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Exercise 1. Show that the identity map of a given object is unique, i.e., a
map f : A → A such that fg = g and hf = h, for any g : B → A and
h : A→ C.

Exercise 2. Prove that the inverse of a map is unique. Hence, it is well-
defined to denote the inverse of f by f−1.

Exercise 3. Prove that idA : A → A is an isomorphism and if f : A → B
and g : B → C are isomorphisms, then so is g ◦ f : A→ C.

Exercise 4. Prove that in Set, the isomorphisms are the bijective maps.
Show that in the category Poset, there are morphisms that are also bijec-
tions, but not isomorphisms. What are the isomorphisms in posets, monoids,
SetC?

Exercise 5. Show that if f : A→ B is an isomorphism in C, then it is also
an isomorphism in Cop. Use this fact to show that the dual of a groupoid is
also a groupoid.

Exercise 6. Let C be a category. Show that the collection of isomorphisms
in C defines a subcategory, the maximal groupoid inside C.

A morphism f : A → B is called monic if fg = fh implies g = h, for
any g, h : C → A. Dually a morphism f : A → B is called epic if gf = hf
implies g = h, for any g, h : B → C.

Exercise 7. Show that in a poset all maps are monic and epic.

Exercise 8. Show that the monic (epic) maps in Set, Top and Ab are the
injective (surjective) maps.

Exercise 9. Show that the monic maps in Mon and Ring are the injective
maps, but not all epics are surjective. (Hint: Think about inclusions N→ Z
and Z→ Q, respectively.)
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Exercise 10. Show that the epic maps in Grp are the surjective homomor-
phisms.

Exercise 11. Show that the epics in the category of Hausdorff spaces are
the continuous maps whose range are dense in their codomain.

Exercise 12. What are the monic maps in Rel?

Exercise 13. What are the monics and epics in SetC, for a small category
C?
Exercise 14. What are the monics and epics in the category of fields?

Exercise 15. Show that a functor is a monic in Cat iff it is injective both
on objects and morphisms. Prove that the corresponding statement for epics
in Cat does not hold.

Exercise 16. Show that any isomorphism is both monic and epic. Does
the converse hold? (Hint: Think of posets. For a more interesting example,
note that the inclusion Z→ Q in Ring is both monic and epic, but it is not
isomorphism).

Exercise 17. Show that if fg is monic, then g is also monic. If fg is epic,
then f is also epic.

Exercise 18. A morphism f : A → A is called split if there are g : A → B
and h : B → A such that hg = f and gh = idB. Show that any split
morphism is idempotent, i.e., ff = f and an idempotent map f is split if
there are a monic h and an epic g such that f = hg. Prove that in Set all
idempotents are split while it is not generally true.

A morphism f : A → B is called split monic if there exists g : B → A
such that gf = idA. Dually a morphism f : A → B is called split epic if
there exists g : B → A such that fg = idB.

Exercise 19. What are the split monics and the split epics in Set? Are all
epics in Set→ split epic?

Exercise 20. Show that all monics in VecR are split monic.

Exercise 21. Show that a map r : G→ H is split monic in Ab iff there exist
abelian groups J and K and isomorphisms i : J → G and j : J ⊕ K → H
such that:

J J ⊕K

G Hr

j

a7→(a,0)

i
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Similarly, show that a map s : G → H is split epic in Ab iff there exist
abelian groups J and K and isomorphisms i : J ⊕ K → G and j : J → H
such that:

J ⊕K J

G Hs

j

(a,b) 7→a

i

Exercise 22. Show that a morphism f : A→ B is split epic in C if and only
if for all object C of C, the post-composition function f∗ : Hom(C,A) →
Hom(C,B) is surjective. Dually show that f : A → B is split monic if and
only if for all objects C in C, the pre-composition function f ∗ : Hom(B,C)→
Hom(A,C) is surjective.

Exercise 23. Show that any split monic is monic and any split epic is epic.
Does the converse hold? (Hint: Think about posets. For a more interesting
example, note that the inclusion Z → Q in Ring is both monic and epic,
but there is no map Q→ Z).

Exercise 24. Prove that a morphism that is both a monic and a split epic
is necessarily an isomorphism. Show that a split monic that is an epic is also
an isomorphism.

Exercise 25. Let F be a collection of objects of a category C. We say that
C has enough F -points when for any f, g : X → Y , if for any object C in F
and any map h : C → X we have fh = gh, then f = g. Show that:

• Set has enough 1-points.

• Set→ does not have enough 1-points.

• Mon does not have enough {e}-points.

• Grp does not have enough {e}-points.

• Mon has enough N-points.

• Grp has enough Z-points.

• Quiv does not have enough 1-points.

• Quiv has enough {•, (• → •)}-points.

• Cat has enough 2-points.
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Exercise 26. Let F be a collection of objects of a category C. We say that
C has enough F -fibers when for any f, g : X → Y , if any object C in F and
any map h : Y → C we have hf = hg, then f = g. Show that:

• Set has enough {0, 1}-fibers.

• Poset has enough {0 ≤ 1}-fibers.

• The subcategory of powersets of Poset has enough {0, 1}-fibers.

• VecR has enough R-fibers.

Exercise 27. Any category C determines a preorder P (C) by defining a
binary relation ≤ on the objects by A ≤ B if and only if there is an arrow
A→ B. Show that P determines a functor from categories to preorders, by
defining its effect on functors between categories and checking the required
conditions. Show that P is a (one-sided) inverse to the evident inclusion
functor of preorders into categories.

Exercise 28. Show that the construction of the set of conjugacy classes of
elements of a group is functorial, defining a functor Conj : Grp → Set.
Conclude that any pair of groups whose sets of conjugacy classes of elements
have differing cardinalities cannot be isomorphic.

Exercise 29. Show that C/A and C/B can be isomorphic without A and B
being isomorphic.

Exercise 30. Show that (A/C)op ∼= Cop/A.

Exercise 31. Show that:

• P (X)/A ∪B ∼= P (X)/A× P (X)/B as slices of (P (X),⊆).

• Set/A+B ∼= Set/A× Set/B.

Exercise 32. Show the followings:

• For any groupid G we have G ∼= Gop.

• Rel ∼= Relop.

• (P (X),⊆) ∼= (P (X),⊆)op.

• It is not necessarily the case that M ∼= M op, for any monoid M .

• Set � Setop.
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Exercise 33. Show that the image of a functor is not necessarily a subcat-
egory.

Exercise 34. Describe all functors from Set to a poset.

Exercise 35. Show that there is no functor Z : Grp→ Grp that maps any
group to its center. (Hint: Use S2 → S3 → S2, where Si’s are permutation
groups).

Exercise 36. Show that the powerset functor P : Set→ Set is faithful but
not full.

Exercise 37. The product functor (−)× (−) : Set× Set→ Set is faithful
but not full.

Exercise 38. Show that if F : C → D is full and faithful, then for any two
objects A and B in C, we have A ∼= B iff F (A) ∼= F (B).

Exercise 39. Show that if F : C → D is faithful and F (f) is a monic in D,
then f is a monic in C. Show that the same also holds for epics. Conclude
that in any concrete category, any morphism that defines an injection of
underlying sets is a monic and any morphism that defines a surjection of
underlying sets is an epic.

Exercise 40. Find an example to show that a faithful functor need not
preserve epics or monics.

Exercise 41. Show that any functor preserves split monic and split epic.

Exercise 42. Prove that α : ((−)× (−))× (−)⇒ (−)× ((−)× (−)) defined
by αA,B,C : (A×B)×C → A×(B×C) such that αA,B,C((a, b), c) = (a, (b, c))
is a natural isomorphism, where (−)× (−) : Set× Set→ Set.

Exercise 43. Prove that α : p1 ⇒ Hom(−,−) defined by αA,B : A →
Hom(B,A) such that αA,B(a) = consA,B,a is a natural transformation, where
p1 : Setop × Set→ Set is the projection on the second element functor and
consA,B,a : B → A maps every element in B to a.

Exercise 44. Prove that α : (−)(−)+(−) ⇒ (−)(−) × (−)(−) defined by
αA,B,C(g) = (g|B, g|C) is a natural isomorphism, where (−) × (−) : Set ×
Set→ Set, (−) + (−) : Set× Set→ Set and (−)(−) : Setop × Set→ Set.

Exercise 45. Prove that α : ((−) × (−))(−) ⇒ (−)(−) × (−)(−) defined by
αA,B,C : (A×B)C → AC×BC such that αA,B,C(g) = (p0◦g, p1◦g) is a natural
isomorphism, where p0 : A×B → A and p1 : A×B → B are the projection
functions and (−)× (−) : Set×Set→ Set and (−)(−) : Setop×Set→ Set.
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Exercise 46. Prove that α : Hom((−), (−)(−)) ⇒ Hom(− × −,−) defined
by αA,B,C : Hom(A,CB) → Hom(A × B,C) such that αA,B,C(g) = ĝ is
a natural isomorphism, where ĝ : A × B → C maps (a, b) to g(a)(b) and
(−)× (−) : Set× Set→ Set and (−)(−) : Setop × Set→ Set.

Exercise 47. Show that the assignments αX , βX : P (X) → P (X) with the
definition αX(A) = X and βX(A) = X − A are not natural transformations
from P : Set→ Set to itself.

Exercise 48. Prove that there is no natural transformation from id(Z,+) to
−id(Z,+).

Exercise 49. Show that a natural transformation α : F ⇒ G is a natural
isomorphism iff αA is an isomorphism and the inverses of the component
morphisms define the components of a natural isomorphism α−1 : G⇒ F .

Exercise 50. Using direct computation, show that any natural transforma-
tion Hom(−, A)⇒ Hom(−, B) is yf for some f : A→ B.

Exercise 51. Let C be a category. By the center of C, denoted by Z(C), we
mean the class of all natural transformation α : idC ⇒ idC. Show that for
any group G considered as a category, Z(G) corresponds to the set {g ∈ G |
∀h ∈ G gh = hg}. Use this characterization to show that for any non-trivial
abelian groups G and H, if G ' H and F : G→ H is an isomorphism, there
are at least two different natural transformations over F . Moreover, find a
group G such that between any two isomorphisms over G, there is at most
one morphism.

Exercise 52. Consider the poset (Z+ Z,≤), where ≤ is the usual order on
each component. Then, take the isomorphism F = [+1,−1] : (Z + Z,≤) →
(Z+Z,≤) define by F (0, a) = a+ 1 and F (1, b) = b− 1. Prove that there is
no natural transformations α : id(Z+Z,≤) ⇒ F and β : F ⇒ id(Z+Z,≤).

Exercise 53. Let List : Set → Set be the functor mapping any set X to
the set of all finite sequences of the elements of X and mapping any func-
tion f : X → Y to the function List(f) : List(X) → List(Y ) defined by
List(f)(σ0 · · ·σn) = f(σ0) · · · f(σn). Show that the assignment i : ∆1 → List
defined by iX : {0} → List(X) as iX(0) = ε is a natural transformation,
where ε is the sequence with the length zero. Moreover, show that the assign-
ment m : List×List→ List defined by mX : List(X)×List(X)→ List(X)
as the concatenation operation is a natural transformation.

Exercise 54. Prove that if E and F are two categories isomorphic to Set and
F0, F1 : E → F be two isomorphisms, then there exists exactly one natural
transformation from F0 to F1.
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Exercise 55. Find all natural transformations from the powerset functor
P : Set→ Set to itself. Do the same for P ◦ : Setop → Set.

Exercise 56. Do there exist any non-identity natural endomorphisms of the
category of spaces? That is, does there exist any family of continuous maps
X → X, defined for all spaces X and not all of which are identities, that are
natural in all maps in the category Top?

Exercise 57. Which of the following functors are corepresentable:

• The forgetful functor F : Mon→ Set

• The forgetful functor F : Grp→ Set.

• The functor Tn : Grp → Set mapping any group G to {x ∈ G | xn =
e}.

• The forgetful functor F : Set→ → Set, forgetting the source.

• The constant functor ∆1 : Set→ Set.

• The functor (−)n : Set→ Set.

• The functor (−) + 1 : Set→ Set.

• The constant functor ∆2 : Set→ Set.

• The forgetful functor F : Set→ → Set, forgetting the target.

Exercise 58. Let U : Cat→ Set be the functor that sends a small category
to the set of all its maps. Prove that U is corepresentable.

Exercise 59. Prove that if F : C → Set is corepresentable, then F preserves
monics, i.e., sends every monic in C to an injective function. Use the con-
trapositive to find a covariant set-valued functor defined on your favourite
concrete category that is not representable.

Exercise 60. Use the Yoneda lemma to explain the connection between
homeomorphisms of the standard unit interval I = [0, 1] and natural auto-
morphisms of the path functor Path : Top→ Set called re-parameterizations.

Exercise 61. Show that C is discrete iff for any category D, any map from
the objects of C to the objects of D gives rise to a unique functor.

Exercise 62. Find a quiver Ω such that Hom(Q,Ω) ∼= Sub(Q), where
Sub(Q) is the functor computing subquivers of Q.
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Exercise 63. For any quivers P and Q, provide a quiver R such that
Hom(X,R) ∼= Hom(X × P,Q).

Exercise 64. Show that any map coming out of a terminal object is monic
and any map going into an initial object is epic. Show that any map from a
terminal to an initial one is an isomorphism.

Exercise 65. Show that Grp and Rel have all coproducts.

Exercise 66. Show that the projection (injection) maps in a product (co-
product) is not necessarily epic (monic).

Exercise 67. Show that a functor needs not to preserve terminal or initial
objects. The same is true for products or coproducts.

Exercise 68. In Ab, the object HG consisting of all homomorphisms from
the group G to H with the pointwise addition is a natural candidate to be
the exponential object of H by G. Find out why it does not work.

Exercise 69. Show that the category of small groupoids has all exponentials.
Compare the situation with Grp and investigate how having more objects is
needed to have exponentials.

Exercise 70. Show that in the categories Rel and Mon the distributivity
law, i.e., A× (B +C) ∼= A×B +A×C does not hold. The same also holds
for the poset of subgroups of G×G, where G is an abelian group. Conclude
that these categories do not have all exponentials.

Exercise 71. Show that Grp has all coequalizers.

Exercise 72. Show that the equalizer of two functors F,G : C → D is the
subcategory of C consisting of objects and maps over which F and G are
equal together with inclusion.

Exercise 73. Show that two maps f, g : A→ B are equal iff their equalizers
exists and is an isomorphism. The same also holds for coequalizers.

A map f : A → B is called regular monic if there are two maps g, h :
B → C such that f is the equlizer of g and h. Dually, a map f : A → B
is called regular epic if there are two maps g, h : C → A such that f is the
coequlizer of g and h.

Exercise 74. What are the regular monics and regular epics in Set, Ab and
Top?

8



Exercise 75. Show that any regular monic (epic) is split monic (epic). Prove
that the converse does not hold.

Exercise 76. Show that if all equalizers exist in a category, then the equalizer
for any finite family exists, i.e., for any family {fi : A→ B}ni=1, there exists a
map e : C → A such that fie = fje : C → B for any 1 ≤ i, j ≤ n and for any
map g : D → A such that for any 1 ≤ i, j ≤ n we have fig = fjg : C → B,
there exists a unique map h : D → C such that eh = g, i.e.,

D

C A B

f1

fn

e

g
h

...

Exercise 77. Show that if the following diagram

C A B
f

g

h

is equalizer and i : B → D is monic, then the following diagram

C A D
if

ig

h

is also equalizer. Dually, if the following diagram

A B C
f

g

h

is coequalizer and i : D → A is epic, then the following diagram

D B C
fi

gi

h

is also coequalizer.

Exercise 78. Show that if all equalizers exist, then any idempotent is split,
in the sense of Exercise 18. The same is true if all coequalizers exist.

Exercise 79. Show that the pullback of any monic is monic and the pushout
of any epic is epic. Show that the former (latter) part of the claim does not
hold for pushouts (pullbacks).
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Exercise 80. Show that the pullback of a split epic is split epic.

Exercise 81. Show that a map f : A→ B is monic iff the following diagram
is a pullback:

A A

A B
f

f

idA

idA

Dually show that a map f : A → B is epic iff the following diagram is a
pushout:

A B

B B
idB

idB

f

f

Exercise 82. Consider the following diagram:

• • •

• • •

Suppose that the right-hand square is a pullback. Show that the left-hand
square is a pullback if and only if the outer rectangle is a pullback.

Exercise 83. Consider the following diagram:

• • •

• • •

Suppose that the left-hand square is a pushout. Show that the right-hand
square is a pushout if and only if the outer rectangle is a pushout.
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Exercise 84. Show that if both squares

A C A′ C ′

B D B′ D′

i

f

g

h

g′

f ′

h′

i′

are pushouts, then the square

A+ A′ C + C ′

B +B′ D +D′

g+g′ i+i′

f+f ′

h+h′

is a pushout.

Exercise 85. Show that in the category Set if both squares

A C A′ C ′

B D B′ D′

i

f

g

h

g′

f ′

h′

i′

are pullbacks, then the square

A+ A′ C + C ′

B +B′ D +D′

g+g′ i+i′

f+f ′

h+h′

is also a pullback.
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