.3.116. (No-cloning theorem) There is only one natural trans-
formation α : idRel → (−)2, where (−)2 : Rel → Rel is defined by A 7→ A2

on objects and R 7→ R×R on morphisms. This natural transformation is the
trivial αA = ∅. First, it is clear that this assignment is a natural transforma-
tion. Conversely, assume that α : idRel → (−)2 is a natural transformation.
Then, we have the following commutative diagram:

{0} {0}2

A A2

α{0}

αA

R R2

for any set A and any relationR ⊆ A×{0}. First, note that α{0} ⊆ {0}×{0}2.
As {0}×{0}2 has just one element, then either α{0} = ∅ or α{0} = {0}×{0}2.
The first case implies that αA = ∅, for every A. If RA is non-empty, then
there exists (a, (b, c)) ∈ αA for some a, b, c ∈ A. Define R = {(0, a)}. Then,
(0, (b, c)) ∈ αa ◦ R, while R2 ◦ α{0} is empty. Hence, αA = ∅. For the second

38

case, we prove that α{0} = {0} × {0}2 is impossible. First, set R = {(0, a)}.
Then, R2 ◦ α{0} = {(0, (a, a))}. Therefore, αA ◦ R = {(0, (a, a))} which
means (a, (a, a)) ∈ αA. Therefore, {(a, (a, a)) | a ∈ A} ⊆ αA. It is easy to
prove that αA can not have any other element and hence αA = {(a, (a, a)) |
a ∈ A}. Now, set A = {0, 1} and R = {0} × A. We have αA ◦ R =
{(0, (0, 0)), (0, (1, 1))}. But, R2 ◦ α{0} = {0} × A2 which is a contradiction.
It is useful to check why the usual function a 7→ (a, a) does not work. If we
spell out all the details, the reason boils down to the fact that the relations
can be multi-valued.

Philosophical Note 1.3.117. The simplest category that encodes the quan-
tum behavior is Rel, in which sets encode the set of states and relations
encode the non-deterministic processes that change one state to another. In
this sense, the previous two theorems are the baby version of the entangle-
ment phenomenon in quantum theory by which we know it is impossible to
clone or delete a quantum bit of information. The reason for the simplest
case of Rel may be explained by the fact that relations can be partial or
multi-valued and this makes the elements of the set somewhat entangled to
each other. The more advanced version states that there is no natural trans-
formation αV : V → V

⊗
V or βV,W : V

⊗
W → V on vector spaces. For

the real version, replace vector spaces by Hilbert spaces and linear maps by
bounded linear maps.

Exercise 1.3.118. Let List : Set → Set be the functor mapping any set
X to the set of all finite sequences of the elements of X and mapping any
function f : X → Y to the function List(f) : List(X)→ List(Y) defined by
List(f)(σ0 · · ·σn) = f(σ0) · · · f(σn). Show that the assignment i : ∆1 → List
defined by iX : {0} → List(X) as iX(0) = ε is a natural transformation,
where ε is the sequence with the length zero. Moreover, show that the assign-
ment m : List×List→ List defined by mX : List(X)×List(X)→ List(X)
as the concatenation operation is a natural transformation.

Example 1.3.119. Let B be the groupoid of finite sets and bijections.
Define Aut : B → Set as the functor mapping any set X to the set of
all bijections on X and mapping a bijection f : X → Y to the function
f ◦ (−) ◦ f−1 : Aut(X) → Aut(Y). Moreover, define Ord : B → Set as the
functor mapping any set X to the set of all finite sequences of the elements
of X in which any element of X occurs exactly once. For the morphisms,
map a bijection f : X → Y to the function Ord(f) : Ord(X) → Ord(Y)
defined as Ord(f)(σ0 · · ·σn) = f(σ0) · · · f(σn). Then, there is no natural
transformation α : Aut → Ord. Because, if there is such a transformation,

39

then:
Aut(X) Ord(X)

Aut(X) Ord(X)

Ord(f)f◦(−)◦f−1

αX

αX

for any set X and any bijection f : X → X. Set X as a set with at least
two elements and f : X → X as a non-identity bijection. Now, apply the
diagram on idX ∈ Aut(X). We have αX(fidXf

−1) = Ord(f)(αX(idX))
which means αX(idX) = Ord(f)(αX(idX)). This implies that αX(idX) is a
list of all the elements of X that does not change under the application of f .
Hence, f must be the identity function which is a contradiction. Note that
in this example, although for any finite set X, the sets Ord(X) and Aut(X)
are isomorphic, there is no natural transformation between Aut and Ord as
construction methods. Specially, it means that the isomorphisms between
Ord(X) and Aut(X) is not natural in X.

Example 1.3.120. Let Rin be the category R of Example 1.3.75, restricted
to injective homomorphism. Let GLn : Rin → Grp be the functor mapping
any object R to the group of all invertible n× n matrices with entries in R
and any morphism f : R → S to GLn(f) : GLn(R) → GLn(S) defined as
GLn(f)(A) = f [A], where f [A] is the result of the application of f on all the
entries of A. Note that GLn(f)(A) is well-defined, because, if A is invertible,
then so is f [A]. The reason is that if f(det(A)) = det(f [A]) = 0 = f(0), then
det(A) = 0, as f is injective which implies that A is not invertible. Moreover,
note that the assignment det : GLn ⇒ GL1 is a natural transformation. The
reason is that the determinant of a matrix is a polynomial in the entries of
the matrix and hence it is preserved by the morphisms of R:

GLn(R) R

GLn(S) S

fGLn(f)

detR

detS

Example 1.3.121. Let U : Mon→ Set and F : Set→Mon be the forget-
ful and the free functors, respectively. Then, the assignments i : idSet ⇒ UF
mapping a set A to the function iA : X → UF (X) defined by iA(x) = x
is a natural transformation. Similarly, the assignments p : FU ⇒ idMon

mapping a monoid M to the homomorphism pM : FU(M)→ M defined by
pM(σ0 · · ·σn) = σ0 × · · · × σn is a natural transformation.

40

Example 1.3.122. Let C be a category and f : A → B be a map. Then,
the assignment yf : Hom(−, A)→ Hom(−, B) defined by (yf)C = f ◦ (−) is
a natural transformation:

Hom(D,A) Hom(D,B)

Hom(C,A) Hom(C,B)

f◦(−)

f◦(−)

(−)◦g (−)◦g

Example 1.3.123. Let C be a category, F : C → D be a functor. Then, the
assignment α : F ⇒ F defined by αC = idF (C) is a natural transformation,
because:

F (C) F (C)

F (D) F (D)

F (f)F (f)

idF (C)

idF (D)

Example 1.3.124. Let C and D be two categories, F,G,H : C → D be three
functors and α : F ⇒ G and β : G ⇒ H be two natural transformations,
then β ◦α : F ⇒ H, defined by (β ◦α)C = βCαC is a natural transformation:

C D

H

F

G

α

β

Because in the following diagram:

F (C) G(C) H(C)

F (D) G(D) H(D)

αC βC

αD βD

F (f) G(f) H(f)

if both of the squares commute, the bigger rectangular also commutes.

41

Definition 1.3.125. Let C and D be two categories. Then, the functors
from C to D as the objects together with the natural transformations as the
morphisms constitutes a category. This category is denoted by DC and is
called a functor category.

Remark 1.3.126. Note that if C and D are both small categories, then DC
is also small. If C is small and D is locally small, then DC is locally small.
But if C and D are both locally small, there is no reason for DC to be locally
small and it is usually not the case.

Example 1.3.127. The category of variable sets Set→, the category of dy-
namical spaces Set� and the category of G-actions are the functor categories
Set2, SetS and SetG, respectively, where S is the following category:

•

Note that Set� is just Set(N,+). As two other examples, note that C→ is the
functor category C2 and if we consider the set n = {0, · · · , n−1} as a discrete
category, Cn is essentially the same as the category C × C × · · · C, where the
number of C’s is n.

Philosophical Note 1.3.128. There is a philosophical shift in considering
functor categories, as it treats functors or more philosophically “construction
methods” as the objects of the discourse, themselves.

Example 1.3.129. The category of quivers is the functor category Set⇒. In
a similar way, the category of 2-quivers is Set∆nd

2 , where ∆nd
2 is the following

category:
• • •

Similarly, we can imagine the category of n-quivers as Set∆nd
n , where ∆nd

n is
the following category:

• • • • • •

with n+1 objects and i+1 primitive morphisms between the ith and i+1th
objects, counted from the right. What is the category of ∞-quivers?

The previous examples lead to a general notion of diagram. Intuitively,
a diagram is a set of objects together with a set of morphisms between them
in a given category C. More formally, though:

42

Definition 1.3.130. Let J and C be two categories. Then, a functor D :
J → C is called a diagram in C with shape J or a J -diagram in C. Therefore,
the functor category CJ is called the category of diagrams in C with shape
J .

Example 1.3.131. (Algebra) What is an algebraic construction, only us-
ing the algebraic concepts? It is reasonable to assume that an algebraic
construction, whatever it is, must be available for all the algebras in consid-
eration and it must respect the algebraic maps. In this sense, if we choose
the category R as the world of algebra, then the functor category SetR can
be considered as the world of all algebraic constructions. In this category
we have all VI ’s (the roots of the polynomial equations in I). In this sense,
VI may be considered as the extension of the set of integers by the roots
of the given polynomials in I. This mindset is the extension of the usual
approach of extending the number systems by adding the solutions of the
equations and hence we can think of SetR as the ultimate completion of the
algebra Z. Interestingly, there are more algebraic notions than what we get
by adding the roots of polynomials. For instance, the functor P : R → Set
defined by P(R) = {L ⊆ R2 | L is a line} and P(f)(L) = f(L) is a functor,
where by a line L ⊆ R2 we mean the set of the roots of a linear equation
ax+by = 0, for a, b ∈ R and by f(L) we mean the line define by the equation
f(a)z + f(b)w = 0. We have to check that P is well-defined, as the equation
of a line is not uniquely determined by the line itself. However, it is easy
to see that the equations ax + by = 0 and cx + dy = 0 define the same
line iff (a, b) = λ(c, d), for some λ ∈ R. This proves that P is well-defined.
The functor P corresponds to the projective space P(Z), which is again a
completion of Z by adding the points at infinity it lacks.

Example 1.3.132. (Topology) Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the
unit circle with its usual topology. First, let us show that it is impossible to
find a continuous way to compute the angle between the point a ∈ S1 as a
vector and the positive part of the x-axis. Formally, it means that there is
no continuous function Θ : S1 → R such that:

S1 R S1
Θ p

idS1

where p : R→ S1 is the continuous function p(θ) = (cosθ, sinθ), mapping an
angle to its corresponding point. The reason is again the argument we used
for Brouwer’s fixed point theorem. Since π1 : Top∗ → Grp is a functor, if

43

we pick an arbitrary a ∈ S1, we have:

π1(S1, a) π1(R,Θ(a)) π1(S1, a)
π1(Θ) π1(p)

idπ1(S1,a)

which is impossible, as π1(S1, a) is isomorphic to Z, while π1(R,Θ(a)) is a
singleton group.
Although, we just provided a proof, it feels paradoxical that a such continuous
map does not exist. The reason is that if we restrict ourselves to a local
neighborhood U of a point on S1, there is clearly a continuous angle map on
U and since the continuity is a local notion, we expect to have a continuous
map in the end. What is wrong? The problem is that the angle is continuous
as long as we consider it as a multi-valued function. Let us explain why by
Starting from (1, 0) and moving along the circle counterclockwise. If we set
the angle zero at the beginning, then it continuously grows from zero to
2π. Reaching the starting point again, if we want to remain continuous, the
angle should be 2π which is impossible, as it has been set to zero before. The
space is too twisted to have a continuous single-valued angle. To capture the
true nature of the angle function, we must accept that it really is a multi-
valued function, defined as an assignment mapping the point a ∈ S1 to the
set {θ ∈ R | p(θ) = a}. Now, based on the argument we had, we expect Θ
to be continuous. But, what does it mean to have a continuous set-valued
function? Here is an idea. For the usual functions, we can observe that
they are continuous iff their restrictions to the subspaces of the space can
be glued together. We can use the same idea here to say that a set-valued
function is continuous if its restrictions to the subspaces of the space can be
glued together in a reasonable generalized sense. For now, our machinery is
not mature enough to talk about this gluing notion. However, we are ready
to appreciate the fact that this generalized notion of continuity, whatever it
is, needs the set-valued angle function to be defined on all subspaces of the
space S1 and not just on the points. In our case, the natural definition is
Θ : P (S1)op → Set defined by Θ(X) = {f : X → R | pf = id}. This Θ is a
functor, if we map the inclusion function in P (S1) to the restriction function

in Set. Hence, it is reasonable to think of the category SetP (S1)op as the
world of all multi-valued functions inside of which the world of continuous
multi-valued functions exists.

Example 1.3.133. (Logic) Let Φ = {p ↔ q, q ↔ r, r ↔ s, s ↔ ¬p} be a
set of formulas. Clearly, Φ is inconsistent and has no models. Similar to the
previous example, here again, the situation is a bit paradoxical. First, the

44

set is locally consistent in the following sense: for any proper subset X of
the set {p, q, r, s}, the part of Φ that constructed only from the atoms in X,
denoted by ΦX , is consistent. Secondly, if a valuation does not satisfy the
whole set, it must behave inconsistent at some atom, where it must be forced
to both zero and one. Hence, the inconsistency must be a local notion, while
the set is locally consistent. To see how it is similar to the previous example,
let us try to find a model for Φ. If we set the value a ∈ {0, 1} for the atom p,
then to satisfy Φ, the atoms q, r and s must have the same value a. Then,
reaching p again, we can see that it must have the value 1 − a to remain
consistent while the value has been set to a. The set Φ is too twisted to have
a single-valued model:

•

•

•

•

•

•

•

•

•

•
•

•

r
q

p
s

0

1

0

1

1

0
1

0

Again, one can say that Φ has a model, but this model is multi-valued. To
capture that multi-valued nature, we must use functors again. Define the
generalized model, not only on points, but also on all subsets. We have V :
P ({p, q, r, s})op → Set defined by V (X) = {v : X → {0, 1} | v satisfies ΦX}.
This is again a functor. Hence, it is reasonable to think of SetP ({p,q,r,s})op as
the world of all generalized models for the formulas constructing from these
atoms.

Philosophical Note 1.3.134. One might object that as joyful as the pre-
vious approach to the inconsistencies is, it is simply empty, as it is actually

45

impossible to have a real inconsistency in the real world. First, in our weak
defence, it is worth mentioning that in practice, it usually happens that we
have some local mistakes in some extremely huge database and we obviously
do not want to get rid of the whole dataset because of a local mistake proba-
bly even in some other far way parts of our database. This twisted valuations
is a natural way to handle such locally consistent yet globally inconsistent
database. In our strong defence, though, these inconsistencies really happen
in the nature and even better, the previous example is the logical version of
a real situation. More precisely, assume that p, q, r and s are four quan-
tum bits in a way that {p, q}, {q, r}, {r, s} and {s, p} are co-measurable,
while it is impossible to measure all the quantum bits altogether. One may
object that this does not solve the problem, as we can measure any two co-
measurable bits to see that the value of p must be both zero and one. There
are two ways to explain that. First, that the quantum bits and hence the
physical quantities do not have any objective value, independent from the
context and the measurements we do to observe them. Therefore, in differ-
ent measurements, the quantum bit value may become zero or one. More
provocatively, we can solve the inconsistency by saying that the objective real
world does not exist. The second approach, though is that to accept the new
generalized valuations as some sort of new reality. In this apparently better
scenario, we might say that our usual models for reality are insufficient and
we must simply model the world by these multi-valued quantities. The price
to pay is now the non-locality of the reality, as these new models are global
and twisted.

Example 1.3.135. (Set Theory) One of the prominent foundational paradigms
in mathematics is Brouwerian intuitionism. Among many other things, the
paradigm believes that mathematics is just a mental story told by a cre-
ative subject to herself and like any other story, this story is also changing
through time by adding new constructions and proving new properties. In
this sense, the truth in mathematics is temporal and dynamic and hence can
be characterized by our variable sets in SetC, where C is a suitable category
that encodes the growth of time. There are many valid formalizations of this
notion of time. For instance, the simplest formalization that comes to mind
is the set of all natural numbers and its usual order encoding the instances
and the arrow of time. However, in this example we focus on Brouwer’s own
understanding of time:

This perception of a move of time may be described as the falling
apart of a life moment into two distinct things, one of which gives
way to the other, but is retained by memory. If the twoity thus

46

born is divested of all quality, it passes into the empty form of
the common substratum of all twoities. And it is this common
substratum, this empty form, which is the basic intuition of math-
ematics. [?]

To formalize this notion of time, we use [n] = {0, 1, . . . , n− 1}, for n ≥ 0,
as the objects to represent the nth moment of time and for any n ≤ m,
we define the morphisms from [n] to [m] as a function f : [m] → [n] where
f(i) = i, for any i < n. The equation f(i) = j represents the creation process
of the moments by encoding the fact that the moment i has been created
from the moment j. Therefore, the condition f(i) = i just says that when we
are at the nth moment, the moment i < n is fixed throughout the creation
process and only the moments greater than or equal to n are newly created.
As it is expected, the category SetC leads to an interesting intuitionistic
dynamic version of sets. What is surprising, though, is the fact that some
of these variable growing sets are in some sense completed and the category
of these completed sets satisfies all classical axioms of set theory except the
axiom of choice. Hence, it can serve as a model to prove the unprovability
of the axiom of choice from ZF.

1.4 Baby Erlangen extended

How to interpret the objects of the category SetC
op

? We saw that a functor
F : Cop → Set is a Cop-variable set or a realization of the category Cop using
the usual concrete sets. Now, we add another interpretation to the league.
Interpret C as the category of some sort of interesting yet simple objects and
then read a functor F : Cop → Set as an ideal object identifiable by the set of
the “maps” going from the simple object A in C to the ideal object F . Note
that the category C is considered to be too small with too simple objects to
have the ideal object F and hence the set F (A) of “maps” from A to F is
not a priori meaningful. However, whatever these sets are, they must behave
in a functorial way and hence it is reasonable to think of any functor as the
way we describe the ways the category of lenses in C looks inside of F :

47

•

•

•

•
••

A

F

p ∈ F (A)

•
••
•

••

•

••

C

To have an intuitive example, we can think of C as the category with a single
object R and continuous functions over it. Then, we can interpret C as the
category consisting of one flat one-dimensional line and the new ideal object
as the circle S1 that is not flat and hence lives outside of C. However, as the
circle is locally homeomorphic with R, we can identify it by the continuous
functions from R to it. In other words, if I know all possible maps from R to
S1, then I know the space S1.
Now, as we interpret a functor F as a generalized ideal object C-object,
it is reasonable to replace even the simple objects of C by the functors that
capture their behavior. In other words, if functors are ideal objects, the usual
objects must be among them. as well. This is what the Yoneda functor does:

Definition 1.4.136. (Yoneda functor) Let C be a locally small category.
Define the Yoneda functor y : C → SetC

op

by yA = Hom(−, A) on objects
and on the morphism f : A → B by yf : Hom(−, A) → Hom(−, B), where
(yf)C : Hom(C,A) → Hom(C,B) defined by (yf)C(g) = fg. A functor
F : Cop → Set is called representable, if there exists an object A in C such
that F ∼= yA.

Theorem 1.4.137. The Yoneda functor is actually a functor.

Proof. First, recall that the map yf is a natural transformation, for any map
f : A→ B, as we have:

Hom(D,A) Hom(D,B)

Hom(C,A) Hom(C,B)

(yf)D=f◦(−)

(yf)C=f◦(−)

Hom(g,A)=(−)◦g Hom(g,B)=(−)◦g

48

Now, to prove that y is a functor, we need to show that yid = id and
yfg = yfyg. Both claim are clear by the definition of the Yoneda functor
on morphisms.

Remark 1.4.138. Changing C to Cop, it is equally natural to have the dual
functor y(−) : Cop → SetC, defined by yA = Hom(A,−) and (yf)C(g) = gf .
It is also customary to call a functor F : C → Set representable if F ∼= yA,
for some object A in C.

Example 1.4.139. The functors idSet : Set → Set and P ◦ : Setop → Set
are representable, because idSet ∼= Hom(1,−) and P ◦ ∼= Hom(−, {0, 1}).

Example 1.4.140. The forgetful functor U : Top → Set is representable,
because U ∼= Hom(1,−), where 1 = {0} is the trivial topological space.
Also, the functor O : Topop → Set defined on objects by O(X) as the set of
the open subsets of X and on morphisms by O(f) = f−1, is representable,
because O ∼= Hom(−, S), where S is the Serpienski space that is the space
{0, 1} with the opens {∅, {1}, {0, 1}}.

Example 1.4.141. The forgetful functor U : Mon→ Set is representable,
because U ∼= Hom(N,−). Similarly, the forgetful functors V : Grp → Set
and W : VecR → Set are representable, because V ∼= Hom(Z,−) and
W ∼= Hom(R,−).

Example 1.4.142. Let A and B be two fixed sets. The functorHom(A,−)×
Hom(B,−) : Set→ Set is representable, becauseHom(A,−)×Hom(B,−) ∼=
Hom(A+B,−).

Example 1.4.143. LetG andH be two fixed groups. The functorHom(−, G)×
Hom(−, H) : Grpop → Set is representable, becauseHom(−, G)×Hom(−, H) ∼=
Hom(−, G×H).

Example 1.4.144. The functor Tn : Grp → Set mapping any group G to
{x ∈ G | xn = e} and any homomorphism to its appropriate restriction is
representable, because Tn ∼= Hom(Zn,−).

Example 1.4.145. Let U and V be two fixed vector spaces. Then, the
functor BilinU,V : VecR → Set defined by BilinU,V (W) = {T : U × V →
W | T is bilinear} and composition, is representable, because BilinU,V ∼=
Hom(U ⊗ V,−).

Philosophical Note 1.4.146. The last example has some special illuminat-
ing role. Pedagogically, tensor product with its relatively complex construc-
tion is hard to grasp for the newcomers. To solve this issue, sometimes it is

49

helpful to replace its detailed uninformative construction with the functor it
represents, namely BilinU,V . This is a point in usual Borbaki-style algebra
that we need to make a shift from what the objects actually are to what
they practically do. We can safely pretend that the only thing that we know
about the tensor product U ⊗V is that it is a vector space with the property
that the linear maps going out of it naturally correspond to the bilinear maps
going out from U × V . This technique of replacing the huge construction of
an object with what it does is the simplest example of what we can call the
structuralism in action.

Highlighting the importance of representables, it is now natural to ask if
there is a criterion to check whether a given functor is representable or not.
We approach this problem slowly. First, three examples:

Example 1.4.147. The functor ∆2 : Set → Set mapping all objects to
2 = {0, 1} and all morphisms to identity is not representable. Because, if
∆2
∼= Hom(A,−), then sinceHom(A,B×C) ∼= Hom(A,B)×Hom(A,C), we

must have ∆2(B×C) ∼= ∆2(B)×∆2(C) which means {0, 1}×{0, 1} ∼= {0, 1}.

Example 1.4.148. Let G and H be two groups such that there are at
least two homomorphisms from G to H. Then, the functor Hom(− ×
G,H) : Grpop → Set is not representable. Because, if Hom(− × G,H) ∼=
Hom(−, K), then sinceHom({e}, K) has just one element, the setHom({e}×
G,H) ∼= Hom(G,H) must have one element which is impossible by assump-
tion.

Example 1.4.149. The functor Sub : Grpop → Set mapping a group to
the set of its subgroups and a morphism to the inverse image is not repre-
sentable. Because, if Sub(−) ∼= Hom(−, K), then since Hom(G ⊕H,K) ∼=
Hom(G,K)×Hom(H,K), we have to have Sub(G⊕H) ∼= Sub(G)×Sub(H).
The last statement is false, because Sub(Z2)× Sub(Z2) has exactly four ele-
ments while Sub(Z2⊕Z2) has at least five elements including all the elements
of Sub(Z2)× Sub(Z2) plus the subgroup {(0, 0), (1, 1)}.

In the general situation, there is a criteria to check the representabil-
ity of a functor, imitating what we saw in the previous two examples. The
main idea is that the Hom functor preserves some sort of construction (in our
examples product, the “smallest possible” object, and the direct sum, respec-
tively) and if a functor is representable, it must preserve these structures, as
well. We will introduce these structures to see when this preservation can be
even sufficient for representability. For now, let us focus our main story of
interpreting functors as ideal objects.

50

So far, we have provided a way to interpret the objects of C as the ideal
objects embodied as functors. Now, we have two things to check. First, we
have to make sure that the behavior of these new copies in their new world is
the same as their behavior in their original world. This means that we have
to show that the Yoneda functor is a full and faithful functor, also called
an embedding. Secondly, if F : Cop → Set is an ideal object and if F (A)
encodes the set of all “maps” from A to F , then moving to the new world of
SetC

op

where there is a copy of A, namely yA, and also there is a well-defined
notion of map from this copy to F , stored in Hom(yA, F), we expect to have
a canonical isomorphism between Hom(yA, F) and F (A). This expectation
is fortunately a theorem and it is called the Yoneda lemma. We first prove
this lemma and then we will use it to prove the fullness and faithfulness of
y : C → SetC

op

.

Theorem 1.4.150. (The Yoneda lemma) The functors Hom(y(−),−) : Cop×
SetC

op → Set and (−)(−) : Cop×SetC
op → Set are naturally isomorphic via

the maps αA,F : Hom(yA, F) → F (A) and ᾱA,F : F (A) → Hom(yA, F)
defined by αA,F (β) = βA(idA) and [ᾱA,F (p)]C(f) = F (f)(p). Specially,
Hom(yA, F) ∼= F (A), natural in A and F .

Proof. We have to show that α and ᾱ are natural transformations and for
each A and F the maps α(A,F) and ᾱA,F are the inverse of each other in Set.
For the first, note that β = ᾱA,F (p) is a natural transformation because

Hom(D,A) F (D)

Hom(C,A) F (C)

βD

βC

Hom(g,A) F (g)

But F (g)βD(f) = F (g)F (f)(p) = F (gf)(p). For naturality, we just check
the naturality for α. The naturality of ᾱ will be the result of the fact that
it is the pointwise inverse of α. For α, we have to show that for any map
f : B → A and any γ : F ⇒ G:

Hom(yA, F) F (A)

Hom(yB, G) G(B)

α(A,F)

α(B,G)

Hom(yf ,γ) G(f)γA=γBF (f)

51

It is not hard to prove the commutativity of the diagram and we will leave
this tiresome task to the reader. For the second part, note that any β ∈
Hom(ya, F) is uniquely determined by βA(idA). The reason is the following
naturality diagram, for a map f : C → A:

Hom(A,A) F (A)

Hom(C,A) F (C)

βA

βC

Hom(f,A) F (f)

which implies that for any f : C → A, we have βC(f) = F (f)(βA(idA)).
This shows that ¯αA,FαA,F (β) = ᾱA,F (βA(idA)) = β as both ᾱ(βA(idA)) and
β on C and f are βC(f) = F (f)(βA(idA)). For the converse, we simply have
αA,F ᾱA,F (p) = F (idA)(p) = p.

Corollary 1.4.151. (The Yoneda embedding) The functor y : C → SetC
op

is
full and faithful.

Proof. By the Yoneda lemma, the map ᾱA,yB : yB(A) = Hom(A,B) →
Hom(yA, yB) is a natural isomorphism. Computing ᾱA,yB , we see that

[ᾱA,yB(f)]C(g) = yB(f)(g) = fg = [yf]C(g),

for any C and g : C → A. Hence, ᾱA,yB(f) = yf . Therefore, the map y(−) :
Hom(A,B)→ Hom(yA, yB) is a bijection which means that y : C → SetC

op

is a full and faithful functor.

Philosophical Note 1.4.152. Note that this embedding is a representation
theorem stating that any abstract category can be seen as a category of
variable sets. This is useful, as the category SetC

op

is a category of sets with
set-like behavior. Hence, whenever we want to investigate something about
C, we can embed it into SetC

op

to have enough set-theoretic machinery. Then,
if we finally reach a representable functor, we can come back to the original
category we started with.

Corollary 1.4.153. (Uniqueness of the representing object) yA ∼= yB iff
A ∼= B. The same holds for y(−).

Proof. Since the Yoneda functor is full and faithful and for any such functor
F , we have F (A) ∼= F (B) iff A ∼= B, the claim follows.

52

Philosophical Note 1.4.154. From the philosophical point of view, the
uniqueness of the representing object means that the relative data of an
object is enough to identify it. Therefore, whenever it is convenient, we
forget the object and work with its functor.

Example 1.4.155. Using the relative behavior of tensor products, we prove
that it is commutative, i.e., U ⊗ V ∼= V ⊗ U and R⊗ V ∼= V . We have

Hom(U ⊗ V,W) ∼= BilinU,V (W) ∼= BilinV,U(W) ∼= Hom(V ⊗ U,W)

natural in W . Hence, yU⊗V ∼= yV⊗U which implies U ⊗ V ∼= V ⊗ U . With
the same line of reasoning, we have

Hom(R⊗ V,W) ∼= BilinR,V (W) ∼= Hom(V,W)

natural in W . Hence, yR⊗V ∼= yV which implies R⊗ V ∼= V .

We will see more applications later, but first, we want to use our new
machinery to define some new categorical objects by identifying the relative
behavior that we expect them to have. Then, the uniqueness of the repre-
senting object ensures that the defined object is unique up to isomorphism.
To that purpose, it is convenient to provide an equivalent characterization
of the representable functors by one of the core notions of category theory,
namely the universality.

Theorem 1.4.156. (Universal elements) A functor F : Cop → Set is repre-
sentable iff there exists an object A in C and an element a ∈ F (A) such that
for any object B and any element b ∈ F (B), there exists a unique f : B → A
such that F (f)(a) = b. The object A and the element a ∈ F (A) are called
the universal object and the universal element, respectively.

Proof. By Yoneda lemma, an element a ∈ F (A) corresponds to the natural
transformation β : yA ⇒ F , defined by βC(f) = F (f)(a). Note that β is a
natural isomorphism iff βC is an isomorphism for all C. The latter is exactly
what the universality condition says.

Philosophical Note 1.4.157. If we read F as a structured set, then a ∈
F (A) may be interpreted as the generic point of the generic structure that
can act as all structures and all elements generically.

Remark 1.4.158. Note that the universal pair (A, a) if exists is unique up
to isomorphism, i.e., if both (A, a) and (B, b) are universal for F , then there
exists an isomorphisms f : B → A such that F (f)(a) = b. Why?

53

Example 1.4.159. For the functor P ◦ : Setop → Set, the universal element
is {1} ∈ P ({0, 1}). The universality condition states that any set U ∈ P (X)
is obtainable by applying P ◦(f) = f−1 on {1}, for a unique f : X → {0, 1}.
This unique function is the characteristic function of U in X.

Example 1.4.160. For the forgetful functors U : Mon→ Set, V : Grp→
Set and W : VecR → Set, the universal elements are 1 ∈ U(N) = N,
1 ∈ V (Z) = Z and 1 ∈ W (R) = R. We just explain the case of monoids.
The reason is that for any element m ∈ U(M), there exists a unique monoid
homomorphism f : N→M such that U(f)(1) = f(1) = m.

Example 1.4.161. For the functor Hom(A,−)×Hom(B,−) : Set→ Set,
the universal element is (i0, i1) ∈ Hom(A,A+ B)×Hom(B,A+ B), where
i0 : A → A + B is defined by i0(a) = (0, a) and i1 : B → A + B is defined
by i1(b) = (1, b). The reason is that for any set C and any element (f, g) ∈
Hom(A,C) × Hom(B,C), there exists a unique map h : A + B → C such
that [Hom(A, h)×Hom(B, h)](i0, i1) = (hi0, hi1) = (f, g), i.e.,

D

A A+B B
i0 i1

f g
h

Example 1.4.162. For the functor Hom(−, G) × Hom(−, H) : Grpop →
Set, the universal element is (p0, p1) ∈ Hom(G×H,G)×Hom(G×H,H),
where p0 and p1 are the projections. The reason is that for any group K and
any element (f, g) ∈ Hom(K,G) × Hom(K,H), there exists a unique map
h : K → G ×H such that [Hom(h,G) ×Hom(h,H)](p0, p1) = (p0h, p1h) =
(f, g), i.e.,

K

G G×H Hp0 p1

f g
h

Example 1.4.163. For the functor BilinU,V : VecR → Set, the universal
element is i ∈ Bilin(U ⊗ V), where i : U × V → U ⊗ V is defined by the
bilinear function i(u, v) = u⊗v. The universality condition says that for any

54

element f : BilinU,V (W) = {f : U × V → W | f is bilinear}, there exists a
unique linear map g : U ⊗ V → W such that Bilin(g)(i) = gi = f , i.e.,

U × V

U ⊗ V Wg

i
f

Philosophical Note 1.4.164. There are two ways to interpret a function
f : A → B in Set. First, as an A-indexed element of B or simply an
A-element of B, reading a parameter a ∈ A to output f(a) ∈ B:

•
•
•

a
b

x

y

c

A

B

•

•

f

Here we are labelling the elements of B by A. In the second interpretation,
we read a map f : A→ B as a B-indexed family of subsets of A, a B-subset
of A or just a fibration over B, mapping b ∈ B to the set (fiber) f−1(b) ⊆ A:

•

A

Bb

f−1(b)

f

A

B

Here we are stacking the elements of A by B. Thanks to Yoneda embed-
ding, it is reasonable to lift these interpretations to any arbitrary category,

55

by interpreting objects as variable sets and morphisms as variable functions.
This way, we can interpret a map f : A → B as some sort of A-element of
B, reading a parameter a : X → A to output fa : X → B or as some sort of
B-part of A or a fibration over B, reading a parameter b : X → B to output
the fiber {a : X → A | fa = b}.

These two interpretations are useful in different settings. Usually, in a
category, we have some small simple known objects and to know any arbitrary
object A, we investigate the maps to/from A from/to these simple objects.
For instance, in geometry, we investigate a geometrical object by the maps
from the Euclidean cubes or the higher dimensional balls into it, while in
algebra, we study an algebraic object by more relations we can put on its el-
ements transforming the algebra to simpler algebras of the same kind. These
two dual approaches is what distinguish geometrical from algebraic way of
thinking. In some cases, it is possible to see both of the approaches at the
same time. For instance, living in Set, as {0} and {0, 1} are simple, we can
study X geometrically by all the maps going from {0} to X, i.e., its elements,
while investigating X by the maps from X to {0, 1} is the algebraic study
of X via the boolean algebra of its subsets. A similar situation happens in
algebraic geometry, logic and functional analysis. In the first, we can study
a polynomial equation either by working in the polynomial algebra modulo
the equation or by the zeros the equation has in some choice of simple rings
such as algebraically closed fields. In logic we have syntax versus semantics
and in functional analysis we can study a topological space either by looking
inside the topology or by working with its function algebra as the world of
measurable quantities over the space.

Finally, note that using these two interpretations, if we interpret A as our
interesting object in a category C, the slice category C/A is the category of all
fibration over A, while the coslice category A/C is the category of A-enhanced
objects having a distorted copy of A inside.

Now, we are ready to define some categorical constructions by repre-
sentability or equivalently by universality.

Definition 1.4.165. An object A is called terminal if it represents the func-
tor ∆1 : Cop → Set, i.e., Hom(B,A) ∼= {0}, natural in B. Equivalently, A
is terminal if for any B, there exists a unique map form B to A. Since this
object is unique up to isomorphism, we denote it by 1.

Example 1.4.166. In categories Set, Grp, Ab, VectR and Cat, the ter-
minal object exits and is {0}, interpreted respectively. In a poset (P,≤), the

56

terminal object is by definition an element a ∈ P such that for any b ∈ P , we
have b ≤ a. Hence, the terminal object is the greatest element of the poset.
Any non-trivial monoid as a category does not have a terminal object, be-
cause if the only object of a monoid is terminal, then there must be exactly
one morphism over that object.

Example 1.4.167. In the category C/A, the terminal object is idA : A→ A,
as for any object g : B → A, there is exactly one morphisms g : B → A such
that idAg = f and that morphism is f itself.

B A

A

idAf

g

In Set/A the terminal object idA : A → A corresponds to the fibration
a 7→ {a}.

Example 1.4.168. In the category SetC
op

, the terminal object is ∆1 : Cop →
Set, as for any functor F : Cop → Set, there is exactly one natural transfor-
mation α : F ⇒ ∆1, where αC : F (C)→ {0} maps everything to 0.

Definition 1.4.169. Let A and B be two objects. An object C together
with a natural isomorphism α : Hom(−, C) ∼= Hom(−, A) × Hom(−, B) is
called a product of A and B. Equivalently, C together with two morphisms
p0 : C → A and p1 : C → B is called a product if for any object D and any
morphisms f : D → A and g : D → B, there exists a unique map h : D → C
such that:

D

A C Bp0 p1

f g
h

The product of A and B is denoted by A×B. It is possible to extend products
from the binary case to any arbitrary family. More precisely, if I is a set and
{Ai}i∈I is a family of objects in C, by their product we mean an object C
together with a natural isomorphism α : Hom(−, C) ∼= Πi∈IHom(−, Ai).
Equivalently, it is an object C with maps pi : C → Ai such that for any
other family of maps fi : D → Ai, there exists a unique map h : D → C such
that pih = fi, for any i ∈ I. The product of {Ai}i∈I is denoted by Πi∈IAi.

57

Example 1.4.170. In categories Set, Top, Grp, Ab, VectR and Cat, the
product is the usual product. In a poset (P,≤), the product of a family
{ai}i∈I is by definition the greatest lower bound of {ai}i∈I i.e., an element
c such that c ≤ ai for all i ∈ I and for any d ∈ P if d ≤ ai for all i ∈ I
then d ≤ c. For the prototype posets, namely posets of subsets of X with
inclusion, if they are closed under arbitrary intersection, the intersection of
a family of subsets will be the product of the subsets. Products in posets are
usually called meets and denoted by

∧
or for finite families with ∧. For the

unique object ∗ in a non-trivial finite monoid as a category, even the binary
product ∗ × ∗ does not exists, because if it does, it must be ∗ and we must
have:

M = Hom(∗, ∗) ∼= Hom(∗, ∗ × ∗) ∼= Hom(∗, ∗)×Hom(∗, ∗) = M ×M

which is impossible.

Philosophical Note 1.4.171. When one sees the product topology for the
first time, one may wonder why such a topology and its bias towards using
only finite proper opens in the basis elements Πi∈IUi is natural. Here is
the answer. The product together with this topology is the product. For
us, behaving as a product has a clear structural meaning and the object
that represents this behavior may incarnate in many different forms in the
different contexts. In Top this topology is what we have to use to have the
product. Its construction, though, is secondary to what it must perform.

Example 1.4.172. (Pullback) What is a binary product of two objects f :
B → A and g : C → A in C/A? It is an object h : D → A and two morphism
p0 : D → B and p1 : D → C such that:

D

B C

A

g

p0

h

p1

f

and for any other object e : E → A and any morphisms q from e to f and r

58

from e to g, there exists a unique map from E to D such that:

E

D

B C

A

g

p0

h

p1

f

q r

Usually people write this data as:

E

D C

B A

gp0

p1

f

q

r

and call the square a pullback square, p0 a pullback of g along f and p1 a
pullback of f along g. The pullback is also called the fiber product as it is
actually the product in the category of fibrations over A. Sometimes, the
object D itself is loosely called the pulllback and it is denoted by B ×A C.

Example 1.4.173. All pullbacks exist in the category Set. More precisely,
for the two functions f : B → A and g : C → A, the pullback is B ×A C =
{(b, c) ∈ B × C | f(b) = g(c)} with the projection maps. Reading the data
as fibrations, the fiber corresponding to B ×A C over a ∈ A is nothing but
f−1(a)× g−1(a) that is the pointwise product of fibers.

Example 1.4.174. In the category SetC
op

, the product of E : Cop → Set
and F : Cop → Set is defined pointwise, i.e., (E × F)(A) = E(A) × F (A)
and (E × F)(f) = E(f) × F (f) : E(B) × F (B) → E(A) × F (A), for any
f : A → B in C. The projections p0 : E × F ⇒ E and p1 : E × F ⇒ F are
also defined pointwise, i.e., (p0)C : E(C) × F (C) → E(C) by projection on
the first element and similarly for p1.

59

Example 1.4.175. (Non-existence of terminal objects and binary products)
For an easier example, consider the poset (N,≤). This poset has no greatest
element and hence no terminal object. For product, take the poset (P,⊆) of
all infinite subsets of N. Then, the product (meet) of the set E of the even
numbers and O of the odd numbers does not exists, as there is no infinite
set below both of them. For a more interesting example, take the category
of fields. This category has no terminal object, because if F is terminal,
for any other field E, there must be a map from E to F . However, any
map between two fields is one-to-one and hence F must have the maximum
cardinality between all fields which is impossible. The binary product also
does not exist. For instance, if the field F = Q × Zp exists, then it has two
maps one into Q and one into Zp. Since p · 1 = 0 in Zp and the maps are
one-to-one, we must have p · 1 = 0 in F and hence in Q which is impossible.
Restricting fields to a fixed characteristic p can not solve the problem. It is
enough to pick a field F with a non-identity endomorphism e : F → F . (For
p = 0, pick F = C and e(z) = z̄ and for a prime p, pick F as a filed with p2

elements and e(x) = xp. In the latter case, e is not identity as the equation
xp = x has at most p roots while the field has p2 elements). Then, we claim
that F × F does not exist. If it does, call it K. Then, by the universal
property of the product, there is h : F → K such that:

F

F K Fp0 p1

idF idF
h

Since p0h = p1h = idF , both p0 and p1 are surjective. Since p0 and p1 are also
one-to-one, they are bijections and hence h is a bijection. Since p0h = p1h,
we have p0 = p1. Now, by the universal property of the product again, there
must be h′ : F → K such that:

F

F K Fp0 p1

idF e
h′

But as p0 = p1 and e 6= idF , this is impossible.

Definition 1.4.176. An object A is called initial if it corepresents the func-
tor ∆1 : C → Set, i.e., Hom(A,B) ∼= {0}, natural in B. Equivalently, A

60

is initial if for any object B, there exists a unique map from A to B. The
initial object is denoted by 0.

Example 1.4.177. In the category Set the initial object is the empty set.
In Grp and VectR it is {0}. In Cat it is the empty category. In a poset
(P,≤), the initial object is by definition the least element. Any non-trivial
monoid as a category does not have an initial object, because if the only
object of a monoid is initial, then there must be exactly one morphism over
that object.

Example 1.4.178. In the category A/C, the initial object is idA : A → A,
as for any object f : A→ B, there is exactly one morphisms g : A→ B such
that g ◦ idA = f . The morphism is f itself:

A

A B

idA f

g

Example 1.4.179. In the category SetC
op

, the initial object is ∆∅ : Cop →
Set as for any functor F : Cop → Set, there is exactly one natural trans-
formation α : ∆∅ ⇒ F , that is defined by αC : ∅ → F (C), where αC is the
empty function.

Definition 1.4.180. Let A and B be two objects. An object C together
with a natural isomorphism α : Hom(C,−) ∼= Hom(A,−) × Hom(B,−) is
called a coproduct of A and B. Equivalently, C together with two morphisms
i0 : A→ C and i1 : B → C is called a coproduct if for any object D and any
morphisms f : A→ D and g : B → D, there exists a unique map h : C → D
such that:

D

A C B
i0 i1

f g
h

The coproduct is denoted by A+B. It is possible to extend coproducts from
the binary case to any arbitrary family. More precisely, if I is a set and
{Aj}j∈J is a family of objects in C, by their coproduct, we mean an object
C together with a natural isomorphism α : Hom(C,−) ∼= Πj∈JHom(Aj,−).

61

Equivalently, it is an object C with maps ij : Aj → C such that for any other
family of maps fj : Aj → D, there exists a unique map h : C → D such that
hij = fj, for any j ∈ J . The coproduct of {Aj}j∈J is denoted by Σj∈JAj.

Example 1.4.181. In the category Set, the coproduct is the disjoint union
with its injection functions. In Ab and VectR, coproduct equals to the
product. In Cat, the coproduct is the coproduct we saw before. In a poset
(P,≤), the coproduct of a family {ai}i∈I is by definition the least upper bound
of {ai}i∈I i.e., an element c such that ai ≤ c, for all i ∈ I and for any d ∈ P
if ai ≤ d, for all i ∈ I then c ≤ d. For the prototype posets, namely posets
of subsets of X with inclusion, if they are closed under arbitrary union, the
union of a family of subsets will be the coproduct of the subsets. Coproducts
in posets are usually called joins and denoted by

∨
or for finite families with

∨. For the unique object ∗ in a non-trivial finite monoid as a category, the
coproduct ∗+ ∗ does not exists, because if it does, it must be ∗ and we must
have:

M = Hom(∗, ∗) ∼= Hom(∗+ ∗, ∗) ∼= Hom(∗, ∗)×Hom(∗, ∗) = M ×M

which is impossible.

Philosophical Note 1.4.182. When one sees the finite product in Ab for
the first time, it may be confusing why one notion has two names, diresct sum
and direct product. Later, seeing the general case, one can see the difference
in general that collapses in the finite case. However, one may still wonder
why we need the finiteness condition in the definition of the direct sums?
Similar to what we saw for product topology, we have the same thing here.
The direct sum is the coproduct in Ab. For us, behaving as a coproduct has
a clear structural meaning and the object that represents this behavior may
incarnate in many different forms in the different contexts. In Ab this group
is what we have to use to have the coproduct. Its construction, though, is
secondary to what it must perform.

Example 1.4.183. (Pushout) What is a coproduct of two objects f : A→ B
and g : A → C in A/C? It is an object h : A → D and two morphism
i0 : B → D and i1 : C → D such that:

A

B C

D

g

i0

h

i1

f

62

and for any other object e : A→ E and any morphisms q from f to e and r
from g to e, there exists a unique map from D to E such that:

A

B C

D

E

g

i0

h

i1

f

q r

Usually people write this data as:

A C

B D

E

g

i0

i1f

q

r

and call the square a pushout square, i1 a pushout of f along g and i0 a
pushout of g along f . The pushout is also called the cofiber coproduct as it
is dual to fiber product. Sometimes, the object D itself is loosely called the
pushout and it is denoted by B +A C.

Example 1.4.184. All pushouts exist in the category Set. More precisely,
for the two functions f : A → B and g : A → C, the pushout is B +A

C = B + C/ ∼=, where ∼ is the lest equivalence relation generated by
{f(a) = g(a) | a ∈ A} with the injection maps. Reading the data as A-
enhanced sets, the pushout is nothing but the disjoint union of B and C in
which the two copies of A are glued together. The same is also true for the
category Top where B + C/ ∼ is equipped with the quotient topology, i.e.,
the topology where U is open in B +C/ ∼ if either i−1

0 (U) is open in B and
i−1
1 (U) is open in C. As a concrete example, when A = {0}, the pushout is

the notion of coproduct in the category of pointed spaces. For instance, S1

is the pushout of i : {0, 1} → [0, 1] along i : {0, 1} → [0, 1], where i is the

63

inclusion function:
{0, 1} [0, 1]

[0, 1] S1

i

i

In Ab, the pushout is B ⊕ C/N , where N is the subgroup generated by
f(a)− g(a)’s for any a ∈ A. In CRing, it is B ⊗A C, considering B and C
as A-algebras via the maps f : A→ B and g : A→ C.

Example 1.4.185. One can thinks of pushouts as scalar extensions (cobase
change) in the algebraic world as the dual of the geometric base change
operation. For instance, if we have an algebras structure over a field K such
as Mn(K), then changing the field of scalaras from K to a greater field L ⊇ K
is the pushout

K L

Mn(K) Mn(K)⊗K L = Mn(L)

i

a7→aIn a7→aIn

Philosophical Note 1.4.186. For the newcomers in topology, the quotient
topology is something complex and mysterious. The structural way of think-
ing makes it simpler by proposing that it is the gluing in the category of
Top. The quotient topology is just secondary to the pushout role it plays.
The same holds for tensor product of A-algebras. They are just the gluing
of rings as A-enhanced objects.

Philosophical Note 1.4.187. Structural way of thinking is useful as it
shows that gluing of pointed spaces and tensor product of A-algebras for the
fixed A are the same thing. Moreover, we can see that this construction is
dual to the fiber product of topological spaces. Does it mean that something
geometric lives in CRing, dully, where tensor product plays the role of fiber
product?

Example 1.4.188. In the category SetC
op

, the coproduct of E : Cop → Set
and F : Cop → Set is defined pointwise, i.e., (E + F)(A) = E(A) + F (A)
and (E + F)(f) = E(f) + F (f) : E(B) + F (B) → E(A) + F (A), for any
f : A→ B in C. The injections i0 : E ⇒ E +F and i1 : F ⇒ E +F are also
defined pointwise, i.e., (i0)C : E(C) → E(C) + F (C) by usual set injection
and similarly for i1.

64

Remark 1.4.189. (Duality) Note that a terminal object in C is an initial
object in Cop and the same also holds for the pair product/coproduct and
pullback/pushout. In this sense, these pairs of notions are dual to each other
or in its slogan form they are the same thing, reversing the arrows.

Example 1.4.190. (Non-existence of initial objects and binary coproducts)
For an easier example, consider the poset (Z,≤). This poset has no least
element and hence no initial object. For coproduct, take the poset (P,⊆) of
all subsets of N whose complement is infinite. Then, the coproduct (join) of
the set E of the even numbers and O of the odd numbers does not exists, as
the only subset above both of them is N whose complement is finite. For a
more interesting example, take the category of fields. This category has no
initial object, because, for any other field E, there must be a map from F to
E. As any map between two fields is one-to-one, the characteristics of E and
F equals which excludes all E’s with different characteristics. The binary
product also does not exist for the same reason. Restricting fields to a fixed
characteristic p can not solve the problem. The reason is similar to what we
had for products before.

Definition 1.4.191. Let C be a category with products and A and B be two
objects. An object C together with a natural isomorphism α : Hom(−, C) ∼=
Hom(− × A,B) is called an exponentiation of B to A. Equivalently, an
exponentiation of B to A is an object C together with a morphism ev :
C × A → B such that for any f : D × A → B, there exists a unique
g : D → C such that:

D × A

C × A Bev

f
g×idA

The exponentiation is denoted by BA.

Example 1.4.192. In the category Set, the exponential is BA = {f : A→
B} with the morphism ev : BA × A → B by ev(f, a) = f(a). In Cat,
the exponential category is defined by DC as the functor category and ev :
DC × C → C by ev(F,A) = F (A) and ev(α, f) = αBF (f) = G(f)αA, for any
f : A→ B and α : F ⇒ G. The last equality is because of the naturality of α.
In a poset (P,≤), the exponentiation is by definition the least element c such
that c∧a ≤ b i.e., an element c such that c∧a ≤ b and for any d ∈ P if d∧a ≤ b
then d ≤ c. For the prototype posets, namely posets of subsets of X with

65

inclusion, if they are closed under arbitrary union and finite intersections, the
exponentiation of two subsets U and V are V U =

⋃
{W ∈ P | W ∩ U ⊆ V }.

Exponential objects in posets are called Heyting implications and denoted
by →.

We saw how to define categorical constructions by representability. Here,
we show how these constructions are functorial.

Theorem 1.4.193. Let F : Cop × D → Set be a functor such that for
any object D in D, the functor F (−, D) is representable. Then, there ex-
ists a unique (up to natural isomorphism) functor G : D → C such that
Hom(C,G(D)) ∼= F (C,D), natural in C and D.

Proof. Since for any D, the functor F (−, D) : Cop → Set is representable,
there is an object G(D) in C such that Hom(C,G(D)) ∼=αC,D F (C,D), nat-
ural in C. For maps, if f : D → E is a map in D, we define G(f) as the
unique morphism whose Yoneda is yG(f) = α−1

C,EF (idC , f)αC,D:

yG(D) F (C,D)

yG(E) F (C,E)

yG(f) F (idC ,f)

αC,D

αC,E

It is easy to see that G is a functor and αC,D is also natural in D. For
uniqueness, assume there are G and H have the property. Then,

Hom(C,G(D)) ∼= F (C,D) ∼= Hom(C,H(D))

Hence, yG(D)
∼= yH(D), natural in D. By Yoneda embedding, we have G(D) ∼=

H(D), natural in D.

Remark 1.4.194. Dually, if F : C × D → Set is a functor such that
for any object D in D, the functor F (−, D) is corepresentable, there ex-
ists a unique (up to natural isomorphism) functor G : D → Cop such that
Hom(G(D), C) ∼= F (C,D), natural in C and D.

As an application, we can see that products, coproducts and exponentials
define functors. For products, it is enough to set F : Cop × C × C → Set
as F (X,A,B) = Hom(X,A) × Hom(X,B) to reach G(A,B) = A × B as
the product functor. The case for coproduct is similar. For the exponential
functor, set F : Cop × Cop × C → Set as F (X,A,B) = Hom(X × A,B) to

66

reach G(A,B) = BA as the exponential functor.
It is always possible to provide the functor by the universal behavior that
is usually tiresome. Let’s do it once for product as it has some pedagogical
value. Assume f : A → C and g : B → D are two morphisms and we want
to define f × g : A×B → C ×D. By the universal property of C ×D, it is
enough to provide two maps from A× B → C and A× B → D and the we
will have our map automatically. For these two maps, pick:

A×B

C C ×D D

f×g

p1p0

gp1fp0

We will rewrite the previous diagram as

A A×B B

C C ×D D

f×g

p1p0

p1

g

p0

f

to have a more suggestive shape in our later computation. Now, we have
to show that product is a functor. For that matter, assume i : C → E and
j : D → F and we have to show that (fi)× (gj) = (f × g) ◦ (i× j). We have

A A×B B

C C ×D D

E E × F F

f×g

p1p0

p1

g

p0

f

i×j ji

p0 p1

Since all the small squares commute, the outer two vertical rectangular also

67

commutes, meaning

A×B

C ×D

E E × F F

f×g

i×j

p0 p1

(jg)p1(if)p0

But by definition, there is only one vertical map that makes the diagram
commutative, i.e., (f × g) ◦ (i × j). Hence, (f × g) ◦ (i × j) = (fi) × (gj).
The proof for id× id = id is similar.

Example 1.4.195. (Yoneda lemma as a computational tool) In any category
with binary product and terminal object, we have A× 1 ∼= A, natural in A.
As we saw before, we have to show that these two objects have the same
behavior. We have

Hom(X,A× 1) ∼= Hom(X,A)×Hom(X, 1) ∼= Hom(X,A)

Hence, yA×1
∼= yA which by Yoneda lemma implies A× 1 ∼= A. Similarly, it

is possible to prove that product is symmetric, i.e., A×B ∼= B ×A and it is
associative, i.e., A× (B × C) ∼= (A×B)× C.
Again, it is possible to do the same thing by the universal property. To prove
that A × 1 ∼= A, we must provide two maps, one from A to A × 1 and one
from A× 1 to A such that they become each other’s inverses. For these two
maps, pick f = p0 : A × 1 → A and g = 〈idA, !〉 : A → A × 1. The latter is
the unique map that makes the following commutative:

A

A A× 1 1p1p0

idA !〈idA,!〉

It is clear that fg = p0〈idA, !〉 = idA. For the converse, consider the following

68

diagram

A A× 1 1

A A 1

A A× 1 1p1p0

p1p0

p0

〈idA,!〉

idA !

!

!

idA

idA

It is easy to see that all small squares are commutative and hence the outer
two vertical rectangular must be commutative, meaning

A× 1

A

A A× 1 1p1p0

p0

〈idA,!〉

!p0

But the only vertical map that makes the diagram commutative is idA×1.
Hence, 〈idA, !〉p0 = idA×1.

Example 1.4.196. (Yoneda lemma as a computational tool) In any category
with coproduct, product and exponentiation, we have A × (B + C) ∼= A ×
B+A×C, natural in A, B and C. To show that these two objects have the
same behavior, note that

Hom(A×(B+C), D) ∼= Hom((B+C), DA) ∼= Hom(B,DA)×Hom(C,DA) ∼=

Hom(A×B,D)×Hom(A× C,D) ∼= Hom(A×B + A× C,D)

Hence, yA×(B+C) ∼= yA×B+A×C which by Yoneda lemma implies A×(B+C) ∼=
A×B + A× C.

Example 1.4.197. Let (Sub(R2),⊆) be the poset of all linear subspaces of
R2. In this poset, all joins and meets exist. Meets are just intersections and
joins are the linear subspaces generated by the unions. However, we do not

69

have the equality M × (N +K) = M ×K +N ×K and hence the category
does not have all exponentials. To show the failure of the equality, set M ,
N and K as three distinct lines going through the origin in R2. It is clear
that N + K = R2 and hence M × (N + K) = M ∩ (N + K) = M , while
M ×N = M ×K = {0} and {0}+ {0} = {0} 6= M .

Example 1.4.198. (Non-existence of the exponential objects) Let C be a
non-preorder category with the initial and terminal objects where 0 ∼= 1.
Then, C does not have all exponentials, because if it does, then we must have

Hom(A,B) ∼= Hom(1× A,B) ∼= Hom(1, BA) ∼= Hom(0, BA)

But the last set has exactly one element. Hence Hom(A,B) must have
exactly one element, for any choice of A and B, which is a contradiction. As
a consequence, the categories Grp, Ab and VecR don’t have all exponential
objects.

Exercise 1.4.199. It seems that in Ab, the object HG consisting of all
homomorphisms from G to H with the pointwise addition is the exponential
object of H by G. Find what is missing here.

Philosophical Note 1.4.200. (Convenient category of spaces) The cate-
gory Top does not have all the exponentials and this fact makes the cate-
gory somewhat cumbersome to work with. One way to overcome this issue is
moving to a convenient category of topological spaces that includes a copy of
all the tame interesting topological spaces like CW-complexes while having
good properties including the closure under products and exponentiation.
Steenrod proposed a list of such good properties for such a category. How-
ever,

It is also known that these propositions do not hold in the category
of all Hausdorff spaces. In fact arguments have been given that
which imply that there is no convenient category in our sense.

However, Steenrod himself introduced such a category. He explains the ap-
parent mismatch by:

The arguments are based on a blind adherence to the customary
definitions of the standard operations. These definitions are suit-
able for the category of Hausdorff spaces, but they need not be
for a subcategory. The categorical viewpoint enables us to defrost
these definitions and bend them a bit.

70

In fact, the customary definition that needs to change is the construction
of the product. In Steenrod’s category, a subcategory of the category of all
Hausdorff spaces, all the products exist but its topology is far from the usual
product topology and the adherence to this usual topology is what made
the others blind to find the right category. With a bit of provocation, let’s
conclude that history also suggests the priority of the relative behavior of
the entities to their absolute constructions.

Example 1.4.201. (Yoneda lemma as a tool to define functors: subobject
classifier) Consider the functor Sub : (SetC

op

)op → Set mapping a functor
F : Cop → Set to the set of all sub-functors of F and a natural trans-
formation to the pre-image function. This functor is representable by a
functor Ω : Cop → Set, i.e., Sub(F) ∼= Hom(F,Ω). Let’s guess this func-
tor. Using the Yoneda lemma, we know that Ω(A) must be equivalent to
Hom(yA,Ω). However, we expect Hom(yA,Ω) to be equivalent to Sub(yA).
Therefore, we can define Ω(A) as Sub(yA) and check if it really works, i.e.,
if Sub(F) ∼= Hom(F,Ω), natural in F . We will not present the details here,
but it fortunately holds.

Philosophical Note 1.4.202. Note that Ω plays the role of {0, 1} in Set.
Therefore, it is reasonable to say that the object Ω is the variable set of the
truth values of the new world SetC

op

. More precisely, let F be a variable set.
Then, any map from F to Ω is a characteristic map of a variable subsets of F
assigning truth values to the “elements” of F , according to the way that the
subfunctor sits inside F . Such an Ω with this behavior is called a subobject
classifier.

Example 1.4.203. (Yoneda lemma as a tool to define functors: exponential
object) The category SetC

op

has all exponential objects. To prove that, we
use the Yoneda lemma again. Let E,F : Cop → Set be two functors. We need
to define FE such that Hom(E ×X,F) ∼= Hom(X,FE). Again set X = yA.
Then, we have to have Hom(E× yA, F) ∼= Hom(yA, F

E). But Hom(yA, F
E)

must be equivalent to FE(A), by Yoneda lemma. Therefore, it is enough to
define FE by FE(A) = Hom(E × yA, F). The only thing to check is that if
FE satisfies the more general Hom(E × X,F) ∼= Hom(X,FE). Again, we
will not present the details here, but it fortunately holds.

Definition 1.4.204. Let f, g : A → B be two morphisms. Define the
functor Eqf,g : Cop → Set by Eqf,g(X) = {i : X → A | fi = gi} and
Eqf,g(j) = (−)◦j. By the equalizer of f and g, we mean the object C together
with the natural isomorphism Hom(X,C) ∼= Eqf,g(X). Equivalently, the
equalizer of f and g is the object C together with a map h : C → A such

71

that fh = gh, i.e.,

C A B
g

f

h

and for any other map i : X → A such that fi = gi, there exists a unique
map j : X → C such that

X

C A B
g

f

h

ij

It is called the equalizer of f and g, as it equalizes f and g.

Example 1.4.205. In a poset as there is at most one map between any two
objects, the equalizer of any pair f, g : A→ B exists and it is idA : A→ A.
In any groupoid, any two maps f, g : A → B has the equalizer iff they are
equal and the equalizer is again idA : A → A. More generally, the equalizer
of two equal maps always exists and it is the identity of the source object.

Example 1.4.206. In Set, any two maps have the equalizer. Let f, g : A→
B be two functions. It is easy to see that the set C = {x ∈ A | f(x) = g(x)}
together with the inclusion i : C → A is the equalizer. The same also works
for Grp, Ab and VecR, in which C inherits the algebraic structure of A. For
Grp, note that the equalizer of f : G→ H and the constant map ce : G→ H
mapping everything to eH is exactly the kernel of f . More generally, if a
category has a zero object (when 0 ∼= 1), then the kernel of a map f : A→ B
may be defined as the equalizer of f and 0A,B : A → 1 ∼= 0 → B, where
the maps A→ 1 and 0→ B are the unique maps provided by the universal
properties of 0 and 1.

Example 1.4.207. In SetC
op

any two maps have the equalizer and it is
computed pointwise. Let α, β : F ⇒ G be two natural transformations.
Define the functor H : Cop → Set on objects by H(A) = {x ∈ F (A) |
αA(x) = βA(x)} and on morphism f : B → A by H(f) = F (f)|H(A) :
H(A)→ H(B). It is easy to check that H is a functor, the canonical inclusion
iA : H(A) → F (A) is a natural transformation and the whole data is the
equalizer of α and β.

Theorem 1.4.208. Let C be a category that has the terminal object. Then,
C has all pullbacks iff it has all binary products and all equalizers.

72

Proof. If a category has the terminal object and all pullbacks, then it has
the binary product, computed as the pullback:

C B

A 1

!

!

p1

p0

To prove that C, p0 and p1 is the product, note that if we have f : D → A
and g : D → B, then as there is only one map from D to 1, we have !f =!g,
and as the square is a pullback, there exists a unique map h : D → C such
that:

D

C B

A 1

!

!

p1

p0

g

f

h

Now, we prove that all equalizers exist. Let f, g : A → B be two maps.
Consider the following pullback:

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

We claim that p0 : C → A is the equalizer. First, as the square is commu-
tative, we have fp0 = gp0. Moreover, if there is a map i : D → A such that
fi = gi, then we have

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

73

As the square is a pullback, there is a map j : D → C such that p0j = i, i.e.,

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

j

The only thing remains to prove it the uniqueness of this j. If there is
k : D → C such that p0k = i, then it is easy to see that k we have:

D

C A

B B ×B

〈f,g〉

〈idB ,idB〉

p0

p1

i

fi=gi

k

and as the square is the pullback, we have k = j.
Conversely, if the binary products and the equalizers exist, then pullback
also exists. Let f : A→ C and g : B → C be two maps. Then, consider the
equalizer:

D A×B C
gp1

fp0e=〈e0,e1〉

we claim that the diagram

D B

A C

e1

e0 g

f

is a pullback. It is clearly commutative. To show the universality, if there is

74

i : E → A and j : E → B such that

E

D B

A C

e1

e0 g

f

i

j

Then, we have

E

D A×B C
gp1

fp0e=〈e0,e1〉

〈i,j〉

which by the fact that e : D → A × B is equalizer, there exists a map
h : E → D such that

E

D A×B C
gp1

fp0e=〈e0,e1〉

〈i,j〉
h

which implies

E

D B

A C

e1

e0 g

f

i

j

h

The uniqueness of h : E → D is easy.

Example 1.4.209. In the previous theorem, the existence of the terminal
object is essential. For instance, if G is a non-trivial group as we observed

75

before, if g 6= h, then they do not have equalizer. But all pullbacks in this
category exist. The reason simply is that for any elements g, h ∈ G, the
square

∗ ∗

∗ ∗

g−1

g

h

h−1

is a pullback, because it commutes and for any other i, j ∈ G such that
gj = hi, we have

∗

∗ ∗

∗ ∗

g−1

g

h

h−1i

j

gj=hi

The map gj = hi is clearly unique.

Definition 1.4.210. Let f, g : A → B be two morphisms. Define the
functor CoEqf,g : C → Set by CoEqf,g(X) = {i : B → X | if = ig}
and CoEqf,g(j) = j ◦ (−). By the coequalizer of f and g, we mean the
object C together with the natural isomorphism Hom(C,X) ∼= CoEqf,g(X).
Equivalently, the coequalizer of f and g is the object C together with a map
h : B → C such that hf = hg, i.e.,

A B C
g

f
h

and for any other map i : B → X such that if = ig, there exists a unique
map j : C → X such that jh = i, i.e.,

A B C

X

g

f
h

i
j

It is called the coequalizer as it is the dual of the equalizer.

76

Example 1.4.211. In a poset the coequalizer of any pair f, g : A→ B exists
and it is idB : B → B. In any groupoid, any two maps f, g : A → B has
the coequalizer iff they are equal and the coequalizer is again idB : B → B.
More generally, the coequalizer of two equal maps always exists and it is the
identity of the target object. In Set, any two maps have the coequalizer.
Let f, g : A → B be two functions. It is easy to see that the set C = B/ ∼
together with the canonical projection p : B → C mapping b to [b] is the
coequalizer, where ∼ ⊆ B × B is the least equivalence relation extending
{(b, c) ∈ B × B | ∃a ∈ A b = f(a) and c = g(a)}. More specifically, if
R ⊆ B × B is an equivalence relation, then B/R is just the coequalizer of
p0, p1 : R → B, where p0 and p1 are the projections. In Top the same
construction works, except that we need the quotient topology. For instance,
the coequalizer of the two ends of the interval [0, 1] is S1:

{0} [0, 1] S1
07→1

07→0

For Ab, the coequalizer of f, g : G → H is the group H/Im(f − g). Note
that the cokernel of f : G → H, i.e., H/Im(f) is the coequalizer of f and
0 : G→ H, where 0 is the map that sends everything to 0H . More generally,
if a category has a zero object, then the cokernel of a map f : A → B may
be defined as the coequalizer of f and 0A,B : A→ 1 ∼= 0→ B.

Example 1.4.212. In Cat, the coequalizer of the functors F,G : 1 → 2
mapping the only object of 1 to the objects of 2 is the category (N,+) and
the map P : 2 → (N,+), mapping objects to the only object of (N,+) and
the only non-trivial map of 2 to the map 1 ∈ N:

1 2 (N,+)
∗7→†

∗7→∗

Similarly, for canonical functors F,G : 1→ I, where

I : ∗ †

the coequalizer is (Z,+) together with the map Q : I → (Z,+), mapping
the objects to the only object of (Z,+) and the two non-trivial maps of I to
1 and −1:

1 I (Z,+)
∗7→†

∗7→∗

77

Reading I as the categorical version of the topological space [0, 1], this co-
equalizer in Cat is reminiscent of the coequalizer

{0} [0, 1] S1
07→1

07→0

in Top. Can we conclude that (Z,+) is the categorical version of the circle
S1? Does it related to the fact that the fundamental group of S1 is (Z,+)?

Example 1.4.213. In SetC
op

any two maps has the coequalizer and it
is computed pointwise. More precisely, let α, β : F ⇒ G be two natu-
ral transformations. It is easy to see that the the functor H defined by
H(A) = G(A)/R(A), where R(A) is the least equivalence relation extend-
ing {(x, y) ∈ G(A) | ∃z ∈ F (A) αA(z) = x anbd βA(z) = y} and for any
f : B → A by H(f) : H(A) → H(B) as the canonical map induced by
G(f). It is easy to check that this H is a functor, the natural projection
pA : G(A) → H(A) is a natural transformation and the whole data is the
coequalizer of α and β.

Philosophical Note 1.4.214. (The Duality Principle) Let φ be a statement
about a category, purely written in the language of objects, arrows, identity
and composition, using identity, boolean operations and quantifiers over ob-
jects and morphisms. We are also allowed to use parameter, meaning names
for some given objects and arrows. For instance, the fact that p0 : C → A
and p1 : C → B is the product of A and B is written as:

∀f : D → A ∀g : D → B ∃! h : D → C [(p0 ◦ h = f) ∧ (p1 ◦ h = g)]

with parameters p0 : C → A and p1 : C → B. Then, by the dual statement
of φ, denoted by φop, we mean the result of flipping all the arrows in φ and
then changing f ◦ g by g ◦ f , everywhere including in the parameters. For
instance, the dual of the above statement is:

∀f : A→ D ∀g : B → D ∃! h : C → D [(h ◦ p0 = f) ∧ (h ◦ p1 = g)]

for parameters p0 : A→ C and p1 : B → C. It is clear that the statement φ
is true in C iff φop is true in Cop. Now, as the opposite of any category is also
a category, it is clear that if a statement φ is true in all categories, its dual
also holds for all categories. Why?

Theorem 1.4.215. Let C be a category that has the initial object. Then, C
has all pushouts iff it has all binary coproducts and all coequalizers.

Proof. Use the duality principle.

78

Now, we are ready to address the general case of limits. Let F : J → C be
a diagram (functor). Define a cone over F with the summit X as a natural
transformation α : ∆X ⇒ F . Spelling out, a cone over F with the summit
X is an assignment {iA : X → F (A)}A∈J such that F (f)hA = hB, for any
f : A→ B, i.e.,

X

F (A1) F (A3)

F (A0) F (A2)

F (f1)

F (f2)

F (f2f1)

iA1

iA0
iA2

F (f3f2)

F (f3)

iA3

By the cone functor over F , we mean the functor ConeF : Cop → Set defined
by ConeF (X) as the set of all cones over F with summit X and for a map
j : B → A by ConF (j) = j ◦ (−).

Example 1.4.216. Let F : 0 → C be the functor from the empty category
to C. Then, for any object X, there is exactly one cone over F with the
summit X and hence ConeF = ∆{0}. For any functor F : 1 + 1 → C, a
cone over F with summit X is just the pair of two maps f0 : X → F (0) and
f1 : X → F (1):

X

F (0) F (1)

i0 i1

79

For more examples, define the following categories:

†

J : • ∗ K : • ∗
f0

f1

Then a cone over F : J → C with summit X is the tuple of three maps i∗,
i• and i†, such that:

X F (†)

F (•) F (∗)

i†

i• i∗

It is easy to see that the map i∗ is uniquely determined by the maps i• and
i† and hence there is no need to keep its data. Therefore, w.l.o.g, we can say
that a cone over F with summit X is a pair of maps i• and i†, such that:

X F (†)

F (•) F (∗)

i†

i•

For a functor F : K → C, a cone with summit X is a pair of maps i : • and
i∗ such thati∗ = F (f0)i• and i∗ = F (f1)i•, i.e.,

X

F (•) F (∗)
F (f0)

F (f1)

i•
i∗

Again, it is easy to see that i∗ is uniquely determined by i•. However, this
does not mean that we can pick any i• as we want. The necessary and

80

sufficient condition for i• is that F (f0)i• = F (f1)i•:

X

F (•) F (∗)
F (f0)

F (f1)

i•

Therefore, w.l.o.g, we can say that a cone over F with summit X is a map
i• such that F (f0)i• = F (f1)i•.
For a functor F : (N,≤)op → C, a cone with summit X is a sequence of maps
{in : X → F (n)}n∈N such that:

X

· · · · · · F (3) F (2) F (1) F (0)

i0

i2i3

i1
···

Can you explain why a cone over F : (N,≤)→ C is not interesting?

Definition 1.4.217. Let F : J → C be a diagram (functor). By the limit of
F , we mean an object C together with a natural isomorphism Hom(X,C) ∼=
ConeF (X). Equivalently, the limit of F is the object C together with a map
hA : C → F (A), for any object A in J , such that F (f)hA = hB, for any

81

f : A→ B, i.e.,

C

F (A1) F (A3)

F (A0) F (A2)

F (f1)

F (f2)

F (f2f1)

hA1

hA0
hA2

F (f3f2)

F (f3)

hA3

and for any other maps iA : D → F (A), for any object A in J such that
F (f)iA = iB, for any f : A→ B, there exists a unique map j : D → C such

82

that hAj = iA, for any A, i.e.,

D C

F (A1) F (A3)

F (A0) F (A2)

F (f1)

F (f2)

F (f2f1)

hA1

hA0
hA2

j

iA2

iA0

iA1

F (f3f2)

F (f3)

hA3

iA3

A limit is called (finite) small if the category J is (finite) small. A category
is called complete, if it has all small limits and finitely complete, if it has all
finite limits.

Example 1.4.218. Let F : 0 → C be the functor from the empty category
to C. The limit of F is the terminal object. For any functor F : 1 + 1 → C
the limit is the product of the objects in the image of F . Recall that we had
the following categories:

†

J : • ∗ K : • ∗
f0

f1

Then, the limit of any functor F : J → C is the pullback of the F -image of
the arrows along each other and the limit of any functor F : K → C is the
equalizer of the F -image of the two arrows F (f0) and F (f1).

83

Example 1.4.219. Let F : (N,≤)op → C be a functor. The limit of F is
called the inverse limit of the family {F (n+ 1 ≥ n) : F (n+ 1)→ F (n)}∞n∈N:

C

· · · · · · F (3) F (2) F (1) F (0)

h0

h2h3

h1
···

Philosophical Note 1.4.220. (Completion of Rings) It is usually helpful to
interpret a commutative unital ring R as a ring of some sore of “acceptable”
functions from a “space” X to a fixed field F . For instance, we may think of
the ring C[z] as a ring of polynomial functions from the space C to the field
C. Note that in this interpretation, we have no access to the space itself.
We know the space through the quantities (functions) we can measure over
it and hence we must reconstruct any property of the space from the ring,
if it is possible. For instance, a “point” of the “space” may be identified by
all the functions that vanish on the point and as F is supposed to be a field,
the set of such functions forms a maximal ideal M . Hence, a “point” will be
simply a maximal ideal of the ring R. For instance, in our above example,
the point 0 ∈ C is identified by the maximal ideal {r ∈ C[z] | r(0) = 0}.
Now, what is the value of the function r ∈ R in the point M? Reading the
value r0 as a constant function, we expect that r − r0 vanishes in the point
M . Hence, r − r0 ∈ M . As r0 is invariant under any addition of functions
that vanishes in M , it is reasonable to set r0 as the remainder of r modulo M
or r+M ∈ R/M . Note that with a similar argument, we can talk about the
polynomial approximation of r around M with degree n as the remainder of
r modulo Mn or r +Mn ∈ R/Mn.
Now, note that the ring of functions around a point can be incomplete in
the sense that we may have a “convergent” sequence of functions whose limit
does not exist in the original ring R. For instance, think about the sequence
of polynomial approximations {Σn

i=0z
n/n!}∞n=0 of the function ez around the

point p = 0. Is it possible to perform such a completion pure algebraically to
reach a ring of “analytic functions” around a point? Let’s give it a try! An
analytic function, what it means, leaves a trace of polynomial approximations
in our given ring R exactly as what the elements in R does. The value of the
function is stored in R/M , the linear approximation lives in R/M2 and so on.
So any analytic function left the trace of a sequence 〈rn+Mn〉n ∈ {R/Mn}∞n=0

as its “polynomial” approximations. Note that this sequence must have the
property that pn(rn+1) = rn, where pn : R/Mn+1 → R/Mn is the canonical
projection as we expect that by increasing the degree of the approximation,

84

the partial results remain consistent in their lower degrees. Now, as we
believe that an entity is nothing but its behavior, we may identify the analytic
functions around M as the ring of these consistent sequences, i.e.,

{〈rn +Mn〉n ∈ {R/Mn}∞n=0 | ∀n pn(rn+1) = rn}

How to construct such a ring in pure categorical terms? It is simply the limit
of the following diagram:

· · · · · · R/M3 R/M2 R/M
p1p2p3

A special case of such a situation is the familiar case of p-adic numbers. Let
R = Z and M = pZ. Then, the limit is the ring of p-adic numbers and
hence we can interpret any p-adic number as an analytic function around the
abstract point pZ in an abstract space.

Example 1.4.221. (Solenoids) Interpreting S1 as the topological version of
the group (Z,+), we may introduce the topological version of p-adic numbers
as the limit of:

· · · · · · S1 S1 S1(−)p(−)p(−)p

where, (−)p : S1 → S1 is mapping the point (cos(θ), sin(θ)) to (cos(pθ), sin(pθ)).
The space is called the p-solenoid.

Example 1.4.222. If J is the monoid (N,+), the limit of a functor F :
(N,+)→ Set

C

F (∗) F (∗)

h∗ h∗

F (1)

is just the set C of all fixed points of the function F (1) : F (∗) → F (∗)
together with the inclusion map h∗ : C → F (∗).

Example 1.4.223. (Sheaves) Let X be a topological space, {Ui}i∈I be a
family of open subsets and U =

⋃
i∈I Ui. Define the functor C : O(X)op →

Set on the open subset V of X by C(V) = {f : V → R | f is continuous}
and on the unique morphism V ⊇ W as the restriction map |W : C(V) →
C(W). The functor C stores all partial continuous functions over X defined
on an open domain. Define P as the set of all {i, j}’s, where i, j ∈ I and
F : (P,⊆) → Set as the diagram mapping {i, j} to C(Ui ∩ Uj) and the

85

only non-trivial morphism {i} ⊆ {i, j}, for i 6= j to the restriction map
|Ui∩Uj : C(Ui)→ C(Ui ∩ Uj). Then, C(U) is the limit of the diagram F :

C(U)

C(U1) C(U2) C(U3)

C(U1 ∩ U2) C(U1 ∩ U3) C(U2 ∩ U3)

|U1∩U3
|U1∩U3 |U2∩U3

|U2∩U3

|U1
|U3|U2

|U1∩U2

|U1∩U2

The diagram is clearly commutative. To show its universality, for any other
cone {fi : D → C(Ui)}i∈I :

D C(U)

C(U1) C(U2) C(U3)

C(U1 ∩ U2) C(U1 ∩ U3) C(U2 ∩ U3)

|U1∩U3
|U1∩U3 |U2∩U3

|U2∩U3

|U1
|U3|U2

|U1∩U2

|U1∩U2

f1 f2

f3

f

the commutativity of the diagram states that for any x ∈ D, the functions
{fi(x) : Ui → R}i∈I are consistent on the intersections of their domains
and hence we can construct a unique function on U by their union. Set
f(x) : U → R as this unique function and note that f is continuous. It is
easy to see that this f is the only map we can use here.
Note that the main reason behind the argument is that the fact that conti-
nuity is a local notion meaning that continuity in a point is determined by
the behavior of the function on a small neighbourhood of x. This implies

86

that if we have a consistent family of continuous functions on some opens, we
can glue them together to construct a unique continuous function extending
them all. Changing continuity to any other local notion like derivability also
works while using global notions like constancy breaks the argument.
To formalize the general situation, let G : O(X)op → Set be a functor. If
for any family of opens {Ui}i∈I covering U , the set G(U) is the limit of the
corresponding functor F , we call G a sheaf over X. We can think of a sheaf
as a machine to store all the local instance of a local notion.

Example 1.4.224. A poset is (finitely) complete iff it has all (finite) meets.
One direction is clear. For the other direction, let F : J → (P,≤) be a
diagram. Then, as in a poset any two maps with the same source and target
are equal, we can observe that the meet

∧
J F (J) together with its unique

map to all F (J)’s is the limit of F . For instance, the poset (P (X),⊆) is
complete as it has all possible meets.

Example 1.4.225. The category Set is complete. To prove that, let F :
J → Set be a small diagram. Then, define C = {s ∈

∏
A∈J F (A) | ∀f :

A→ B [F (f)(s(A)) = s(B)} and hA : C → F (A) as the canonical projection
on A’th element:

C

F (A1) · · ·

F (A0) F (A2) · · ·

F (f1)

F (f2)

F (f2f1)

hA1

hA0

hA2

hA3

···

It is easy to see that this data is the limit of F . The same construction with
the pointwise algebraic structure also works for Grp, Ab and VecR. For
Top, we also have the same construction, this time using the product and
the subspace topology. Note that the subcategory of all compact Hausdorff
spaces is also complete. The reason is simply the combination of the Ty-
chonoff’s theorem and the fact that the subspace defined by any number of
equalities is compact.

Theorem 1.4.226. A category is (finitely) complete iff it has all (finite)
products and all equalizers.

87

Proof. One direction is clear by definition. For the other direction, we use
the argument from the previous example. Let F : J → Set be a small
diagram. Then, as products of size of J exists, the product

∏
J∈J F (J)

with projections pJ : P → F (J) exists. Set P =
∏

J∈J F (J). Then, set
C and q : C → P as the equalizer of 〈pK〉J,f , 〈F (f)pJ〉J,f :

∏
J∈J F (J) →∏

J∈J
∏

f :J→K F (K). The limit will be {pJq : C → F (J)}J∈J . As q : C → P
is the equalizer, we have pKq = F (f)pJq. To show that it is the best choice,
assume {iJ : D → F (J)}J∈J has the property iK = F (f)iJ , for any f : J →
K:

C

D P =
∏

J∈J F (J)

F (A1) · · ·

F (A0) F (A2) · · ·

F (f1)

F (f2)

F (f2f1)

pA1

pA0

pA2

pA3

q

iA0

iA1
iA2

〈iJ 〉J∈J

j

···

Therefore, 〈pK〉J,f ◦〈iJ〉J = 〈F (f)pJ〉J,f ◦〈iJ〉J . As q : C → P is the equalizer,
there exists a unique map j : D → C such that qj = 〈iJ〉J . Hence, pJqj = iJ .
Uniqueness condition for limit is also easy.

Now, let us spell out the dual notion of cones under a diagram or cocones
and colimits. Let F : J → C be a diagram (functor). Define a cone under F
with the nadir X as a natural transformation α : F ⇒ ∆X . Spelling out, a
cone under F with the nadir X is an assignment {iA : F (A)→ X}A∈J such

88

that hA = hBF (f), for any f : A→ B, i.e.,

F (A1) F (A3)

F (A0) F (A2)

X

F (f1)

F (f2)

hA1

hA0

hA2

F (f4)

F (f3)

hA3

By the cone functor under F , we mean the functor ConeF : C → Set defined
by ConeF (X) as the set of all cones under F with nadir X and for a map
j : A→ B by ConF (j) = (−) ◦ j.

Example 1.4.227. Let F : 0→ C be the functor from the empty category to
C. Then, for any object X, there is exactly one cone under F with the nadir
X and hence ConeF = ∆{0}. For any functor F : 1 + 1→ C, a cone under F
with nadir X is just the pair of two maps i0 : F (0)→ X and i1 : F (1)→ X:

F (0) F (1)

X

i0 i1

For more examples, define the following categories:

J : ∗ † K : • ∗

•

f0

f1

Then a cone under F : J → C with nadir X is the tuple of three maps i∗, i•

89

and i†, such that:

F (∗) F (†)

F (•) X

i†

i•

i∗

It is easy to see that the map i∗ is uniquely determined by the maps i• and
i† and hence there is no need to keep its data. Therefore, w.l.o.g, we can say
that a cone under F with nadir X is a pair of maps i• and i†, such that:

F (∗) F (†)

F (•) X

i†

i•

For a functor F : K → C, a cone under F with nadir X is a pair of maps i•
and i∗ such thati• = i∗F (f0) and i• = i∗F (f1), i.e.,

• ∗

X

F (f0)

F (f1)

i•
i∗

Again, it is easy to see that i• is uniquely determined by i∗. However, this
does not mean that we can pick any i∗ as we want. The necessary and
sufficient condition for i∗ is that i∗F (f0) = i∗F (f1):

• ∗

X

F (f0)

F (f1)

i∗

Therefore, w.l.o.g, we can say that a cone under F with nadir X is a map i∗
such that i∗F (f0) = i∗F (f1).
For a functor F : (N,≤)→ C, a cone under F with nadir X is a sequence of

90

maps {in : F (n)→ X}n∈N such that:

F (0) F (1) F (2) F (3) · · · · · ·

X

i3i1

i0

i2 ···

Can you explain why a cone under F : (N,≤)op → C is not interesting?

Definition 1.4.228. Let F : J → C be a diagram (functor). By the
colimit of F , we mean an object C together with a natural isomorphism
Hom(C,X) ∼= ConeF (X). Equivalently, the colimit of F is the object C
together with a map hA : F (A) → C, for any object A in J , such that
hA = hBF (f), for any f : A→ B, i.e.,

F (A1) F (A3)

F (A0) F (A2)

C

F (f1)

F (f2)

hA1

hA0

hA2

F (f4)

F (f3)

hA3

and for any other maps iA : F (A) → D, for any object A in J such that
F (f)iA = iB, for any f : A→ B, there exists a unique map j : C → D such

91

that jhA = iA, for any A, i.e.,

F (A1) F (A3)

F (A0) F (A2)

C D

F (f1)

F (f2)

hA1

hA0

hA2

j

iA2

iA0

iA1

F (f4)

F (f3)

hA3
iA3

the category J is (finite) small. A category is called cocomplete, if it has all
small colimits and finitely cocomplete, if it has all finite colimits.

Example 1.4.229. Let F : 0 → C be the functor from the empty category
to C. The colimit of F is the initial object. For any functor F : 1 + 1 → C
the limit is the coproduct of the objects in the image of F . Recall that we
had the following categories:

J : ∗ † K : • ∗

•

f0

f1

Then, the colimit of any functor F : J → C is the pushout of the F -image
of the arrows along each other and the colimit of any functor F : K → C is
the equalizer of the F -image of the two arrows F (f0) and F (f1).

Example 1.4.230. If J is a group G and F : G → Set be a G-action.
Then, the colimit of F :

C

F (∗) F (∗)

h∗ h∗

F (g)

92

is just the set F (∗)/R where R = {(x, y) ∈ F (∗)× F (∗) | ∃g ∈ G F (g)(x) =
y} together with the projection map h∗ : F (∗) → F (∗)/R. The set F (∗)/R
is actually the set of all orbits.

Example 1.4.231. Any group is a colimit of its finitely-generated subgroups.
More formally, let G be a group and J be the poset of all finitely-generated
subgroups of G with the inclusion. Then, if F : J → Grp is the inclusion
functor, the colimit of F is G with legs hH : H → G as the inclusion ho-
momorphism. It is clear that the diagram is commutative. To show that G
is the best choice, assume {iH : H → K}H∈J be a cone under F . Then,
define j : G → K by j(g) = i〈g〉(g), where 〈g〉 is the cyclic group gener-
ated by g ∈ G. The map j is a homomorphism, i.e., j(gg′) = j(g)j(g′).
As {iH : H → K}H∈J is a cone under F , we have i〈g〉(g) = i〈g,g′〉(g).
Similarly, we have i〈g′〉(g

′) = i〈g,g′〉(g
′) and i〈gg′〉(gg

′) = i〈g,g′〉(gg
′). Since

i〈g,g′〉 is a homomorphism, we have i〈g,g′〉(gg
′) = i〈g,g′〉(g)i〈g,g′〉(g

′). Hence,
i〈gg′〉(gg

′) = i〈g〉(g)i〈g′〉(g
′). The map iH is the composition of the inclusion

and the map j. The argument is again similar to what we did for proving
that j is a homomorphism. The uniqueness of such j is obvious.

Philosophical Note 1.4.232. The main reason why the previous example
works is twofold. First, the fact that we are working with algebras (sets
equipped with some operators satisfying certain equations) and second that
the operators of the algebras (in our example, the product) are finitary.
For instance, to show that j preserves the operators, we need to put all
the inputs of the operator in one finitely-generated algebra which needs the
number of these inputs (the arity of the operator) to be finite. Philosophically
speaking, we can say that in the finitary algebraic world (groups, rings, etc)
we can construct an algebra by their finitely-generated subalgebras and hence
understanding the maps going out from an algebra reduced to the maps going
out from some finitely-generated algebras .

Example 1.4.233. (Germ of functions) Let X and Y be topological spaces
and x ∈ X be a point. Assume that we are interested in the local behavior
of partial continuous functions from X to Y defined on a neighbourhood
around x. By local behavior, we mean the aspects of f that depends on
its values on a neighbourhood of x. To capture these aspects, we need the
local equality. We call two functions locally equal at x, if they are equal on
a neighbourhood around x. This local equality is an equivalence relation.
Call the equivalence class of a function its germ at x. It is clear that the
germ of f at x captures the local aspect of x. For instance, think about
the derivative of f at x, if it exists. This derivative actually depends on
the germ of f not the f itself. The natural machinery to implement this

93

“up to local equality” is colimits. More precisely, let J be the opposite of
the poset of all opens around x with inclusion. Then, set F : J → Set as
F (U) = {f : U → Y | f is continuous.} and on U ⊇ V as the restriction
map |V : F (U) → F (V). Then, the colimit of F , denoted by Fx, is a set of
all germs of functions at x and the leg F (U)→ Fx maps a function on U to
its germ at x.

Example 1.4.234. A poset is (finitely) cocomplete iff it has all (finite) joins.
One direction is clear. For the other direction, let F : J → (P,≤) be a
diagram. Then, as in a poset any two maps with the same source and target
are equal, we can observe that the join

∨
J F (J) together with the unique

maps from F (J)’s is the colimit of F . For instance, the poset (P (X),⊆) is
complete as it has all possible joins.

Example 1.4.235. The category Set is cocomplete. To prove that, let
F : J → Set be a small diagram. Then, define C =

∑
A∈J F (A)/ ∼, where∑

A∈J F (A) = {(A, a) | A ∈ J , a ∈ F (A)} and ∼ is the smallest equivalence
relation generated by {(A, a) ∼ (B, b) | ∃f : A → B F (f)(a) = b} and
hA : F (A)→

∑
A∈J F (A) as the canonical injection that maps a ∈ F (A) to

(A, a) and q :
∑

A∈J F (A)→ C as the canonical quotient map:

F (A1) F (A3)

F (A0) F (A2)

S =
∑

A∈J F (A) D

C

F (f1)

F (f2)

hA1

hA0

hA2

(A,a) 7→iA(a)

iA2

iA0

iA1

F (f4)

F (f3)

hA3

iA3

q
j

94

It is easy to see that the cone {qhA : F (A)→ C}A∈J is the colimit of F .

Theorem 1.4.236. A category is (finitely) cocomplete iff it has all (finite)
coproducts and all coequalizers.

Proof. Use the duality principle and the similar theorem for limits.

Corollary 1.4.237. The categories Set, Grp, Ab, and Top are both com-
plete and cocomplete.

Theorem 1.4.238. A poset is cocomplete iff it is complete.

Proof. Using the duality principle, it is enough to show that if (P,≤) is
complete, it is also cocomplete. Let S ⊆ P . To show that it has the join,
set a =

∧
T where T = {x ∈ P | ∀s ∈ S x ≥ s}, i.e., as the meet of all the

upper bounds of S. It exists as the poset is complete. It is clear that a is an
upper bound of S. Because, for any s ∈ S and x ∈ T , we have s ≤ x and
hence s ≤

∧
T = a. To show that it is the least upper bound, assume z is

an upper bound of S. Hence, z ∈ T and then a ≤ z.

Example 1.4.239. Let (C,⊆) be the class of all sets together with the
inclusion as the order. This category is cocomplete as the union of any set
of sets is a set but it is not even finitely complete as there is no maximum
set containing all sets.

Exercise 1.4.240. Find a complete category that is not cocomplete.

Definition 1.4.241. A small category J is called filtered if for any finite
diagram D : I → J , there is a cone under D. It is called cofiltered if for any
finite diagram D : I → J , there is a cone over D.

Example 1.4.242. A poset is filtered if any finite set has an upper bound.
It is cofiltered iff any finite set has a lower bound. For instance, the poset
(Fin(X),⊆), where Fin(X) is the set of all finite subsets of an infinite set
X is filtered. Moreover, in a topological space X and for a subspace A ⊆ X,
the poset (N(A),⊆), where N(A) is the set of all opens U containing A is
cofiltered.

Example 1.4.243. Any small category with the terminal object or all finite
colimits is filtered. As a non-example, the category

• •

•

95

is not filtered. Dually, any small category with the initial object or all finite
limits is cofiltered while the category

•

• •

is not cofiltered.

Theorem 1.4.244. A category is filtered iff the following three conditions
hold:

• It has at least one object.

• For any two objects A and B, there is an object C and two morphisms
f : A→ C and g : B → C.

• For any two maps f, g : A→ B, there is an object C and a morphism
h : B → C such that hf = hg.

Dually, a category is cofiltered iff the dual of the previous three conditions
hold.

Proof. One directions is obvious. For the other direction, we use a similar
argument as in Theorem ??.

Definition 1.4.245. The colimit of a digram F : J → C is called filtered if
J is filtered. Dually, the limit of a digram F : J → C is called cofiltered if
J is cofiltered.

Philosophical Note 1.4.246. Colimits can be interpreted as a way of con-
structing an object by “gluing” some “simpler” objects together. In this
sense, a filtered colimit is a way of construction where any divergence in the
process of construction converges at some future step.

Example 1.4.247. As observed previously, any group is a colimit of its
finitely generated subgroups. The colimit is actually filtered as the finite
colimit of finitely generated groups is also finitely generated. The same type
of argument also works for the rings and vector spaces.

Example 1.4.248. Let F : O(X)op → Set be the functor mapping the open
U ∈ O(X) to the set of the real-valued continuous functions on U . Then, if
x ∈ X is a point, the set Fx of the germs of the continuous functions at x is
not only the colimit of {F (V)}x∈V , but a filtered colimit as (N({x}),⊆)op is
a filtered category.

96

Example 1.4.249. Let GLn(R) be the group of all invertible n×n matrices
and in : GLn(R) → GLn+1(R) be the homomorphism that maps an n × n

matrix A to the (n+1)×(n+1) matrix

(
A 0
0 1

)
. Then, as Grp is cocomplete,

the colimit of the diagram

· · · GLn(R) GLn+1(R) · · ·in−1 in+1in

exists. This group is called GL∞(R) and the colimit is clearly filtered as the
index category (N,≤) is filtered.

97

