
Non-deterministic Flows in Arithmetic

Amirhossein Akbar Tabatabai
Utrecht University, the Netherlands

Abstract

In [1], we have developed a theory of deterministic flows to extend
the spirit of the Dialectica interpretation to weak bounded theories
of arithmetic. In this paper, we will generalize that theory to intro-
duce the notion of a non-deterministic flow as a sequence of computa-
tional problems together with a sequence of non-deterministic version
of game reductions. It provides a proof mining method for a general
notion of bounded arithmetic which turns out helpful in program ex-
tractions. More specifically, it leads to a characterization of all the
higher total search problems in all the higher order bounded theo-
ries of arithmetic including the interesting case of ∀Σ̂b

j-consequences

of the hierarchy Sk
2 , for 1 ≤ j ≤ k. Moreover, the method is also

useful to provide another proof for the strong witnessing theorem for
the theories Sk

2 .

1 Introduction

One of the successful trends in proof theory is and always has been the
search for the more and more strong relationships between proofs and com-
putations. These relationships are witnessed by different extracting tech-
niques that bring out informative algorithms from given proofs in given the-
ories. These methods cover a wide spectrum, from witnessing techniques in
bounded theories of arithmetic to ordinal analysis and functional interpreta-
tion of weak set theoretical systems.

In this paper, we will develop one of these extracting methods, designed
specifically for bounded theories of arithmetic. This method is based on two
simple ingredients: First reducing any proof in any bounded theory of arith-
metic to a single uniform sequence of implications such that these implica-
tions become provable in a very weak theory (usually universal induction-free

1

system powerful enough to handle the four basic mathematical operations,
addition, subtraction, multiplication and division). And secondly, developing
a program interpretation of the Herbrand theorem adopted for our bounded
arithmetical language to witness any step in the implications by the terms
of the language. These programs that we call reduction programs generalize
the usual reduction between k-turn games and teacher-student interactive
protocols. In fact, they provide a non-deterministic interactive machinery to
witness the existential variables by the universal variables using the terms of
the language.

As a result of combining these ingredients, we will establish a general
method to extract computational information from bounded arithmetical
proofs. As an application of this method, we will first propose a characteri-
zation of all total search problems of any complexity in any bounded arith-
metical theory, especially in the presence of higher smash functions. These
theories mimics the higher order bounded theories in a first order setting
and hence our characterization can be interpreted as a characterization of all
provably total higher search problems in higher order bounded arithmetic.
More specifically, we will investigate the bounded statements of the theories
Sk

2 for k ≥ 1 to reduce their provability to a polynomially long sequence of
reduction programs between k-turn games. We will also apply our technique
to reprove the strong witnessing theorem for theories Sk

2 . This type of wit-
nessing theorem has been investigated for different bounded theories (See [8],
[3], [2], [5] and [9]). Here, we propose another proof for this result for the
hierarchy {Sk

2}k≥1.

2 Preliminaries

In this section we will review some preliminaries. First, let us fix a language
which can be any arbitrary extension of a ring-type language for numbers:

Definition 2.1. Let L be a first order language of arithmetic extending
LR = {0, 1,+, .−, ·, d(−,−),≤} where x .− y and d(x, y) mean max{0, x− y}
and b x

y+1
c in the standard model, respectively. By R we mean the first order

theory in the language LR consisting of the axioms of commutative discrete
ordered semirings (the usual axioms of commutative rings minus the existence
of additive inverse, plus the axioms to state that ≤ is a total discrete order
such that < is compatible with addition and multiplication with non-zero

2

elements), plus the following defining axioms for .− and d:

(x ≥ y → (x .− y) + y = x) ∧ (x < y → x .− y = 0),

and
((y + 1) · d(x, y) ≤ x) ∧ (x .− (y + 1) · d(x, y) < y + 1).

Note that to avoid division by zero and to have a total function symbol
in the language we defined division as b x

y+1
c and not bx

y
c.

Remark 2.2. First note that R can prove that all elements are non-negative
simply because multiplying them preserves the order. Secondly note that the
language L is powerful enough to represent the conditional function

C(x, y, z) =

{
y x = 0

z x > 0

as a term and R is powerful enough to prove that the term works. The
crucial point is that the term χ=0(x) = d(x + 2, x) .− 1 = bx+2

x+1
c .− 1 has the

following property provably in R:

χ=0(x) =

{
1 x = 0

0 x > 0

Hence it is enough to represent C by χ(x)y + (1 .− χ(x))z. Moreover, using
χ≤(x, y) = χ=0(x .− y), we can represent the characteristic function for ≤
and since we have the power to simulate all boolean operators and x = y
is equivalent to x ≤ y ∧ y ≤ x, we have the characteristic functions of all
quantifier-free formulas of the language LR = {0, 1,+, .−, ·, d(−,−),≤}.

To define different bounded systems of arithmetic, we have to set two
main ingredients of the induction axiom, i.e., the complexity of the induction
formula and the length of the induction. For the first one we have:

Definition 2.3. (i) A class of bounded formulas Π is called a π-class of the
language L if it includes all quantifier-free formulas of L, is closed un-
der substitutions, subformulas, conjunction, disjunction and bounded
universal quantifiers and if ∃y ≤ t B(y) ∈ Π then there exists C(y)
such that ` C(y)↔ ¬B(y) and ∀y ≤ t C(y) ∈ Π.

(ii) A class of bounded formulas Σ is called a σ-class of the language L
if it includes all quantifier-free formulas of L, is closed under substi-
tutions, subformulas, conjunction, disjunction and bounded existential
quantifiers and if ∀y ≤ t B(y) ∈ Σ then there exists C(y) such that
` C(y)↔ ¬B(y) and ∃y ≤ t C(y) ∈ Σ.

3

Example 2.4. The class of all bounded formulas is a trivial example of both
π and σ classes. The more interesting examples though include the classes
Π̂b

k(#m) and Σ̂b
k(#m) (drop #m from the notation when m = 2), in the

language of bounded arithmetic augmented with subtraction, division and
#i for 2 ≤ i ≤ m. These classes are defined in the following way:

(i) Π̂b
0(#m) = Σ̂b

0(#m) is the class of all sharply bounded formulas, i.e.,
the formulas whose quantifiers are bounded by a term of the form |t|,
for some term t,

(ii) Σ̂b
k(#m) ⊆ Σ̂b

k+1(#m) and Π̂b
k(#m) ⊆ Π̂b

k+1(#m),

(iii) Π̂b
k(#m) and Σ̂b

k(#m) are closed under conjunction and disjunction,

(iv) If B(x) ∈ Σ̂b
k(#m) then ∃x ≤ t B(x) ∈ Σ̂b

k(#m) and ∀x ≤ t B(x) ∈
Π̂b

k+1(#m) and

(v) If B(x) ∈ Π̂b
k(#m) then ∀x ≤ t B(x) ∈ Π̂b

k(#m) and ∃x ≤ t B(x) ∈
Σ̂b

k+1(#m).

We can also consider a more relaxed version of these classes, i.e., Σb
k(#m)

and Πb
k(#m), (again dropping #m when m = 2), which are defined with the

same definition as above, adding the condition that:

“Πb
k(#m) and Σb

k(#m) are closed under sharply bounded quantification,
i.e., a quantification bounded by |t| for some term t.”

Note that, assuming that the polynomial hierarchy does not collapse,
these more relaxed versions of the classes (for m = 2) are not π- and σ-
classes, respectively. The reason is the existence of a Πb

k formula (a Σb
k

formula), ending with an existential (a universal) sharply bounded quanti-
fier, which is also bounded, without a Πb

k negation (a Σb
k negation).

Now let us define a robust form for the classes of terms that can play the
role of induction-length.

Definition 2.5. Let A ⊇ R be a theory. A class of terms, T, is called an
A-term ideal if:

(i) It is closed under all function symbols of the language LR, provably in
A, i.e. for any function symbol f ∈ LR and any t(~x) ∈ T, there exist
r(~x) ∈ T such that A ` r(~x) = f(t(~x)).

4

(ii) It is closed under substitution, i.e. if t(~x, y) ∈ T and s is an arbitrary
term (not necessarily in T) then t(~x, s) ∈ T provably in A, i.e. there
exists r(~x) ∈ T such that A ` r(~x) = t(~x, s).

(iii) It has a subset of monotone majorizing terms provably in A, i.e. there
exists a set of terms M ⊆ T such that for any t(~x) ∈ T there exists
s(~x) ∈ M such that A ` t(~x) ≤ s(~x) and for any r(~x) ∈ M , A ` ~x ≤
~y → r(~x) ≤ r(~y).

Example 2.6. For the language LR, there are two trivial R-term ideals;
Tall consisting of all terms of the language and Tcl consisting of all closed
terms, with majorizing sets as the set of all polynomials and the whole set
of closed terms, respectively. To have a non-trivial example, consider the
language of bounded arithmetic extended with subtraction and division and
the theory Ap as BASIC +R plus the axioms |x| ≤ x, |xy| ≤ |x| + |y| and
x ≤ y → |x| ≤ |y|. Now define Tp as the class of all terms majorized by a
term in the form p(|~x|) for some polynomial p provably inAp. The majorizing
subset is the set of all terms in the form p(|~x|) and the reason that the set is
an Ap-ideal is that all terms are bounded by a polynomial in length and the
fact that these terms are increasing, both provably in Ap.

Using these ingredients, we can introduce the general definition of a
bounded theory of arithmetic:

Definition 2.7. Let A ⊇ R be a set of quantifier-free axioms, T be an A-
term ideal and Φ be a class of bounded formulas closed under substitution
and subformulas. By the first order bounded arithmetic, B(T,Φ,A) we
mean the theory in the language L which consists of axioms A, and the
(T,Φ)-induction axiom, i.e.,

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(t(x)),

where A ∈ Φ and t ∈ T.

Example 2.8. With our definition of bounded arithmetic, different kinds
of theories can be considered as bounded theories of arithmetic, for instance
I∆0, Sk

n, T k
n , I∆0(exp) and PRA augmented with subtraction and division

in the language and the axioms of R in the theory, are just some of the
well-known examples.

Remark 2.9. Note that the theory B(T,Φ,A) may not have access to the
full-induction scheme

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x),

5

for any A ∈ Φ. For instance, in the theory Sk
2 , the system only has the

length-induction that is believed to be weaker than the usual induction in
T k

2 .

As usual in the proof theoretical investigations, we are interested in a more
structural representation of proofs. For this purpose and for any arbitrary
set Ax of sequents, consider the system G1(Ax) consisting of the following
rules:

Axioms:

A⇒ A A1, . . . An ⇒ B1, . . . Bm

where the right axiom is a substitution of a sequent in Ax.

Structural Rules:

Γ⇒ ∆
(wL)

Γ, A⇒ ∆
Γ⇒ ∆

(wR)

Γ⇒ ∆, A

Γ, A,A⇒ ∆
(cL)

Γ, A⇒ ∆
Γ⇒ ∆, A,A

(cR)

Γ⇒ ∆, A

Γ0 ⇒ ∆0, A Γ1, A⇒ ∆1
(cut)

Γ0,Γ1 ⇒ ∆0,∆1

Propositional Rules:

Γ0, A⇒ ∆0 Γ1, B ⇒ ∆1
∨L

Γ0,Γ1, A ∨B ⇒ ∆0,∆1

Γ⇒ ∆, Ai
∨R (i = 0, 1)

Γ⇒ ∆, A0 ∨ A1

Γ, Ai ⇒ ∆
∧L (i = 0, 1)

Γ, A0 ∧ A1 ⇒ ∆
Γ0 ⇒ ∆0, A Γ1 ⇒ ∆1, B

∧R

Γ0,Γ1 ⇒ ∆0,∆1, A ∧B
Γ0 ⇒ A,∆0 Γ1, B ⇒ ∆1

→ L

Γ0,Γ1, A→ B ⇒ ∆0,∆1

Γ, A⇒ B,∆
→ R

Γ⇒ ∆, A→ B

Γ⇒ ∆, A
¬L

Γ,¬A⇒ ∆
Γ, A⇒ ∆

¬R

Γ⇒ ∆,¬A

Quantifier rules:

Γ, A(s)⇒ ∆
∀L

Γ,∀y A(y)⇒ ∆

Γ⇒ ∆, A(b)
∀R

Γ⇒ ∆,∀y A(y)

Γ, A(b)⇒ ∆
∃L

Γ,∃y A(y)⇒ ∆

Γ⇒ ∆, A(s)
∃R

Γ,⇒ ∆,∃y A(y)

6

Bounded Quantifier rules:

Γ, A(s)⇒ ∆
∀≤L

Γ, s ≤ t, ∀y ≤ t A(y)⇒ ∆

Γ, b ≤ t⇒ ∆, A(b)
∀≤R

Γ⇒ ∆,∀y ≤ t A(y)

Γ, b ≤ t, A(b)⇒ ∆
∃≤L

Γ,∃y ≤ t A(y)⇒ ∆

Γ⇒ ∆, A(s)
∃≤R

Γ, s ≤ t,⇒ ∆,∃y ≤ t A(y)

Note that in the rules (∀R), (∃L), (∀≤R) and (∃≤L), the variable b must
not occur in the lower sequent of the rule.

There is also another type of sequent calculus, called G3(Ax), absorbing
all the structural rules. It is defined with the same rules, by eliminating
structural rules and replacing the axioms, the cut rule, the propositional
rules and the rules (∀L), (∃R), (∀≤L) and (∃≤R) by the following rules:

Axioms:

Γ, P ⇒ P,∆ Γ, P1, . . . Pn ⇒ Q1, . . . Qm,∆

where P1, . . . Pn ⇒ Q1, . . . Qm ∈ cl(Ax) and P , Pi’s and Qj’s are all atomic
formulas. By cl(Ax) we mean the closure of Ax under substitution and
contraction.

Structural Rules:

Γ⇒ ∆, A Γ, A⇒ ∆
(cut)

Γ⇒ ∆

where P is an atmoic formula, and

Propositional Rules:

Γ, A⇒ ∆ Γ, B ⇒ ∆
∨L

Γ, A ∨B ⇒ ∆
Γ⇒ ∆, A,B

∨R

Γ⇒ ∆, A ∨B
Γ, A,B ⇒ ∆

∧L

Γ, A ∧B ⇒ ∆, C
Γ⇒ ∆, A Γ⇒ ∆, B

∧R

Γ⇒ ∆, A ∧B
Γ⇒ A,∆ Γ, B ⇒ ∆

→ L

Γ, A→ B ⇒ ∆
Γ, A⇒ B,∆

→ R

Γ⇒ ∆, A→ B

Quantifier rules:

7

Γ, A(s), ∀y A(y)⇒ ∆
∀L

Γ, ∀y A(y)⇒ ∆

Γ⇒ ∆, A(s),∃y A(y)
∃R

Γ,⇒ ∆,∃y A(y)

Bounded Quantifier rules:

Γ, A(s),∀y ≤ t A(y)⇒ ∆
∀≤L

Γ, s ≤ t, ∀y ≤ t A(y)⇒ ∆

Γ⇒ ∆, A(s), ∃y ≤ t A(y)
∃≤R

Γ, s ≤ t,⇒ ∆,∃y ≤ t A(y)

Using the system G1, choosing Ax as the set of all sequents (⇒ A) where
A ∈ A and adding the following induction rule to G1(Ax):

Induction:

Γ, A(b)⇒ ∆, A(b+ 1)
(Ind)

Γ, A(0)⇒ ∆, A(t)

for every A ∈ Φ and t ∈ T, we can capture the theory B(T,Φ,A). Note that
in the induction rule the variable b must not occur in the lower sequent of
the rule.

The most important property of the sequent calculi that we have defined
is cut elimination:

Theorem 2.10. (Cut Elimination)

(i) Any proof in the systems G1(Ax) and G3(Ax) can be transformed to a
proof in which every cut rule has at least one premise chosen from the
axioms of Ax.

(ii) If B(T,Φ,A) ` Γ ⇒ ∆ then there exists a free-cut free proof for the
same sequent in the same system.

Corollary 2.11. If Γ ∪∆ ⊆ Φ and B(T,Φ,A) ` Γ⇒ ∆ then there exists a
proof of the same sequent in the same system such that all formulas occurring
in the proof are in Φ.

The proofs of the Theorem 2.10 and the Corollary 2.11 can be essentially
found in [7] and [4].

8

3 Non-deterministic Reductions and Reduc-

tion Programs

Let us begin right away by non-deterministic reductions.

Definition 3.1. Let B be a theory and A(~x) and B(~x) be some formulas in
the language L. We say B(~x) is non-deterministically B-reducible to A(~x)
and we write A(~x) ≥Bn B(~x) if B ` A(~x) → B(~x). Moreover, by the equiva-
lence A ≡Bn B we mean the conjunction of A ≥Bn B and B ≥Bn A.

The natural question is that how this proof-theoretic concept can be con-
sidered as a computational reduction and why it is called non-deterministic.
To answer this question, first recall that by the flow machinery, we intend
to transform any arithmetical proof to a sequence of reductions, and the
base theory for those reductions preferably is a simple universal and possi-
bly induction-free theory. Therefore, we can use the Herbrand theorem for
each step of the reduction to witness the essentially existential quantifiers in
A→ B by its universal quantifiers. This is actually what is happening in the
deterministic reductions, but here the difference is the use of ∨-expansions
in the Herbrand proof. Intuitively, these expansions allow us to use some
constant many terms to witness one existential quantifier as opposed to just
one term in the case of deterministic reductions. Moreover, expansions make
some room for interaction in providing the witnessing terms which makes the
concrete witnesses extremely complicated. For these reasons, we call these
reductions non-deterministic and in the following we try to state a computa-
tional interpretation of Herbrand theorem, tailored specifically for our setting
here.

Definition 3.2. Let L be a language extending the language of LR. A
formula A(~x) is in the prenex bounded form if there exists a quantifier-free
formula GA, such that

A = ∀y1 ≤ p1(~x)∃z1 ≤ q1(~x)∀y2 ≤ p2(~x) . . . GA(~x, y1, z1, y2, z2, . . .)

Note that all bounding terms depend only on ~x where ~x is the set of all
free variables of A(~x). Moreover, we say that the formula is in the k-prenex
bounded form when the number of bounded quantifiers is at most k.

Definition 3.3. Let L be a language extending the language of LR, the
formulas

{∀yi1 ≤ pi1(~x)∃zi1 ≤ qi1(~x)∀yi2 ≤ pi2(~x) . . . Gi(~x, yi1, zi1, yi2, zi2, . . .)}i∈I

9

and

{∀uj1 ≤ p′j1(~x)∃vj1 ≤ q′j1(~x)∀uj2 ≤ p′j2(~x) . . . Hj(~x, uj1, vj1, uj2, vj2, . . .)}j∈J

be in the prenex bounded form where ~x, yin, zin, ujm and vjm are distinct
variables and B be a theory extending R. Define V as the set of distinct
variables ykin, zkin, ukjm and vkjm for k ≥ 0. These variables provide infinite
many copies of any variable from yin, zin, ujm and vjm. Moreover, note that
for k = 0 we have the original copy, i.e., y0

in = yin, z0
in = zin, u0

jm = ujm and
v0
jm = vjm.

Consider the instructions [Read X ≤ t(~x)] and [Compute Y by s ≤
t(~x)] where t is a term depending only on ~x and variables X and Y are chosen
from the set V . By a B-reduction program from {Hj}j∈J to {Gi}i∈I we mean
a sequence P = (Pr)

l
r=0 of instructions such that:

(i) The instruction [Read X ≤ t(~x)] applies only on X = ukjm and X = zkin
variables.

(ii) The instruction [Compute Y by s ≤ t(~x)] applies only on Y = vkjm
and Y = ykin variables.

(iii) Any variable can be read or computed at most once.

(iv) We can read or compute a variable Z if there exists a decreasing path of
already read or computed variables starting from Z and ending in one
of the variables {yi1}i∈I or {uj1}j∈J . By “decreasing”, we refer to the
order defined by the relations (ykin ≺ zkin), (zkin ≺ yki(n+1)), (ukjm ≺ vkjm),

(vkjm ≺ ukj(m+1)) and (Y k ≺ Y k+1) for any Y ∈ {vjm, yin}.

(v) In the instruction [Compute Y by s ≤ t(~x)], the term s depends
only on the variables ~x and the variables that had been read before the
current stage. Moreover, we have to have B ` ∀ ~X ≤ ~r(~x)s(~X) ≤ t(~x)

where ~X are the previously read variables and ~r(~x) are their corre-
sponding bounds.

(vi) For the last condition, first define S(P<r) recursively as:

S(P<0) = {Gi}i∈I ⇒ {Hj}j∈J

and S(P<r+1) is defined from S(P<r) by the following rule:

10

There are two cases to consider. First if Pr is the instruction [Read
X ≤ t(~x)], then replace all instances of ∀X ≤ t(~x)A(X) in the succe-
dent of S(P<r) by A(X). And also replace all instances of ∃X ≤
t(~x)A(X) in the precedent of S(P<r) again by A(X). Second, if Pr is
the instruction [Compute Y by s ≤ t(~x)], then for any occurrence of
∃Y ≤ t(~x)A(Y) in the succedent of S(P<r), replace ∃Y ≤ t(~x)A(Y)
by (∃Y ≤ t(~x)A(Y))+1 and add A(s) to the succedent of S(P<r).
And for any occurrence of ∀Y ≤ t(~x)A(Y) in the precedent, replace
∀Y ≤ t(~x)A(Y) by (∀Y ≤ t(~x)A(Y))+1 and add A(s) in the precedent,
where C+1 means increasing the upper index of any bounded variable
in C by one.

Now after defining S(P<r), we also have to have the following last
condition: There should be a quantifier-free sub-sequent S ′ = (Γ ⇒
∆) of S(P<l+1) such that ∀ ~X ≤ ~r(~x)(

∧
Γ →

∨
∆) is provable in B,

where ~X are all the read variables occurred in S ′ and ~r(~x) are their
corresponding bounds.

Remark 3.4. (Game Interpretation) Let

C = ∀y1 ≤ p1(~x)∃z1 ≤ q1(~x)∀y2 ≤ p2(~x) . . . GC(~x, y1, z1, y2, z2, . . .)

be in the k-prenex bounded form with exactly k quantifiers. The game
associated to this formula, GC , is defined as the following: There are two
players. The first player chooses a number y1 ≤ p1(~x), then the second
player chooses a number z1 ≤ q1(~x) and they continue alternately, until they
reach the end of the quantifiers. At the end, if G(~x, y1, z1, y2, z2, . . .) becomes
true the second player wins and otherwise the first player is the winner. Now
it is clear that the second player in the game GC has a winning strategy iff
the formula C is true. With this game interpretation, any reduction program
from B to A is nothing but a reduction to transfer a second player’s winning
strategy in the game GA to a winning strategy for him in the game GB.
Note that unlike the usual deterministic reductions between the games, these
reduction programs provide a complicated protocol to transfer the winning
strategies.

In the following, we will illuminate the notion of a reduction program by
some concrete examples.

Example 3.5. (Deterministic Game Reductions) The usual complexity the-
oretic reduction between k-turn games is a specific example of the reduction

11

programs. To be more precise, assume that L = LPV and B = Th(N). Now
consider

∀y1 ≤ p1(~x)∃z1 ≤ q1(~x)∀y2 ≤ p2(~x) . . . G(~x, y1, z1, y2, z2, . . .)

and

∀u1 ≤ p′1(~x)∃v1 ≤ q′1(~x)∀u2 ≤ p′2(~x) . . . H(~x, u1, v1, u2, v2, . . .)

with k-many bounded quantifiers and define the following natural PV-reduction
program:

[Read u1 ≤ p′1(~x)]; [Compute y1 by f1(~x, u1) ≤ p1(~x)]; [Read z1 ≤
q1(~x)]; [Compute v1 by g1(~x, u1, z1) ≤ q′1(~x)]; ...

where fi’s and gj’s are polynomial time computable functions represented
by terms in the language LPV. These reductions that we call determinis-
tic reductions between k-turn games are the simplest example of reduction
programs.

Example 3.6. (Non-determinism) Let L be the language of PV and let
A(x, y, z) be an atomic formula in this language. Now consider the formulas

∃u ≤ s(x)∀v ≤ t(x) A(x, u, v)

and
∃yy′ ≤ s(x)∀zz′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)]

in this language. Since these formulas are logically equivalent, it seems quite
reasonable to assume that the first formula is reducible to the second one.
Moreover, this equivalence is quite elementary and it is just on the level of
pure first order logic. Hence, we can expect a very low complexity reduction
in this case. Let us try to construct such a possible reduction. (Note that
the notion of a reduction program is defined for formulas in prenex bounded
form and since the formula [A(x, y, z)∨A(x, y′, z′)] is not atomic, speaking of
reduction programs in this case is not technically correct. However, this is not
a serious issue since we can represent the formula A(x, y, z) by α(x, y, z) = 0
for some term α and hence the formula [A(x, y, z)∨A(x, y′, z′)] can be safely
replaced by α(x, y, z) ·α(x, y′, z′) = 0. Having all said, we still prefer keeping
the original non-atomic form to be more explanatory in our discussion on the
non-deterministic nature of reductions.) To construct a reduction, we have
to take a look at a proof of

∃u ≤ s(x)∀v ≤ t(x) A(x, u, v)

12

from
∃yy′ ≤ s(x)∀zz′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)].

The simplest proof works as the following: Assume we have y ≤ s(x) and
y′ ≤ s(x) such that

∀zz′ ≤ t(x)[A(x, y, z) ∨ A(x, y′, z′)]

which implies

∀z ≤ t(x)A(x, y, z) ∨ ∀z′ ≤ t(x)A(x, y′, z′)

Then there are two possibilities: If ∀z ≤ t(x)A(x, y, z) then pick u = y and
if ¬∀z ≤ t(x)A(x, y, z) which implies ∀z′ ≤ t(x)A(x, y′, z′), pick u = y′.

Simulating this argument by the usual reductions between 3-turn games,
as in Example 3.5, (assume the existence of a dummy bounded universal
quantifier in the leftmost part of the formulas), we observe that our com-
putational power has to be strong enough to decide ∀z ≤ t(x)A(x, y, z) to
provide such a witness. But since ∀z ≤ t(x)A(x, y, z) can be extremely
complex, CoNP-complete for instance, this task is far beyond the usual low
complexity power that we can afford. Hence, it seems that finding a deter-
ministic reduction is not that easy, if not impossible.

Now let us relax the strict structure of the deterministic game reductions
to the following weaker non-determinism appeared in the reduction programs:
In the process of witnessing, allow reductions to provide possibly more than
one candidate and expect at least one of them works at a time. For instance,
in this example, provide two different guesses for u like g(x, y, y′) = y and
h(x, y, y′) = y′ and expect the sequent

{∀v0 ≤ t(x)A(x, g(x, y, y′), v0),∀v1 ≤ t(x)A(x, h(x, y, y′), v1)}

to be reducible to

∀z ≤ t(x)∀z′ ≤ t(x) [A(x, y, z) ∨ A(x, y′, z′)]

via a PV-reduction program. For the latter, it is just enough to use the uni-
versal quantifiers to witness themselves via identity terms. More formally:

[Read y ≤ s(x)]; [Read y′ ≤ s(x)]; [Compute u0 by g(x, y, y′) ≤ s(x)];
[Compute u1 by h(x, y, y′) ≤ s(x)]; [Read v0 ≤ t(x)]; [Read v1 ≤ t(x)];
[Compute z by v0 ≤ t(x)]; [Compute z′ by v1 ≤ t(x)].

13

Hence, we can observe that non-determinism possibly provides more re-
ductions than what the strict determinism can do. Moreover, note that this
type of non-determinism is just the computational incarnation of the con-
traction rule which makes its use somehow unavoidable.

Example 3.7. (Student-Teacher Game) The real power of the reduction
programs lies in the combination of non-determinism and interaction. In the
Example 3.6, we observed the impact of the non-determinism part. In this
example we will explain how this non-determinism leads to some complicated
interactions. For this purpose, let us interpret the teacher-student game of
the KPT theorem ([6]) as an example of our reduction programs. Assume we
have the formula ∃y ≤ t(x)∀z ≤ s(x)A(x, y, z) where A is an atomic formula
in the language of PV. Then consider the following PV-reduction program
from ∃y ≤ t(x)∀z ≤ s(x)A(x, y, z) to > with length 2l:

[Compute y = y0 by f0(x) ≤ t(x)]; [Read z = z0 ≤ s(x)]; [Compute
y1 by f1(x, z0) ≤ t(x)]; [Read z1 ≤ s(x)]; [Compute y2 by f2(x, z0, z1) ≤
t(x)]; ...

Since it is a reduction program, the following is provable in PV:

∀z0 . . . zl−1 ≤ s(x)[A(x, f0(x), z0)∨A(x, f1(x, z0), z1)∨. . .∨A(x, fl(x, z
0, . . . , zl−1))]

The point in the interaction between the so-called student and teacher is
mimicked by computing y as y0, reading z = z0, computing y again under the
name y1 but this time with access to z0, reading z1 and computing y again
under the name y2 but now with more information about both z0 and z1

and so on. This non-determinism that lets us compute a variable finite many
times with different functions and the interaction with the inside universal
quantifiers to guess the existential quantifier again is the main power of
reduction programs.

Example 3.8. (Impossibility of Simulation) In this example we want to pro-
vide an evidence for what we observed in the Example 3.6 to show that it is
generally impossible to simulate the non-deterministic reductions and reduc-
tion programs by usual deterministic reductions. Assume A(x, y, z, t) = (y =
0 ∧ B(x, t)) ∨ (y = 1 ∧ ¬B(x, z)) where B(x, t) is an arbitrary atomic for-
mula in the language of PV. We want to show that there is no deterministic
Th(N)-reduction from

∃u ≤ 1∃v ≤ s∀w ≤ s A(x, u, v, w)

to
∃yy′ ≤ 1∃tt′ ≤ s∀zz′ ≤ s [A(x, y, z, t) ∨ A(x, y′, z′, t′)]

14

(Note that again, our formulas are not in the prenex bounded form and hence
speaking of reduction programs is not technically correct. However, we can
resolve the issue as in the Example 3.6.) Assume that there exists such a
deterministic Th(N)-reduction. Hence, there is a polytime function f such
that:

∃v ≤ s∀w ≤ s A(x, f(x, y, y′), v, w)

is reducible to

∃tt′ ≤ s∀zz′ ≤ s[A(x, y, z, t) ∨ A(x, y′, z′, t′)]

which means that

∃tt′ ≤ s∀zz′ ≤ s[A(x, y, z, t) ∨ A(x, y′, z′, t′)]

implies
∃v ≤ s∀w ≤ s A(x, f(x, y, y′), v, w)

in Th(N) for all y, y′ ≤ 1. Pick y = 0 and y′ = 1. It is easy to see that
the left side of the implication is true because either ∃t ≤ s B(x, t) or ∀z′ ≤
s ¬B(x, z′) is true, hence the right side should be true, as well. But the truth
of the right side means

(f(x, 0, 1) = 0 ∧ ∃v ≤ s B(x, v)) ∨ (f(x, 0, 1) = 1 ∧ ∀w ≤ s ¬B(x,w))

which means that we have a polytime decision procedure for the NP predicate
∃w ≤ s B(x, v) which implies NP = P.

Remark 3.9. The Example 3.8 shows that pure logical deductions are far
beyond the power of low level deterministic reductions. In other words, it
is possible to prove B by A just by some elementary methods of logic but
it does not mean that B can be deterministically reducible to A. Let us
explain where the problem is. At the first glance, it seems that all logical
rules are completely syntactical and amenable to low complexity reductions.
It is correct everywhere except for one logical rule: the contraction rule
which is more or less responsible for all kinds of computational explosions
like the explosion of the lengths of the proofs after the elimination of cuts.
Notice that the reason that we have the equivalence in the Example 3.6
is this contraction rule and it is easy to see that this rule is the source of
non-determinism and hence interactions. Therefore, it seems natural to use
non-deterministic reductions to simulate computationally what is going on
in the realm of proofs.

Now it is time to relate the proof theoretical non-deterministic reductions
to the computational reduction programs. This is the task of our reinterpre-
tation of the generalized Herbrand theorem for the bounded domain:

15

Theorem 3.10. Let B ⊇ R be a universal theory and A(~x) and B(~x) two
formulas in the prenex bounded form. Then A(~x) ≥Bn B(~x) iff there exists a
B-reduction program from B(~x) to A(~x).

Proof. The proof is based on the fact that any B-reduction program is noth-
ing but a backward interpretation of a proof that consists of some bounded
quantifier rules applied on top of a quantifier-free B-provable statement. This
backward interpretation transforms the rules (∀≤R) and (∃≤L) to Read in-
structions and rules (∃≤R) and (∀≤L) to Compute instructions. The rest
of this proof is the formalization of this very idea.

1. First assume that there exists a B-reduction program {Pr}lr=0 from
B(~x) to A(~x). We have to prove the following claim:

Claim. We want to show that all the free variables of S(P<k) are among
~x or the variables that had been read before k. We prove the claim by in-
duction on k. For k = 0 the claim is clear. For k+ 1, if Pk is the instruction
[Read X ≤ t(~x)], then by definition the free variables of S(P<k+1) are among
the free variables of S(P<k) and X. By IH, all free variables of S(P<k) had
been read before k and X itself has been read in the stage k, which complete
the proof. If Pk is the instruction [Compute Y by s ≤ t(~x)], then by defi-
nition the free variables of S(P<k+1) are among the free variables of S(P<k)
and the free variables of s. But the free variables of s are among ~x and the
variables that had been read before k which is exactly what we wanted to
prove.

Now let us come back to prove the theorem. Define S̄(P<k) as ∀ ~X ≤
~r(~x)[

∧
Sp(P<k) →

∨
Ss(P<k)], where ~X are all the read variables occurred

freely in S(P<k), ~r(~x) are their corresponding bounds and Sp(P<k) and
Ss(P<k) are the precedent and succedent of S(P<k), respectively. By induc-
tion on k we will show that B ` S̄(P<l+1−k). For k = 0 we have the claim from
the definition of a program. To prove the claim for k + 1, we have two pos-
sibilities: First if Pl−k is the instruction [Read X ≤ t(~x)], then S(P<l−k+1)
is defined from S(P<l−k) by replacing all instances of ∀X ≤ t(~x)A(X) by
A(X) in the right hand-side or ∃X ≤ t(~x)A(X) by A(X) in the left hand-
side. Since any quantifier appears at most once, this formula is unique. On
the other hand, since X is read in the stage l−k, then by the claim, S(P<l−k)
does not have a free variable X. By IH, B ` S̄(P<l−k+1). Hence, we can in-
troduce the universal bounded quantifier to have B ` S̄(P<l−k). If Pl−k is
the instruction [Compute Y by s ≤ t(~x)], then S(P<l−k+1) is defined from
S(P<l−k) by adding A(s) to its right hand-side if there is ∃Y ≤ t(~x)A(Y)

16

also in the right hand-side of S(P<l−k) or by adding A(s) in the left hand-
side of S(P<l−k) if ∀Y ≤ t(~x)A(Y) is also appeared in its left hand-side.
By IH, B ` S̄(P<l−k+1). Since B ` s ≤ t(~x) we have B ` S̄(P<l−k) by the
introduction of bounded existential quantifier rules.

Now by induction we can conclude B ` S(P<0) = [A(~x) ⇒ B(~x)] which
is what we wanted to prove.

2. For the other direction of the theorem, first note that B is a universal
theory. Therefore, it is possible to develop a G3-style calculus for it, by
some axioms like P1, P2, . . . , Pn ⇒ Q1, Q2, . . . , Qm where Pi’s and Qj’s are
atomic formulas. By Theorem 2.10 and since B ` A → B there is a proof
for the sequent A⇒ B in which one of the premises of any cut is an axiom.
Therefore, since A and B are two formulas in the prenex bounded form,
all the rules in the proof will be G3-style bounded quantifier rules, axioms
and cuts with axioms as one of their premises. Now change the name of
the variables in a way that any variable can be occurred in a quantifier at
most once, and for this purpose use only the bounded variables of A → B
with their possibly different variants with upper indices. More precisely, it
is enough to modify the rules in the proof such that the usual (∃≤R) and
(∀≤L) rules change to the following rules:

Γ, A(s),∀y+1 ≤ t(~x) A+1(y+1)⇒ ∆

Γ, s ≤ t(~x), ∀y ≤ t(~x) A(y)⇒ ∆

Γ⇒ ∆, A(s),∃y+1 ≤ t(~x) A+1(y+1)

Γ, s ≤ t(~x),⇒ ∆,∃y ≤ t(~x) A(y)

where C+1 means increasing the upper index of any bounded variable in C
by one and y+1 means increasing the upper index of y by one. Then since
any variable occurs at most in one quantifier, we can change all the rules
(∃≤L) and (∀≤R) to:

Γ, y ≤ t⇒ ∆, A(y)

Γ⇒ ∆,∀y ≤ t A(y)

Γ, y ≤ t, A(y)⇒ ∆

Γ, ∃y ≤ t A(y)⇒ ∆

in a way that all the sequents in the proof remain B-provable. The main
point is that if any variable occurs at most in one quantifier, substituting
the eigenvariable b in the rules (∃≤L) and (∀≤R) by the bounding variable y
itself, does not affect the validity of the proof.

Now, by induction on the length of the proof, we will show that if
Γ⇒ ∆ appears in a stage of this proof, then there is a B-reduction-program
P = {Pr}lr=0 with S(P<0) = (Γ⇒ ∆) using exactly the variables in the proof

17

with the condition that the variable zm becomes a variant of the variable zn

when m > n. (Note that this condition is inconsistent with our naming
condition in the definition of the reduction programs which states that the
variable zk should be considered as a variant of z0 when k > 0 and z0 occurs
as a bounded variable in S(P<0). However, this is just a change in the names
of the variables that makes everything simpler. Therefore, the rest of this
proof should be read, up to this change in the naming condition.)

The claim for the axioms is straightforward. For the bounded existential
rule, assume that Γ, s ≤ t(~x) ⇒ ∆,∃y ≤ t(~x)A(y) is a consequence of Γ ⇒
∆, A(s),∃y+1 ≤ t(~x)A+1(y). Then by IH, there exists a program P with the
condition that S(P<0) = (Γ⇒ ∆, A(s),∃y+1 ≤ t(~x)A+1(y)). Define s′ as:

s′ =

{
s if s ≤ t(~x)

t(~x) if s > t(~x)

It is possible to find such a term because the language is powerful enough
to have the characteristic function for the order predicate as observed in Re-
mark 2.2. Moreover, note that B ` s′ ≤ t(~x). Define P ′ = P with different
initial sequent S(P ′<0) as (Γ, s ≤ t(~x)⇒ ∆, A(s′),∃y+1 ≤ t(~x)A+1(y)). The
reason that P ′ is also a reduction program is the following: The sequent
S(P<l+1) has a quantifier-free B-provable subsequent S ′. But the difference
between S(P<l+1) and S(P ′<l+1) is in adding the formula s ≤ t(~x) in the left
hand-side of S(P<l+1) and substituting s′ for s in A. We know that B ` s ≤
t(~x) → s = s′. Pick the correspondent of the S ′ in S(P ′<l+1) (S ′ after sub-
stitution s′ for s) and call it S ′′ = Γ′′ ⇒ ∆′′. Hence, B ` Γ′′, s ≤ t(~x) ⇒ ∆′′

which implies that P ′ is a reduction program.

Now define Q by Qr = P ′r+1 for r ≤ l and Q0 as the instruction [Compute
y by s′ ≤ t(~x)] and S(Q<0) = (Γ, s ≤ t(~x)⇒ ∆,∃y ≤ t(~x)A(y)). It is pretty
clear that Q is a reduction program which proves the claim.

A similar argument also works for the bounded universal quantifier rule.
The only case that we have to check is the cut rule. Assume (Γ, ~P ⇒ ∆, ~Q)

is a consequence of (Γ, ~P ,R⇒ ∆, ~Q) and (Γ, ~P ⇒ R, ~Q,∆) where the first is

an instance of an axiom with the main sequent (~P ,R⇒ ~Q) and the second is

provable. By IH there exists a program reducing {R, ~Q,∆} to {Γ, ~P}. This

program also essentially works for reducing { ~Q,∆} to {Γ, ~P}. More precisely,

define P ′ = P with different initial sequent as S(P ′<0) = ({Γ, ~P} ⇒ { ~Q,∆}).
The only important thing is showing that S(P ′<l+1) has a quantifier-free B-
provable subsequent. From IH we know that there exists a quantifier-free

18

B-provable subsequent of S(P<l+1) which we call S ′ = (Γ′ ⇒ ∆′). Since

all ~P , ~Q and R are atomic formulas, they will remain intact through the
quantifier opening process of the reduction program, hence the difference
between S(P ′<l+1) and S(P<l+1) is in one instance of R in the right-hand
side of S(P<l+1). Moreover, it implies that (P⇒ Q) is a subsequent of both
S(P<l+1) and S(P ′<l+1). Define S ′′ = (Γ′ ⇒ ∆′ − {R}). We show that S ′′

is a B-provable quantifier-free subsequent of S(P ′<l+1). Since ~P ⊆ Γ′ and
~Q,R ⊆ ∆′ we have B ` Γ′, R ⇒ ∆′ − {R} because it is an instance of the
axioms. Since B ` Γ′ ⇒ ∆′ by cut we have B ` S ′′ which completes the
proof.

4 Non-deterministic Flows

In the last section, we defined the concept of a reduction which can be con-
sidered as a one-step move of the computational content. Now it is time to
let it flow :

Definition 4.1. Let Π be a π-class, A(~x), B(~x) ∈ Π, B ⊇ R a theory and
T a B-term ideal. A non-deterministic (T,Π,B)-flow from A(~x) to B(~x) is a
pair (t,H) where t(~x) ∈ T is a term and H(u, ~x) ∈ Π is a formula such that
the following statements are provable in B:

(i) H(0, ~x)↔ A(~x).

(ii) H(t(~x), ~x)↔ B(~x).

(iii) ∀u < t(~x) H(u, ~x)→ H(u+ 1, ~x).

If there exists a non-deterministic (T,Π,B)-flow from A(~x) to B(~x) we will

write A(~x) B(T,Π,B)
n B(~x). Moreover, if Γ and ∆ are sequents of formulas in

Π, by ΓB(T,Π,B)
n ∆ we mean

∧
ΓB(T,Π,B)

n

∨
∆. The case for (T,Σ,B)-flows is

defined similarly by changing Π everywhere with Σ.

Convention. In the remaining part of this section, we will fix an ar-
bitrary choice for the type of a flow as (T,Σ,B)-flow or (T,Π,B)-flow. For
simplicity, and to address both cases simultaneously, we will use the letters
Φ and φ, standing for a fixed choice from two cases [Φ = Σ and φ = σ] or
[Φ = Π and φ = π]. For instance, by the sentence “Φ is a φ-class” we mean
either “Σ is a σ-class” or “Π is a π-class”. Moreover, we use the shorthand B
for B(T,Φ,B)

n for simplicity and if emphasis on some parts of the triple (T,Φ,B)

19

becomes needed, we put back those parts as the superscript of B. For in-
stance, if we write BΦ, we want to emphasize on the class of the flow.

The following theorem is the main theorem of the theory of non-deterministic
flows for bounded theories of arithmetic.

Theorem 4.2. Let Φ be a φ-class, Γ(~x)∪∆(~x) ⊆ Φ and A ⊆ B ⊆ B(T,Φ,A).

Then B(T,Φ,A) ` Γ(~x)⇒ ∆(~x) iff ΓB(T,Φ,B)
n ∆.

To prove this theorem we need the following sequence of lemmas. These
lemmas provide a high level calculus for the relation B which makes its use
more effective in any practical situation.

Lemma 4.3. (i) (Weak Gluing) If A(~x) B B(~x) and B(~x) B C(~x) then
A(~x)B C(~x).

(ii) (Strong Gluing) If A(y, ~x)BA(y+1, ~x) and s ∈ T, then A(0, ~x)BA(s, ~x).

Proof. For (i) since A(~x) Bn B(~x) there exists a term t(~x) ∈ T, a formula
H(u, ~x) ∈ Φ such that B proves the conditions in the Definition 4.1. On the
other hand since B(~x)Bn C(~x) we have the corresponding data for B(~x) to
C(~x) which we show by t′(~x) and H ′(u, ~x). Define r(~x) = t(~x)+ t′(~x)+1 and

I(u, ~x) =

H(u, ~x) if u ≤ t(~x)

B(~x) if u = t(~x) + 1

H ′(u .− t(~x) .− 2, ~x) if t(~x) + 1 < u ≤ t(~x) + t′(~x) + 1

Then, it is easy to check that this new data is a non-deterministic (T,Φ,B)-
flow from A(~x) to C(~x). Notice that since T is closed under successor and
addition and t, t′ ∈ T, we have r ∈ T.

For (ii), if we have A(y, ~x) Bn A(y + 1, ~x) it is enough to glue all copies
of the sequences of reductions for 0 ≤ y ≤ s, to have A(0, ~x) Bn A(s, ~x).
More precisely, assume that all reductions have the same length t′(~x) greater
than t(s, ~x). This is an immediate consequence of the facts that we can find
a monotone majorization for t(y, ~x) like r(y, ~x), and since y ≤ s we have
t(y, ~x) ≤ r(y, ~x) ≤ r(s, ~x). Now it is enough to repeat the last formula in the
flow to make the flow longer to reach the length t′(~x, ~z) = r(s, ~x) where ~z is
a vector of variables in s. Now, define t′′(~x, ~z) = s× (t′(~x) + 2),

I(u, ~x) =

{
H(u, y, ~x) if y(t′ + 2) < u < (y + 1)(t′ + 2)

A(y, ~x) if u = y(t′ + 2)

20

and

F (u) =

F (u, y) if y(t′ + 2) < u < (y + 1)(t′ + 2) .− 1

E0(u, y) if u = y(t′ + 2)

G1(u, y + 1) if u = (y + 1)(t′ + 2) .− 1

It is easy to see that this new sequence is a non-deterministic (T,Φ,B)-flow
from A(0, ~x) to A(s, ~x). Notice that T is closed under substitution, sum and
product and therefore, t′′ ∈ T.

Lemma 4.4. (Conjunction and Disjunction Rules)

(i) If Γ, AB∆ or Γ, B B∆ then Γ, A ∧B B∆.

(ii) If Γ0 B∆0, A and Γ1 B∆1, B then Γ0,Γ1 B∆0,∆1, A ∧B.

(iii) If ΓB∆, A or ΓB∆, B then ΓB∆, A ∨B.

(iv) If Γ0, AB∆0 and Γ1, B B∆1 then Γ0,Γ1, A ∨B B∆0,∆1.

Proof. (i) and (iii), are trivial simply because firstly we have A ∧ B ≥ A,
A ∧ B ≥ B, A ≥ A ∨ B and B ≥ A ∨ B and then we can add the needed
formula in the beginning or the end of the flow.

For (ii) and (iv), we will prove (ii), (iv) is just dual to (ii). If Γ0B∆0, A,
then clearly we have

∧
Γ0 ∧

∧
Γ1 B (

∨
∆0 ∨ A) ∧

∧
Γ1. Moreover, we have∧

Γ1B
∨

∆1∨B and again we have
∧

Γ1∧(
∨

∆0∨A)B(
∨

∆1∨B)∧(
∨

∆0∨A).
Therefore by weak gluing∧

Γ0 ∧
∧

Γ1 B (
∨

∆1 ∨B) ∧ (
∨

∆0 ∨ A).

But it is easy to see that

(
∨

∆1 ∨B) ∧ (
∨

∆0 ∨ A) ≥n

∨
∆1 ∨

∨
∆0 ∨ (A ∧B).

Hence
Γ0,Γ1 B∆0,∆1, (A ∧B).

In the following, wherever we write ¬A, we mean any possible formula B
such that ` ¬A↔ B.

Lemma 4.5. (Negation Rules) If Γ,∆ ⊆ Φ and A,¬A ∈ Φ then

21

(i) If Γ, ABΦ ∆ then ΓBΦ ∆,¬A.

(ii) If ΓBΦ ∆, A then Γ,¬ABΦ ∆.

Proof. We will prove (i), (ii) is similar. Since Γ, A BΦ ∆ there exists t ∈ T
and H ∈ Φ such that the conditions of the Definition 4.1 hold. Now, use
H ∧ ¬A as the formula to have a flow from (

∧
Γ ∧ A) ∨ ¬A to

∨
∆ ∨ ¬A.

Since
B `

∧
Γ→ (

∧
Γ ∧ A) ∨ ¬A

by adding
∧

Γ to the beginning of the flow we have a flow from Γ to ∆,¬A.

Remark 4.6. Note that the cut and induction rules are derivable in the pres-
ence of the structural and propositional rules and their context-free versions,
i.e,

A⇒ B B ⇒ C
A⇒ C

A(y)⇒ A(y + 1)

A(0)⇒ A(t)

Therefore since we have weak and strong gluing lemmas, we do not need to
prove cut and induction in a separate lemma.

Lemma 4.7. (Implication Rules) If A→ B ∈ Φ:

(i) If Γ0 BΦ ∆0, A and Γ1, B BΦ ∆1 then Γ0,Γ1, A→ B BΦ ∆0,∆1.

(ii) If Γ, ABΦ ∆, B then ΓBΦ ∆, A→ B.

Proof. Note that when A→ B ∈ Π then since Π is closed under subformulas,
we have A,B ∈ Π. For (i), since Γ0 B ∆0, A by applying conjunction with
A→ B everywhere in the flow, we have∧

Γ0 ∧ (A→ B)B (
∨

∆0 ∨ A) ∧ (A→ B).

Since
(
∨

∆0 ∨ A) ∧ (A→ B)B
∨

∆0 ∨ (A ∧ (A→ B)),

and A ∧ A→ B ≥n B, we have∨
∆0 ∨ (A ∧ (A→ B))B

∨
∆0 ∨B.

And then since Γ1 BB,∆1, by cut on B we have

Γ0,Γ1, A→ B B∆0,∆1.

22

For (ii), if Γ, ABB,∆, then by applying disjunction with A→ B everywhere
in the flow,

(
∧

Γ ∧ A) ∨ (A→ B)B
∨

∆ ∨B ∨ (A→ B).

And since

((
∧

Γ ∨ (A→ B)) ∧ (A ∨ (A→ B))B (
∧

Γ ∧ A) ∨ (A→ B),

we have

((
∧

Γ ∨ (A→ B)) ∧ (A ∨ (A→ B))B
∨

∆ ∨B ∨ (A→ B).

Since B ≥n (A→ B), by contraction and cut we have B∨(A→ B)BA→ B.
On the other hand, ≥ A ∨ (A→ B). Hence

ΓB ((
∧

Γ ∨ (A→ B)) ∧ (A ∨ (A→ B)),

and therefore by gluing ΓB∆, A→ B.

Now we are ready to prove the following soundness theorem as the first
half of the main theorem:

Theorem 4.8. (Soundness) If Φ is a φ-class, Γ(~x)∪∆(~x) ⊆ Φ, B(T,Φ,A) `
Γ(~x)⇒ ∆(~x) and A ⊆ B then ΓB(T,Φ,B)

n ∆.

Proof. We assume Φ = Π is a π-type class, the other case is similar. To
prove the theorem we use induction on the length of the free-cut free proof
of Γ(~x)⇒ ∆(~x). The importance of using the free-cut free proof is its usual
consequence that all the formulas occurring in the proof belong to the class Π
itself. (See Corollary 2.11.) Since Π consists of bounded formulas, it also im-
plies that the only used quantifier rules are bounded quantifier rules. Hence,
we have the following cases:

1. (Axioms). If Γ(~x)⇒ ∆(~x) is a logical axiom then the claim is trivial.
If it is a non-logical axiom then the claim will be also trivial because all
non-logical axioms are quantifier-free and provable in B. Therefore there is
nothing to prove.

2. (Structural Rules). We will prove the case of the contraction rule, the
rest are similar. Assume that Γ, A ⇒ ∆ is prove by left contraction from

23

Γ, A,A ⇒ ∆. Then by IH, there exists a flow from
∧

Γ ∧ (A ∧ A) to
∨

∆.
Since B ` A→ A ∧ A, we know∧

Γ ∧ A ≥
∧

Γ ∧ (A ∧ A)

adding
∧

Γ∧A to the beginning of the flow, we will have a flow from
∧

Γ∧A
to

∨
∆ which proves what we wanted.

3. (Cut). See the Remark 4.6.

4. (Propositional Rules). The conjunction and disjunction cases are
proved in the Lemma 4.4. The implication and negation cases are proved in
the Lemmas 4.5 and 4.7, respectively.

5. (Bounded Universal Quantifier Rules, Right). If

Γ(~x)⇒ ∆(~x),∀z ≤ p(~x)B(~x, z)

is proved by the ∀≤R rule by Γ(~x), b ≤ p(~x)⇒ ∆(~x), B(~x, b), then by IH we
have Γ(~x), b ≤ p(~x)B∆(~x), B(~x, b). Therefore, there exists a term t(~x) ∈ T,
a formula H(u, ~x, b) ∈ Π such that the conditions of the Definition 4.1 are
provable in B. First of all, extend the sequence by repeating the last formula
to reach a majorization s(~x) as in the previous part. Then, define t′(~x) = s(~x)
and H ′(u, ~x) = ∀z ≤ p(~x)H(u, ~x, z). Since H(u, ~x, b) ∈ Π and Π is closed
under substitution, we have H(u, ~x, z) ∈ Π and hence ∀z ≤ p(~x)H(u, ~x, z) ∈
Π. The other conditions to check that the new sequence is a (T,Π,B)-flow is
a straightforward consequence of the fact that if B ` ∀u ≤ t′(~x)H(u, b, ~x)→
H(u+ 1, b, ~x), then

B ` ∀u ≤ t′(~x)∀z ≤ p(~x)H(u, z, ~x)→ ∀z ≤ p(~x)H(u+ 1, z, ~x).

Finally add
∧

Γ to the beginning of the flow and add ∀z ≤ p(~x)B(~x, z) ∨∨
∆ to its end, then the new flow would be a flow from Γ to ∆(~x),∀z ≤

p(~x)B(~x, z). Note that the new length is constructed by majorizing, substi-
tution and successor from t ∈ T, hence it is also in T.

6. (Bounded Universal Quantifier Rules, Left). Suppose Γ(~x), s(~x) ≤
p(~x),∀z ≤ p(~x)B(~x, z)⇒ ∆(~x) is proved by the ∀≤L rule by Γ(~x), B(~x, s(~x))⇒
∆(~x). Since B ` s(~x) ≤ p(~x) ∧ ∀z ≤ p(~x)B(~x, z)→ B(~x, s(~x)), we have

s(~x) ≤ p(~x),∀z ≤ p(~x)B(~x, z) ≥ B(~x, s(~x)).

Since
Γ(~x), B(~x, s(~x))B∆(~x),

24

by cut we have

Γ(~x), s(~x) ≤ p(~x),∀z ≤ p(~x)B(~x, s(~x))B∆(~x).

Moreover, note that t′′ is constructed by majorizing, substitution and suc-
cessor from t ∈ T, hence t′′ ∈ T.

7. (Bounded Existential Quantifier Rules, Right). It is similar to 6.

8. (Bounded Existential Quantifier Rules, Left). If Γ,∃y ≤ p(~x)B(~x, y)⇒
∆ is proved by the ∃≤L rule by Γ, b ≤ p(~x), B(~x, b)⇒ ∆, by IH we have Γ, b ≤
p(~x), B(~x, b) B ∆ then since ∃y ≤ p(~x)B(~x, y) ∈ Π, B(~x, y) has a negation
in Π. Since Π is closed under substitution, B(~x, b) also has a negation in Π.
Therefore, by Lemma 4.5

Γ, b ≤ p(~x)B∆,¬B(~x, b)

by 5, we have
ΓB∆,∀y ≤ p(~x) ¬B(~x, y)

Finally again by Lemma 4.5 we have

Γ, ∃y ≤ p(~x)B(~x, y)B∆.

9. (Induction). See the Remark 4.6.

We also have the following completeness theorem:

Theorem 4.9. (Completeness) If Γ(~x) B(T,Φ,B)
n ∆(~x) and B ⊆ B(T,Φ,A),

then B(T,Φ,A) ` Γ(~x)⇒ ∆(~x).

Proof. If Γ(~x)B(T,Π,B)
n ∆(~x), then by Definition 3.1, there exist a term t(~x) ∈

T, and a formula H(u, ~x) ∈ Π such that we have the following:

(i) B ` H(0, ~x)↔
∧

Γ(~x),

(ii) B ` H(t(x), ~x)↔
∨

∆(~x),

(iii) B ` ∀u ≤ t(~x) H(u, ~x)→ H(u+ 1, ~x).

Since B ⊆ B(T,Π,A), we have

B(T,Π,A) ` ∀u ≤ t(~x) H(u, ~x)→ H(u+ 1, ~x).

Since H(u, ~x) ∈ Π and t ∈ T, by induction we have ,

B(T,Π,A) ` H(0, ~x)→ H(t(~x), ~x).

On the other hand, we have B ` H(0, ~x) ↔
∧

Γ(~x) and B ` H(t(~x), ~x) ↔∨
∆(~x). Therefore, B(T,Π,A) ` Γ(~x)⇒ ∆(~x).

25

5 Applications

In this section we will explain some applications of the theory of non-deterministic
flows. For this purpose, let us first define a hierarchy of theories of bounded
arithmetic to have a variety of theories with different induction lengths for
which the non-determinism is the most effective trick. For this purpose,
consider the language Ln as the Buss’ language of bounded arithmetic, [4],
augmented with subtraction, division and the function symbols {#k}k≤n and
define BASICn as the theory Ap as in the Example 2.6, together with the
defining axioms for these new function symbols. These axioms include the
axioms of the theory R and a suitable representation of x#k+1y = 2|x|#k|y|.
For m ≤ n−1, define Tn,m as the set consisting of all terms less than the terms
of the form |t|m, provably in BASICn where |t|m means applying the length
function m many times. We claim that Tn,m is a BASICn-term ideal. First
note that for any terms t and s, BASICn proves that |t|m · |s|m ≤ |t#m+1s|m,
hence by m + 1 ≤ n, it is easy to prove that Tn,m is closed under addition,
multiplication, subtraction and division. Secondly, it is clear that this set is
closed under substitutions simply because of its form and finally note that
the set has the majorizing terms of the form |t|m where t just consists of
increasing function symbols, i.e. all the function symbols excluding subtrac-
tion and division. Now, define the theory Rk

m,n as the bounded arithmetic

B(Tm, Π̂
b
k(#n),BASICn).

In the following theorem, we show that it is possible to decompose proofs
of Rk

m,n:

Theorem 5.1. Let Γ,∆ ⊆ Π̂b
k(#n), then Rk

m,n ` Γ⇒ ∆ iff

ΓB
(Tm,Π̂b

k(#n),BASICn)
n ∆.

Note that more smash functions can simulate higher order objects in our
first order setting. For instance the theory Rk

n−1,n+r can be read as a the-
ory powerful enough to talk about the n-th order objects, has first order
induction for the formulas with k-many alternations of these higher order
objects and finally has the #r+1 function on the first order elements. For in-
stance having a characterization of Sk

3 = Rk
1,3-provable sentences of the form

∀x∃y ≤ |t(x)| A(x, y) where A is quantifier-free in the language augmented
with all computable functions in time |t| where t ∈ L(#3), is equivalent to
providing a characterization of the total NP-search problems of the second
order hierarchy V k

2 .

26

Using the Theorem 5.1 for the usual bounded theories Sk
2 , we can provide

an example of the combination of the ingredients that we have mentioned
in the Introduction, i.e., first transforming a proof to a sequence of implica-
tions over a universal theory and then using the Theorem 3.10 to bring the
computational content of each implication.

Corollary 5.2. Let A(~x), B(~x) ∈ LPV be two formulas in the k-prenex
bounded form and Sk

2 (PV) be the theory Sk
2 written in the language of PV.

Then Sk
2 (PV) ` A(~x) → B(~x) iff there exists a polynomial p, a formula

G(u, ~x) in the k-prenex bounded form with bounds depending only on ~x, a
uniform sequence of PV-reduction programs Pu from G(u, ~x) to G(u + 1, ~x)
and two PV-reduction programs, one from A(~x) to G(0, ~x) and the other from

G(p(~|x|), ~x) to B(~x).

Proof. Since Sk
2 (PV) is axiomatizable by (T1,2, Π̂

b
k)-induction; all quantifier-

free formulas have PV-equivalent atomic representation and PV is a universal
theory, the claim is a clear consequence of Theorem 5.1 and Theorem 3.10.

Remark 5.3. Note that this theorem transforms the provability of implica-
tions of Π̂b

k formulas (written in their k-prenex bounded forms) in Sk
2 (writ-

ten in the language of PV) to the existence of polynomially long sequence
of k-turn games with a uniform sequence of PV-reduction programs between
them. This characterization is more or less similar to the characterizations
of [8] and [9] for the theories T k

2 . The difference is on the length of the
sequences which in our case is polynomial and hence exponentially shorter
that the exponentially long sequence of reductions of [8] and [9]. However,
our reduction steps are non-deterministic and hence far more complicated
than the simple deterministic reductions of [8] and [9]. Using the Σ̂b

k+1-
conservativity of Sk+1

2 over T k
2 , we can use both characterizations for both

theories for appropriate complexity. This technique pushes the previously
known characterization of ∀Σ̂b

j consequences of T k
2 for 1 ≤ j ≤ k ([9]), one

level up to provide also a characterization of ∀Σ̂b
k+1 consequences of T k

2 . It
is also worth mentioning that we can apply our characterization to provide
another combinatorial characterization of the total NP search problems of
the theory Sk+1

2 , and hence of T k
2 , based on polynomially long sequence of

PV-reduction-programs.

For the second application, we propose a new proof for the strong version
of witnessing theorems for the hierarchy Sk

2 . This type of strong witnessing
theorems appeared in [8], [3], [2], [5] and [9] for different bounded theories
including the theories Sk

2 .

27

Define the hierarchy of function classes �p
k as: �p

1 = FP, �p
k+1 = FPΣp

k

and let comp(~x,M,w) be a polytime formalization for “w is a computation of
the algorithm M on the inputs ~x” and out(w) be a polynomial time function
symbol which reads w and computes the output of w. Then:

Corollary 5.4. (Strong Witnessing Theorem) The provably Σ̂b
k-definable func-

tions of Sk
2 are in �p

k, provably in PV, i.e. if Sk
2 ` ∀~x∃yA(~x, y) where

A(~x, y) ∈ Σ̂b
k, then there exists a machine M computing a function f ∈ �p

k

such that PV ` comp(~x,M,w)→ A(~x, out(w)).

Proof. Assume Sk
2 ` ∀~x∃yA(~x, y). By Parikh theorem we know that there

exists a bound for the existential quantifier. Hence there exists a term t(~x)
such that Sk

2 ` ∀y ≤ t(~x) ¬A(~x, y)⇒ ⊥. W.l.o.g, assume that the language
extends the language of PV. Hence, Sk

2 is axiomatizable in this language by

(T1,2, Π̂
b
k)-induction. By Theorem 5.1, there exist a polynomial p(~|x|) and a

formula H(u, ~x) ∈ Π̂b
k such that the following statements are provable in PV:

(i) H(0, ~x)↔ [∀y ≤ t(~x) ¬A(~x, y)].

(ii) H(p(|~x|), ~x)↔ ⊥.

(iii) ∀u < p(~|x|) H(u, ~x)→ H(u+ 1, ~x).

W.l.o.g we can assume that H is in the k-prenex bounded form. Hence,
H(u, ~x) = ∀z ≤ s(~x) G(u, ~x, z) where G(u, ~x, z) begins with a bounded
existential quantifier and hence is in Σb

k−1. Since PV is a universal the-
ory, by Theorem 3.10, there exist a uniform PV-reduction program Pu from

H(u + 1, ~x) to H(u, ~x) for u < p(~|x|); a PV-reduction program N from
H(0, ~x) to ∀y ≤ t(x) ¬A(x, y) and finally a PV-reduction program K from

⊥ to H(p(~|x|), ~x). The idea is using the power to decide Σb
k−1 formulas and

in needed cases finding the witnesses for those decisions, to simplify the re-
duction programs. We will simplify the reduction program from H(u+ 1, ~x)
to H(u, ~x), the cases for the other two are similar.

For simplicity, use z′ for z inH(u, ~x) to haveH(u, ~x) = ∀z′ ≤ s(~x) G(u, ~x, z′)
and H(u+1, ~x) = ∀z ≤ s(~x) G(u+1, ~x, z). Using the PV-reduction program
Pu, we write an algorithm in �p

k−1 to find z′ from z. W.l.o.g we can assume
that the program begins with reading z. The algorithm Mu is defined as the
following: Begin with the sequent

S(P<1
u) = ∀z′ ≤ s(~x)G(u, ~x, z′)⇒ G(u+ 1, ~x, z)

28

Check the truth value of z ≤ s(~x) → G(u + 1, ~x, z). If it is true, halt and
answer 0. If not, follow the program in a way that all added simpler for-
mulas to the left hand-side (right hand-side) of S(P<1

u) becomes true (false).
More precisely, at the stage m of the program, if Pm is the instruction [Read
X ≤ t(~x)] and if the formula ∀X ≤ t(~x)C(X) that is occurred in the right
hand-side of S(P<m) is false (∃X ≤ t(~x)C in the left hand-side is true), find
X such that X ≤ t(~x) and C(X) becomes false (true). If not, continue.
For the instruction [Compute Y by r ≤ t(~x)], if Y = z′k for some k and
t(~x) = s(~x), check if G(u, ~x, r) is true or false. If it is false then halt and
answer r. If not, continue. If Y /∈ {z′k}k≥0, then continue.

The algorithm definitely halts and finds r(u, ~x, z) such that both

z ≤ s(~x)→ r(u, ~x, z) ≤ s(~x)

and
z ≤ s(~x)→ [G(u, ~x, r(u, ~x, z))→ G(u+ 1, ~x, z)]

become valid. The reason is simple. If the algorithm does not find such an r,
it must reach the end of the program. Based on our construction, all added
formulas to the right hand-side is false and all added formulas in the left
hand-side is true. But there exists a quantifier-free subsequent of S(P<l+1

u)
such that PV ` S ′. Since S ′ consists of quantifier-free formulas, it should
consist of added simpler formulas which implies that the left hand-side of
S ′ is true while its right hand-side is false. Hence, S ′ is false. Therefore,
the algorithm halts. But if it halts, there are two possibilities, either at the
first stage G(u+ 1, ~x, z) is false, or in some stage there exists an r such that
G(u, ~x, r(u, ~x, z)) is false. In both cases we have

z ≤ s(~x)→ [G(u, ~x, r(u, ~x, z))→ G(u+ 1, ~x, z)].

We also have
z ≤ s(~x)→ r(u, ~x, z) ≤ s(~x)

In the first case because the output of the algorithm is 0 and in the second
case, because we faced the instruction [Compute Y by r ≤ s(~x)] whose
definition implies the claimed bound. Hence, the claim follows.

Now we show that the algorithm Mu computes a function in �p
k. Note

that the algorithm begins with checking z ≤ s(~x) → G(u + 1, ~x, z) which is
in Σb

k−1. Then in each stage of the reduction program, if the instruction is
[Read X ≤ t(~x)], the algorithm checks the truth value of an existential sub-
formula of ∀z′ ≤ s(~x)G(u, ~x, z′) or a universal sub-formula of G(u + 1, ~x, z)

29

which implies that the formula is in Σb
k−1. And finally if the instruction is

[Compute Y by r ≤ t(x)], at the worst case, we have to check G(u, ~x, r)
which is also in Σb

k−1. Hence, the algorithm is a constant number of Σb
k−1

oracle questions and thus is in �p
k.

Now let us investigate how complex this halting argument is. Since the
length of the reduction program is a constant and

PV ` ∀u < p(~|x|) H(u, ~x)→ H(u+ 1, ~x)

it is easy to formalize the above mentioned argument in PV to show that

∀u < p(~|x|)∀z ≤ s(~x)[∃wCom(~x, z,Mu, w)→ [G(u, ~x, out(w))→ G(u+1, ~x, z)]] (∗)

and

∀u < p(~|x|)∀z ≤ s(~x)[∃wCom(~x, z,Mu, w)→ out(w) ≤ s(~x)] (∗∗)

Now apply the same argument for the PV-reduction programs N and K
to have:

(i) ∀z ≤ s(~x)[∃wCom(~x, z,N,w))→ [(out(w) ≤ t(~x)→ ¬A(~x, out(w)))→
G(0, ~x, z)]].

(ii) ∃wCom(~x,K,w)→ [G(p(~|x|), ~x, out(w))→ ⊥].

(iii) ∃wCom(~x,K,w)→ out(w) ≤ s(~x)

Now define the algorithm M as running K on 0, then put Mu’s end to end

beginning from u = p(~|x|) till u = 0 and at last run N . We claim that this
M works. First note that M is a result of polynomially many computational
steps in �p

k and hence it is also in �p
k. Secondly note that by the length

induction in PV on p(|~x|) .− u and using (∗) and (∗∗) we can prove

PV ` ∃wCom(~x,M,w)→ ∀u < p(~|x|) out(wu) ≤ s(~x).

and
PV ` ∃wCom(~x,M,w)→ ∀u < p(~|x|)¬G(u, ~x, out(wu)).

Hence

PV ` ∃wCom(~x,M,w)→ [out(w) ≤ t(~x) ∧ A(~x, out(w))]

which complete the proof.

30

References

[1] A. Akbar Tabatabai, Proof Mining in Bounded Arithmetic, preprint.

[2] A. Beckmann and S. R. Buss, Characterization of Definable Search Prob-
lems in Bounded Arithmetic via Proof Notations, Ontos Verlag, 2010,
pp. 65-134.

[3] A. Beckmann and S. R. Buss, Polynomial local search in the polynomial
hierarchy and witnessing in fragments of bounded arithmetic, Journal
of Mathematical Logic, 9 (2009), pp. 103-138.

[4] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986.

[5] L. A. Kolodziejczyk, P. Nguyen, and N. Thapen, The provably total
NP search problems of weak second-order bounded arithmetic, Annals
of Pure and Applied Logic, 162 (2011).

[6] J. Krajicek, P. Pudlak, G. Takeuti, Bounded arithmetic and the poly-
nomial hierarchy, Annals of Pure and Applied Logic, 52: 143-53.

[7] H. Schwichtenberg, A. Troelstra, Basic Proof Theory. No. 43 in Cam-
bridge Tracts in Theoretical Computer Science, Cambridge University
Press, Cambridge, UK (1996).

[8] A. Skelley and N. Thapen, The provably total search problems of
bounded arithmetic, Proceedings of the London Mathematical Society,
103 (2011), pp. 106-138.

[9] N. Thapen, Higher complexity search problems for bounded arithmetic
and a formalized no-gap theorem, Archive for Mathematical Logic, Vol
50:7-8, pages 665-680, 2011.

31

	Introduction
	Preliminaries
	Non-deterministic Reductions and Reduction Programs
	Non-deterministic Flows
	Applications
	References

