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Abstract

The branch of provability logic investigates the provability-based
behavior of the mathematical theories. In a more precise way, it stud-
ies the relation between a mathematical theory T and a modal logic L
via the provability interpretation which interprets the modality as the
provability predicate of T . In this paper we will extend this relation
to investigate the provability-based behavior of a hierarchy of theo-
ries. More precisely, using the modal language with infinitely many
modalities, {�n}∞n=0, we will define the hierarchical counterparts of
some of the classical modal theories such as K4, KD4, GL and S4.
Then we will define their canonical provability interpretations and
their corresponding soundness-completeness theorems.
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1 Introduction

Provability logic is a branch of mathematical logic which investigates the
provability-based behavior of the mathematical theories. In a more precise
way, it studies the relation between a theory T and a modal logic L via
the provability interpretation which interprets � in the language of L as the
provability predicate for the theory T . The key example of this relation is
the relation between the theory PA and the modal logic GL presented by
R. Solovay in [4]. Inspired by this seminal work, these kinds of relations
have been fully investigated in terms of different aspects. But in spite of the
extensive work, it seems that there are still some problems unsolved. The

∗The author is supported by the ERC Advanced Grant 339691 (FEALORA)

1



main theme is the following: There are some modal theories such as K4,
KD4 or S4 which admit some kinds of informal provability interpretations.
However, none of these logics is a provability logic for any theory in the usual
formal sense. The problem is, how it is possible to formalize those intuitive
provability interpretations to widen the horizon and see these modal theories
as provability logics.
Let us illuminate this problem by a classical example. The best example is
Gödel’s problem of finding a provability interpretation for S4, proposed in
his paper [2]. Think of the axioms of the system S4. It seems that all of them
are valid under the intuitive interpretation of � as the informal provability
predicate. The axiom K : �(A → B) → (�A → �B) means that the prov-
ability predicate is closed under modus ponens. The axiom 4 : �A→ ��A
states that “the provability of a provable statement is also provable” which
seems a reasonable condition to have and finally T : �A → A states that
the proofs are sound. Therefore, it seems that S4 is a valid theory for the
concept of provability. However, S4 is not a provability logic in the usual
sense, because if it is a provability logic of a theory T , then ¬�⊥ ∧ �¬�⊥
should be true under the provability interpretation. This means that the
statement Cons(T ) ∧ PrT (Cons(T )) holds, which contradicts with Gödel’s
second incompleteness theorem. Therefore, the following question emerges:
If the usual provability interpretation does not work for S4, then what is the
formalization of the intuitive interpretation we used before?

To solve these kinds of problems, in [1] we introduced a way of extending
the framework of provability logic to capture more theories, including S4.
The main idea is using a hierarchy of theories instead of just one theory.
The explanation is the following: In the modal language there are nested
modalieties which intuitively capture the nested use of the provability pred-
icate in mathematics; statements like provability of p, provability of “prov-
ability of p” and so on. These different layers of provability naturally refer
to different layers of theories, meta-theories, meta-meta-theories and so on.
But the usual provability interpretation reads all of them as the provability
predicate of a fixed theory. Philosophically speaking, we know that there
is no reason to assume that all layers of our meta-theories are the same.
Quite the contrary, in actual practice of mathematical logic, sometimes we
need to have more powerful meta-theories to investigate the behavior of the
theory. Therefore, we proposed using a hierarchy of theories to formalize
the different layers of meta-theories instead of using just one theory for all
the levels of the concept of provability. Following that approach and us-
ing some natural classes of the hierarchies of arithmetical theories, we found
some natural interpretations for some modal logics such as K4, KD4 and S4.
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This framework extension is clearly useful for the problem of finding a
provability interpretation for a given modal logic, but it also proposes a brand
new problem, the converse of the first problem which is the problem of finding
the provability logic of a given class of hierarchies. Trivially, we can interpret
our work [1] as a way to answer this question, but there are some technical
problems which make the usual language of modal logics quite inappropriate
for this purpose. The reason is that in the language of modal logic we have
just one modality and we know that there is no canonical way to interpret the
different occurrences of this modality as the different provability predicates
in the hierarchy. Hence, it seems that the usual language of modal logics is
not a natural choice if we want to capture the provability-based behavior of
a hierarchy. To handle this problem, it seems that we need a modal language
with infinitely many modalities to capture the different layers of the meta-
theories’ hierarchy.

In this paper we will follow this poly-modal approach. In fact, using the
language mentioned above we will introduce the hierarchical counterparts
of some of the usual modal logics, such as K4, KD4 and S4. Then we will
introduce a natural provability interpretation for these new logics and finally,
we will prove the soundness-completeness theorems for this interpretation.

2 Preliminaries

Our main strategy to prove the soundness-completeness result is reducing
the completeness of the new theories to the completeness of the usual modal
theories proved in [1]. To follow this strategy, we need some of the notions
and theorems of [1]. In this section we will explain them.

The first key ingredient is the notion of a provability model as a natural
model to capture our intuitive notion of the world to evaluate statements
and the notion of the hierarchy of the different layers of meta-theories. (For
more detailed explanation, see [1].)

Definition 2.1. A provability model is a pair (M, {Tn}∞n=0) where M is a
model of IΣ1 and {Tn}∞n=0 is a hierarchy of arithmetical r.e. theories such
that for any n, IΣ1 ⊆ Tn ⊆ Tn+1 provably in IΣ1.

The next ingredient is the notion of witness. Informally speaking, it is
just a way of assigning numbers to boxes in a formula. The goal is assigning
theories in the hierarchy to boxes. The condition is that the number for the
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outer box should be greater than the number for inner boxes. This condition
captures the fact that the outer box refers to the meta-theory of the theories
used for the inner boxes.

Definition 2.2. Let w be a sequence of natural numbers and A be a modal
formula. Then the relation w  A, which means w is a witness for A, is
inductively defined as follows:

• If A is an atom, ()  A.

• If A = B◦C, then (w1, w2)  A if w1  B and w2  C for ◦ ∈ {∧,∨,→}

• If A = ¬B, then w  A if w  B.

• If A = �B, then (n,w)  A if w  B and n > m for all m which are
appeared in w.

Moreover, if Γ is a sequence of modal formulas, by a witness for Γ we mean, a
sequence of witnesses, such that any witness wi in the sequence, is a witness
for Ai in Γ.

The next concept that we need is the notion of evaluation.

Definition 2.3. Let w be a witness for A and σ be an arithmetical substi-
tution which assigns an arithmetical sentence to any propositional variable.
And also let (M, {Tn}∞n=0) be a provability model. By Aσ(w) we mean an
arithmetical sentence which is resulted by substituting the variables by σ and
interpreting any box as the provability predicate of Tn if the corresponding
number in the witness for this box was n. The interpretation of the boolean
connectives are themselves. Moreover, if Γ is a sequence of modal formulas
Ai, and w = (wi)i is its witness, by Γσ(w) we mean the sequence of Aσi (wi).

And the notion of satisfaction:

Definition 2.4. A sequent Γ ⇒ ∆ is true in (M, {Tn}∞n=0) when there are
witnesses u and v for Γ and ∆ respectively, such that for any arithmetical
substitution σ, M � Γσ(u) ⇒ ∆σ(v). Moreover, we say a sequent Γ ⇒ ∆ is
true in a class of models C, when there are uniform witnesses for all models.
In a more precise way, we write C � Γ ⇒ ∆, if there are witnesses u and
v such that for all arithmetical substitutions σ and all provability models
(M, {Tn}∞n=0) in C, M � Γσ(u)⇒ ∆σ(v).

Remark 2.5. The Definition 2.4 is actually a weaker version of what we
used in [1]. The full definition is more complicated, but since we just need
the completeness part of these interpretations, this weaker version would be
enough for our purpose.
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To have a completeness result we need some classes of provability models.
In the following, we will define some of the natural ones:

Definition 2.6. (i) The class of all provability models will be denoted by
PrM.

(ii) A provability model (M, {Tn}∞n=0) is called consistent if for any n, M
thinks that Tn is consistent and Tn+1 ` Cons(Tn), i.e. M � Cons(Tn)
and M � PrTn+1(Cons(Tn)). The class of all consistent provability
models will be denoted by Cons.

(iii) A provability model (M, {Tn}∞n=0) is reflexive if for any n, M thinks
that Tn is sound and Tn+1 ` Rfn(Tn), i.e. M � PrTn(A) → A and
M � PrTn+1(PrTn(A)→ A) for any sentence A. The class of all reflexive
provability models will be denoted by Ref .

(iii′) A hierarchy {Tn}∞n=0 of theories is called uniform if there exists a Σ1

formula Prf(x, y, z) such that for any n, m and A, Prf(n,m, dAe) iff
m is a code of a proof for A in Tn. The hierarchy is called uniformly
increasing if it is a uniform hierarchy and also we have IΣ1 ⊆ T0 prov-
ably in IΣ1 and IΣ1 ` ∀x∀z(∃y Prf(x, y, z) → ∃w Prf(x + 1, w, z)).
And finally a hierarchy is called uniformly reflexive if it is a uniformly
increasing hierarchy such that for any formula A, IΣ1 ` ∀x∃y Prf(x+
1, y,∃w Prf(x,w,A) → A). If {Tn}∞n=0 is uniformly reflexive and
M �

⋃∞
n=0 Tn, the provability model (M, {Tn}∞n=0) is called uniformly

reflexive. The class of all uniformly reflexive models will be denoted by
uRef .

(iv) A provability model, (M, {Tn}∞n=0) is constant if for any n and m,
(M, {Tn}∞n=0) thinks that Tn = Tm, i.e. M � PrTm(A) ↔ PrTn(A)
and M � PrT0(PrTm(A) ↔ PrTn(A)) for any sentence A. The class of
all constant provability models will be denoted by Cst.

And finally we have the following completeness theorems for the usual
modal logics:

Theorem 2.7. (i) If PrM � Γ⇒ A, then Γ `K4 A.

(ii) If Cons � Γ⇒ A, then Γ `KD4 A.

(iii) Let {Tn}∞n=0 be a uniformly reflexive hierarchy of sound theories. Then
there exists an arithmetical substitution ∗, such that for any modal
sequent Γ ⇒ A, if there exist witnesses u and v such that for all M �⋃
n Tn, (M, {Tn}∞n=0) � Γ∗(u) ⇒ A∗(v), then Γ `S4 A. Moreover, If

Ref � Γ⇒ A, then Γ `S4 A.
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(vi) Let IΣ1 ⊆ T be an r.e. Σ1-sound theory and {Tn}∞n=0 be a hierarchy
of theories such that for any n, Tn = T , then there is an arithmetical
substitution ∗ such that for any modal sequent Γ⇒ A, if for all M � T ,
we have (M, {Tn}∞n=0) � Γ ⇒ A, then Γ `GL A. And especially, if
Cst � Γ⇒ A then Γ `GL A.

As the last word in this section, let us remind you the three sequent
calculi for the modal logics K4, KD4 and S4. We will need them in the
next section. Consider the following rules:

Axioms:

A⇒ A ⊥ ⇒
Structural Rules:

Γ⇒ ∆
(wL)

Γ, A⇒ ∆
Γ⇒ ∆

(wR)

Γ⇒ ∆, A

Γ, A,A⇒ ∆
(cL)

Γ, A⇒ ∆
Γ⇒ ∆, A,A

(cR)

Γ⇒ ∆, A

Γ0 ⇒ ∆0, A Γ1, A⇒ ∆1
(cut)

Γ0,Γ1 ⇒ ∆0,∆1

Propositional Rules:

Γ0, A⇒ ∆0 Γ1, B ⇒ ∆1
∨L

Γ0,Γ1, A ∨B ⇒ ∆0,∆1

Γ⇒ ∆, Ai
∨R (i = 0, 1)

Γ⇒ ∆, A0 ∨ A1

Γ, Ai ⇒ ∆
∧L (i = 0, 1)

Γ, A0 ∧ A1 ⇒ ∆, C
Γ0 ⇒ ∆0, A Γ1 ⇒ ∆1, B

∧R

Γ0,Γ1 ⇒ ∆0,∆1, A ∧B
Γ0 ⇒ A,∆0 Γ1, B ⇒ ∆1, C

→ L

Γ0,Γ1, A→ B ⇒ ∆0,∆1, C
Γ, A⇒ B,∆

→ R

Γ⇒ ∆, A→ B

Γ⇒ ∆, A
¬L

Γ,¬A⇒ ∆
Γ, A⇒ ∆

¬R

Γ⇒ ∆,¬A
Modal Rules:

Γ,�Γ⇒ A
�4R

�Γ⇒ �A
Γ,�Γ⇒

�DR

�Γ⇒
�Γ⇒ A

�SR

�Γ⇒ �A

Γ, A⇒ ∆
�L

Γ,�A⇒ ∆

The system G(K4) is the system that consists of the axioms, structural rules
and propositional rules and the modal rule �4R. G(KD4) is G(K4) plus
the rule �DR and finally, G(S4) is the system G(K4) when we replace the
rule �4R by �SR and add the rule �L. All of these systems have the cut
elimination property. (See [3]).
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3 Hierarchical Modal Theories and Their Proof

Theory

In this section we will define an appropriate language to reflect a hierarchy
of theories in the language of modal logics. Then we will introduce some
natural modal theories to formalize different provability-based behaviors of
hierarchies and finally we will investigate some of their proof-theoretic prop-
erties.

Definition 3.1. Consider the language of modal logics with infinitely many
modalities, {�n}∞n=0. The set of formulas in this language, L∞, is defined as
the least set of expressions which includes all atomic formulas and is closed
under all boolean operations and also the following operation: If A ∈ L∞
and n is bigger than all indices of boxes occurred in A then �nA ∈ L∞. In
other words, A ∈ L∞ if A is a usual formula in the modal language and also
the index of any box is bigger than the indices of all other boxes in its scope.
Moreover, if A ∈ L∞, by the rank of A, r(A), we mean the biggest index
occurring in A and if Γ ⊆ L∞, by r(Γ) we mean the maximum of the ranks
of A ∈ Γ.

For example �1(¬�0p ∧ q) is a formula with rank one, while the expres-
sion �1�1p is not even a formula. Notice that the reason behind the limiting
condition of the definition of L∞ is that we believe in the separation of the
levels of the theories and meta-theories. Therefore, referring to meta-theories
in the lower theories or even the meta-theories themselves should be consid-
ered as a syntactical error.

For the provability-based semantics, consider the following informal def-
inition: The provability interpretation of a formula A is an arithmetical
formula which interprets �n as the provability predicate of the theory Tn.
Formally speaking:

Definition 3.2. Let (M, {Tn}∞n=0) be a provability model and A ∈ L∞ a
formula. Then by an arithmetical substitution σ we mean a function from
atomic formulas to the set of arithmetical sentences. Moreover, by Aσ we
mean an arithmetical sentence which is resulted by substituting the atomic
formulas by σ and interpreting any �n as the provability predicate of Tn.
The interpretation of boolean connectives are themselves. In addition, if Γ
is a sequence of formulas Ai, by Γσ we mean the sequence of Aσi .

Definition 3.3. Let (M, {Tn}∞n=0) be a provability model and A ∈ L∞ a
formula. Then we say (M, {Tn}∞n=0) � A if for any arithmetical substitution
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σ, M � Aσ. Moreover, if Γ and ∆ are sequences of formulas (not necessarily
finite) and C a class of provability models, by C � Γ⇒ ∆, we mean that for
any (M, {Tn}∞n=0) ∈ C, and for any arithmetical substitution σ, if M �

∧
Γσ,

then M �
∨

∆σ.

Let us illuminate the definition above by an example.

Example 3.4. Let (N, {Tn}∞n=0) be a pair where T0 = PA and for any n,
Tn+1 = Tn + Rfn(Tn). Based on the definition, this pair is obviously a prov-
ability model. Now, we want to show that the sentence �n+1(�nA → A) is
true in the model. The proof is simple: For any arithmetical substitution σ,
we have N � PrTn+1(PrTn(Aσ) → Aσ) since the theory Tn+1 can prove the
reflection for Tn.

It is time to define some modal theories in this language:

Definition 3.5. Consider the following set of axiom schemes:

(H) �nA→ �n+1A

(Kh) �n(A→ B)→ (�nA→ �nB)

(4h) �nA→ �n+1�nA

(Dh) ¬�n⊥

(Lh) �n+1(�nA→ A)→ �nA

(Th) �nA→ A

(5h) ¬�nA→ �n+1¬�nA

Let X be a set of these schemes. By L(X) we mean the least set of formulas
in L∞ which contains all classical tautologies on formulas in L∞, includes all
instances of the axioms in the set X for any natural number n ≥ 0, and is
closed under the following rules:

(MP) If A ∈ L(X) and A→ B ∈ L(X) then B ∈ L(X).

(NCh) If A ∈ L(X) then �nA ∈ L(X) for any natural number n greater than
all the numbers occurred in A.

Moreover, if Γ ∪ {A} ⊆ L∞, by Γ `L(X) A we mean that there exists a finite
set ∆ ⊆ Γ such that L(X) `

∧
∆→ A.

Finally, we define K4h = L(H,Kh,4h), KD4h = L(H,Kh,4h,Dh), S4h =
L(H,Kh,4h,Th), GLh = L(H,Kh,4h,Lh) and KD45h = L(H,Kh,Dh,4h,5h)
and S5h = L(H,Kh,4h,Th,5h).

8



Remark 3.6. Note that from now on, all formulas are supposed to belong
to the set L∞. For instance, we can not use the axiom Kh for all n’s. n
should be bigger than all the indices occurred in A and B.

In the remaining part of this section, we will investigate some of the proof-
theoretical properties of the above-mentioned theories. These investigations
are not complete in any sense. The reason is that we focus on the properties
that somehow we need for the proof of the soundness-completeness theorems
in the following sections.

First of all, we have to mention that for the soundness theorems for some
of the theories, we need a cut-free sequent-style representation of the proofs.
Therefore, the next step will be introducing Gentzen-style systems for our
logics. To achieve this goal, consider the following set of modal rules:

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A

�4h
R

{�nσr}r∈R, {�ni
γi}i∈I ⇒ �nA

{σr}r∈R, {γi,�ni
γi}i∈I ⇒

�Dh
R

{�nσr}r∈R, {�ni
γi}i∈I ⇒

Γ, A⇒ ∆
�hL

Γ,�nA⇒ ∆

{σr}r∈R, {�ni
γi}i∈I ⇒ A

�Sh
R

{�nσr}r∈R, {�ni
γi}i∈I ⇒ �nA

The condition of applying the rules �4hR, �Dh
R and �Sh

R is that for all
i ∈ I, ni < n.
The system G(K4h) is the system that consists of the axioms, structural rules
and propositional rules as introduced in the Preliminaries and the modal rule
�4hR. G(KD4h) is G(K4h) plus the rule �Dh

R and finally, G(S4h) is the
system G(K4h) when we replace the rule �4hR by �Sh

R and add the rule
�hL.

Theorem 3.7. The Systems G(K4h), G(KD4h) and G(S4h) are equivalent
to K4h, KD4h and S4h, respectively.

Proof. Firstly, we will show that all of these sequnet calculi are strong enough
to simulate their Hilbert style counterparts. To do that, we will use induction
on the length of the Hilbert style proof. First, we have to show that the
axioms can be simulated. For the case of classical tautologies, we can prove
all classical tautologies in the sequent systems because we have all classical
propositional rules available. For the modal axioms it is enough to consider
the following proof trees:

The proof of the axiom Kh in all systems:
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A⇒ A B ⇒ B
→ L

A,A→ B ⇒ B
�4h

, �Sh

�nA,�n(A→ B)⇒ �nB
→ R

�n(A→ B)⇒ �nA→ �nB
→ R

⇒ �n(A→ B)→ (�nA→ �nB)

Two different proofs of the axiom H in the systems G(K4h) and G(S4h):

A⇒ A
wL

A,�nA⇒ A
�4h

R

�nA⇒ �n+1A
→ R

⇒ �nA→ �n+1A

A⇒ A
�hL

�nA⇒ A
�Sh

R

�nA⇒ �n+1A
→ R

⇒ �nA→ �n+1A

The proof of the axiom 4h in the systems G(K4h) and G(S4h):

�nA⇒ �nA
wL

A,�nA⇒ �nA
�4h

R

�nA⇒ �n+1�nA
→ R

⇒ �nA→ �n+1�nA

�nA⇒ �nA�ShR

�nA⇒ �n+1�nA
→ R

⇒ �nA→ �n+1�nA

The proof of the axioms Dh and Th in the systems G(KD4h) and G(S4h),
respectively:

⊥ ⇒
wR

�n⊥,⊥ ⇒
�Dh

L

�n⊥ ⇒
wL

�n⊥ ⇒ ⊥
→ R

⇒ �n⊥ → ⊥

A⇒ A
�hL

�nA⇒ A
→ R

⇒ �nA→ A

For the rules, the modus ponens case and the necessitation rule will be easily
handled by the cut rule and the rule �4hR or �Sh

R, respectively. To prove
the converse, it is enough to prove that the modal rules can be simulated in
the corresponding Hilbert style systems. In a more precise word, we want to
show that if Γ ⇒ ∆ is provable in the sequent calculus, then

∧
Γ →

∨
∆ is

provable in its Hilbert style counterpart. To achieve this goal, it is enough
to show that the system K4h admits the rule �4hR, KD4h admits the rules
�4hR and �Dh

R and finally S4h admits the rules �Sh
R and �hL.

1. The case of K4h. If we have {σr}r∈R, {γi,�ni
γi}i∈I ⇒ A, then by IH,

K4h `
∧
{σr}r∈R, {γi,�ni

γi}i∈I → A.

Then since ni < n, by a combination of the necessitation rule and some use
of the axiom Kh

K4h ` �n

∧
{σr}r∈R, {γi,�ni

γi}i∈I → �nA.
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Using the axiom Kh we can prove that �n commutes with conjunctions.
Hence

K4h `
∧
{�nσr}r∈R, {�nγi,�n�ni

γi}i∈I → �nA.

By 4h we have

K4h `
∧
{�nσr}r∈R, {�nγi,�ni

γi}i∈I → �nA

and by H and the fact that ni < n we have

K4h `
∧
{�nσr}r∈R, {�ni

γi}i∈I → �nA.

2. The case of KD4h. Showing that KD4h admits the rule �4h is similar
to the case 1. To show that the system admits the rule �Dh

R, it is enough
to replace A in the case 1 by ⊥. We have

KD4h `
∧
{�nσr}r∈R, {�ni

γi}i∈I → �n⊥

but we know that KD4h ` ¬�n⊥. Therefore,

KD4h `
∧
{�nσr}r∈R, {�ni

γi}i∈I → ⊥.

3. The case of S4h. The proof for the rule �Sh
R is similar to the case 1.

For the rule �hL, if we have Γ, A⇒ ∆, then by IH,

S4h ` A ∧
∧

Γ→
∨

∆.

Since we know S4h ` �nA→ A, hence

S4h ` �nA ∧
∧

Γ→
∨

∆.

Theorem 3.8. (Cut Elimination) The Systems G(K4h), G(KD4h) and
G(S4h) have the cut elimination property.

Proof. The proof is similar to the usual proof of cut elimination in the sys-
tems G(K4), G(KD4) and G(S4). The strategy is proving the following
principal lemma for the systems G(K4h), G(KD4h) and G(S4h). Define
the complexity of a formula A, as its length. Then by a d-proof we mean
a proof whose cut formulas have the complexity strictly less than d. We claim:

Principal Lemma. Let A be a formula of the complexity d and π and
π′ be some d-proofs of Γ ⇒ ∆, A and Γ′, A ⇒ ∆′, respectively. Then there
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is a d-proof π′′ of Γ,Γ′−A⇒ ∆−A,∆′ in which Γ′−A means the multiset
Γ′ after eliminating all occurrences of A. The same holds for ∆− A.

Since the proof of the principal lemma for the systems G(K4h), G(KD4h)
and G(S4h) are more or less the same, we will prove it for G(KD4h). The
proof as usual is by induction on the addition of the height of π and the
height of π′. The cases in which the last rule of π or π′ is an axiom, struc-
tural or propositional rule are easy to check. Therefore, we will focus on the
case that the last rule of both π and π′ are modal rules. Since the right side
of Γ ⇒ ∆, A is not empty, the last rule of π should be �4hR. But the last
rule of π′ could be both of the rules �4hR or �Dh

R. Assume that it is �4hR.
There are two cases. The first one is when A is one of the boxed formulas
in the premise of the last rule of π′. The other case is when A is between
un-boxed formulas in the premise sequent. For the first case we have the
following combination:

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A

{�nσr}r∈R, {�ni
γi}i∈I ⇒ �nA

{σ′s}s∈S, {γ′j,�mj
γ′j}j∈J , A,�nA⇒ B

{�kσ
′
s}s∈S, {�mj

γ′j}j∈J ,�nA⇒ �kB

Consider the proof π of

{�nσr}r∈R, {�ni
γi}i∈I ⇒ �nA

and the subproof of π′ that leads to

{σ′s}s∈S, {γ′j,�mj
γ′j}j∈J , A,�nA⇒ B.

By IH, we can construct a d-proof of

({σ′s}s∈S, {γ′j,�mj
γ′j}j∈J , A)−�nA, {�nσr}r∈R, {�ni

γi}i∈I ⇒ B.

Then use cut on A for the following two sequents:

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A

and

({σ′s}s∈S, {γ′j,�mj
γ′j}j∈J , A)−�nA, {�nσr}r∈R, {�ni

γi}i∈I ⇒ B

to have

({σ′s}s∈S, {γ′j,�mj
γ′j}j∈J)−{�nA,A}, {σr}r∈R, {γi,�ni

γi}i∈I , {�nσr}r∈R, {�ni
γi}i∈I ⇒ B
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and then use �4hR to have

{�nσr}r∈R, {�kσs}s∈S, {�ni
γi}i∈I , ({�mj

γ′j}j∈J)−�nA⇒ �kB.

The important thing is that since the rule �4hR is applied in π and π′ we
have to have ni < n and n,mj < k, and therefore n, ni,mj < k, which guar-
antees the application of the last �4hR rule in the above tree. Notice that
this proof eliminates all the occurrences of �nA in {�kσ

′
s}s∈S, {�mj

γ′j}j∈J .
The reason is that n < k and hence there is not any occurrence of �nA in
{�kσ

′
s}s∈S. On the other hand, the proof eliminates all the occurrences of

�nA in {�mj
γ′j}j∈J , which completes the claim.

For the second case we have the following combination:

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A

{�kσr}r∈R, {�ni
γi}i∈I ⇒ �kA

{σ′s}s∈S, A,A, . . . , A, {γ′j,�mj
γ′j}j∈J ⇒ B

{�kσ
′
s}s∈S,�kA,�kA, . . . ,�kA, {�mj

γ′j}j∈J ⇒ �kB

Then consider the subproofs of π and π′ leading to the sequents

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A

and
{σ′s}s∈S, A,A, . . . , A, {γ′j,�mj

γ′j}j∈J ⇒ B.

By some cuts on A, some contractions and applying the rule �4hR, we have

{σr}r∈R, {γi,�ni
γi}i∈I ⇒ A {σ′s}s∈S, A,A, . . . , A, {γ′j,�mj

γ′j}j∈J ⇒ B

{σ′s}s∈S, {γ′j,�mj
γ′j}j∈J , {σr}r∈R, {γi,�ni

γi}i∈I ⇒ B

{�kσr}r∈R, {�kσ
′
s}s∈S, {�ni

γi}i∈I , {�mj
γ′j}j∈J ⇒ �kB

Again, since ni < k and mj < k we can apply the last rule.

Finally, if the last rule of π′ is �DR, then it is enough to erase all the
occurrences of B and �kB’s in the above proof. The proof would be exactly
the same.

The other ingredient that we will need, is a strong version of the necessi-
tation rule.

Theorem 3.9. (Strong Necessitation)
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(i) If
∧k
i=1 �mi

Ai `K4h
A and for any i, mi ≤ n, then

∧k
i=1 �mi

Ai `K4h

�nA.

(ii) If
∧k
i=1 �mi

Ai `S4h
A and for any i, mi ≤ n, then

∧k
i=1 �mi

Ai `S4h

�nA.

Proof. To prove the theorem, we need the following translation. Assume n
is a number and Z is a formula such that r(Z) < n. Define AZ inductively
as follows:

(i) If B is an atom, BZ = B.

(ii) (B ◦ C)Z = BZ ◦ CZ for all ◦ ∈ {∧,∨,→}

(iii) (¬B)Z = ¬BZ .

(iv) If i < n, (�iB)Z = �iB
Z and if i ≥ n then (�iB)Z = �i(Z → BZ).

We have the following claim.

Claim. If K4h ` A then K4h ` AZ . And if S4h ` A then Z `S4h
AZ .

We will just prove the case for K4h. The case for S4h is similar. First,
observe that for any formula C if n > r(C), then CZ = C. And secondly,
r(CZ) = r(C) which is easy to prove by induction on the complexity of C.
To prove the claim for K4h we will use induction on the length of the proof
of A. The case for axioms and the case of the modus ponens rule are easy
to check. If A is a result of the necessitation rule then we have A = �mB
and K4h ` B. If m < n, then by the first observation AZ = A. There-
fore, the claim is trivial. If m ≥ n then by IH we have `K4h

BZ . Hence,
K4 ` Z → BZ . Since r(Z) < n ≤ m and r(BZ) = r(B) < m, by necessita-
tion we have K4h ` �m(Z → BZ). Hence, K4h ` (�mB)Z .

To prove the theorem, assume that
∧k
i=1 �mi

Bi ∧
∧r
j=1 �nCj `K4h

A

where mi < n. Then
∧r
j=1 �nCj `K4h

∧k
i=1 �mi

Bi → A. Pick Z =
∧r
j=1Cj.

Since r(Z) < n, we have

K4 ` (
r∧
j=1

�nCj)
Z → (

k∧
i=1

�mi
Bi → A)Z .

Since r(
∧k
i=1 �mi

Bi → A) < n we have (
∧k
i=1 �mi

Bi → A)Z =
∧k
i=1 �mi

Bi →
A. Moreover, because we have (�nCj)

Z = �n(
∧r
j=1Cj → Cj), then K4h `

14



∧k
i=1 �mi

Bi → A. Hence, by necessitation and the axiom Kh we have

K4h `
k∧
i=1

�n�mi
Bi → �nA.

Then by axiom 4h we have

k∧
i=1

�mi
Bi ∧

r∧
j=1

�nCj `K4h
�nA.

For S4h, the proof is similar, but the only difference is that by the claim
we will have S4h `

∧r
j=0Cj ∧

∧k
i=1 �mi

Bi → A. Hence by the same consid-
erations as above we have

k∧
i=1

�mi
Bi ∧

r∧
j=1

�nCj `S4h
�nA.

We stated that our strategy to prove the completeness of the hierarchical
modal logics is reducing their completeness to the completeness of the usual
modal theories. To achieve this goal we need the following translation and
also its completeness.

Definition 3.10. Let Q = {qn}∞n=0 be a set of new atomic variables which
are not occurred in the formulas in L∞. Then define the translation t : L∞ →
L�(Q) as follows:

(i) If A is an atom, At = A.

(ii) (A ◦B)t = At ◦Bt for all ◦ ∈ {∧,∨,→}

(iii) (¬A)t = ¬At.

(iv) (�nA)t = �(
∧n
i=0 qi → At).

We will prove the following completeness of the translation t between
K4(Q) and K4h and also between S4(Q) and S4h.

Theorem 3.11. (i) If Γt `K4(Q) A
t, then Γ `K4h

A.

(ii) If Γt `S4(Q) A
t, then Γ `S4h

A.
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Proof. First of all, it is obvious that it is enough to prove the theorem for
Γ = ∅. The reason is that in both sides, proofs just use a finite subset of Γ
and Γt. Secondly, we will present a proof for both of the logics K4(Q) and
S4(Q), simultaneously. To achieve this goal we will use L to denote these
logics, Lh to denote their hierarchical counterparts and G(L) to denote L’s
sequent calculus as introduced in the Preliminaries.

Assume L ` At. Hence, we have G(L) ` ⇒ At. Therefore, there exists a
cut-free proof π of⇒ At in which all formulas are sub-formulas of At. Define
the set X of usual modal formulas as the least set such that:

(i) If B is an atom, B ∈ X. Moreover, ⊥,> ∈ X.

(ii) If B,C ∈ X then B ◦ C ∈ X for all ◦ ∈ {∧,∨,→}

(iii) If B ∈ X then ¬B ∈ X.

(iv) If B ∈ X then:
1. �(

∧n
i=0 qi → B) ∈ X if n is greater than all indices of qj’s occurring

in B. Formulas defined in this case are called the first kind boxed
formulas in X.
2. �(

∧m
i=0 qi ∧

∧n
i=m+1⊥ → B) ∈ X if m is greater than or equal to all

indices of qj’s occurring in B and m < n. Formulas defined in this case
are called the second kind boxed formulas in X.

It is easy to check that X includes all sub-formulas of At. The reason is that
all boxed sub-formulas of At have the form �(

∧n
i=0 qi → B) in which n is

greater than all qk’s occurring in B. Therefore, every formula in the proof π
belongs to X. To prove the theorem, we need some more ingredients. The
first is the notion of X-proof. An X-proof is a cut-free proof in the system
G(L) in which all formulas belong to X. For instance, π is an X-proof. The
second notion is the rank of formulas in X. If B ∈ X, by r(B) we mean the
greatest number n such that qn occurred in the formula B. The third notion
is a good X-proof. An X-proof is called good if for any occurrence of the
rules

Γ,�Γ⇒ B
�4R

�Γ⇒ �B
�Γ⇒ B

�SR

�Γ⇒ �B

the rank of �B is bigger than or equal to the maximum of the ranks of for-
mulas in �Γ.
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Claim 1. Let n be a natural number and σn be the substitution which
sends all qi for i > n to ⊥. Then if α is a good X-proof, α(σn) is so.

First of all, notice that the set X is closed under these kinds of substi-
tutions. The proof is just by structural induction on X. The important
case is the box case. For the first kind, B = �(

∧m
i=0 qi → C). If n ≥ m,

then B(σn) = B, because there is no qi in B such that i > n. Therefore,
B(σn) ∈ X. If n < m, then B(σn) = �(

∧n
i=0 qi ∧

∧m
i=n+1⊥ → C(σn)). By

IH, C(σn) ∈ X. Since n+1 ≤ m, B(σn) is of the second kind. We know that
n is the biggest number between the indices occurring in C(σn). The reason
is that we substitute all q’s with greater index by ⊥. Hence, B(σn) ∈ X.
For the second kind, B =

∧m
i=0 qi ∧

∧k
i=m+1⊥ → B. If n ≥ m, B(σn) = B

because there is no qi in B such that i > n. Therefore, B(σn) ∈ X. If n < m,
then B(σn) = �(

∧n
i=0 qi ∧

∧k
i=n+1⊥ → C(σn)). Since n+ 1 ≤ m, B(σn) is of

the second kind. We know that n is the biggest number between the indices
occurring in C(σn). The reason is that we substitute all q’s with greater
index by ⊥. Hence, B(σn) ∈ X.

Secondly, it is easy to see that ifB is a boxed formula inX then r(B(σn)) =
min{r(B), n}. It is enough to check all four above possibilities. For two of
them B(σn) = B and hence the claim is obvious. For the other two, both
ranks are n and m > n.
We have shown that X is closed under the substitution σn which means that
if α is an X-proof then α(σn) is an X-proof as well. We want to show that
it is also a good X-proof. The reason is that if we apply the rule �R in
α, then since α is a good X-proof, r(�B) ≥ r(�Γ). After substitution, we
have r(�B(σn)) = min{r(B), n} ≥ min{r(�Γ), n} = r(�Γ(σn)). Therefore,
α(σ) is also a good X-proof. This completes the proof of the Claim 1.

Claim 2. If Γ ⇒ ∆ has an X-proof, then there exists a set �Σ of for-
mulas of the second kind in X such that �Σ,Γ⇒ ∆ has a good X-proof.

To prove this claim, we use induction on the length of the proof of Γ⇒ ∆.
If the last rule is an axiom, a structural rule or a propositional rule, then the
claim is obvious from the IH. For the modal rules:

1. If L = K4(Q) and the last rule is �4R. Then we have �Γ ⇒ �A
proved by Γ,�Γ⇒ A. By IH, there exists �Σ ⊆ X such that �Σ,Γ,�Γ⇒ A
has a good X-proof. Divide Γ in two parts, Γ0 and Γ1 such that r(Γ0) ≤ r(A)
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and r(γ) > r(A) for all γ ∈ Γ1. We have a good X-proof for

�Σ,Γ0,�Γ0,Γ1,�Γ1 ⇒ A.

Use σr(A) to substitute all qj’s, j > r(A), by ⊥. Since there is not any
occurrence of these qj’s in Γ0 and A, they do not change after applying the
substitution. Hence we have

�Σ′,Γ0,�Γ0,Γ
′
1,�Γ′1 ⇒ A

in which Y ′ means Y after applying the substitution. By Claim 1 we know
that the new proof is also a good X-proof. Use left weakening for Σ′ and
then by �4R we have

�Σ′,�Γ0,�Γ′1 ⇒ �A.

Again by right weakening for �Γ1 we have

�Σ′,�Γ0,�Γ′1,�Γ1 ⇒ �A.

Therefore
�Σ′,�Γ′1,�Γ⇒ �A

which is what we wanted. Notice that the use of �4R is now a good one,
because r(A) ≥ r(�Σ′,�Γ0,�Γ′1). Therefore, the new proof is a good X-
proof. Moreover, notice that the formulas in �Σ′ ∪ �Γ′1 are of the second
kind. The reason is that on the one hand �Σ′ is (�Σ)(σr(A)) and formulas
in �Σ are of the second kind by IH, hence the formulas after substitution
should also be of the second kind. On the other hand, for any formula γ ∈ Γ1,
r(γ) > r(A). Therefore, if γ =

∧k
i=0 ri → β then qr(γ) is among ri’s and after

substitution, it changes to ⊥ which means that γ(σr(A)) is of the second kind.

2. If L = S4(Q). If the last rule is �SR the proof is similar to the the
case L = K4(Q). If the last rule is �L then the proof is straightforward.

This completes the proof of the Claim 2.

Define a translation s : X → L∞ as follows:

(i) B is an atom: If B /∈ Q, Bs = B. If B ∈ Q, Bs = >. If B = ⊥ then
Bs = ⊥ and if B = > then Bs = >.

(ii) (B ◦ C)s = Bs ◦ Cs for all ◦ ∈ {∧,∨,→}.

(iii) (¬B)s = ¬Bs.
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(iv) 1. If B = �(
∧n
i=0 qi → C) then Bs = �nC

s.
2. If B = �(

∧m
i=0 qi ∧

∧n
i=m+1⊥ → C) then Bs = >.

This translation is a left converse for the translation t. In fact, for any
A ∈ L∞, (At)s = A. It is a consequence of an easy induction on A. We will
prove some properties for this translation. First of all, we have to show that
the image of any formula in X belongs to L∞. The proof is by structural
induction on X. The important case is the first case of the boxed case. If B
constructed from the first case of the definition of X then n is greater than
all q’s indices occurring in C. On the other hand, all box �m introduced in
Cs are introduced from the first case as well and hence m can not be greater
than the biggest index of q’s in C. Therefore, n is greater than all m’s, and
by IH we know that Cs ∈ L∞, hence Bs ∈ L∞.
Secondly, we want to show that for all formulas B ∈ X, r(Bs) ≤ r(B).
The proof is by structural induction on X. Again the important case is
the first case of the box case. In that case, we have B = �(

∧n
i=0 qi → C)

then Bs = �nC
s. And hence r(B) = n. Moreover, Bs = �nC

s. therefore,
r(Bs) = n which completes the proof.
Thirdly, notice that if �B ∈ X is of the second kind, then Bs is provably
equivalent to > in Lh. The reason is that if �B is of the second kind, then
B =

∧m
i=0 qi ∧

∧n
i=m+1⊥ → C therefore, B has a ⊥ in its premises, which

means that Bs is equivalent to >.

Claim 3. If there is a good X-proof for Γ⇒ ∆, then Lh `
∧

Γs →
∨

∆s.

The proof is based on induction on the length of the X-proof. If the last
rule is an axiom, a structural rule or a propositional rule, then the claim
follows from the IH. The reason is that s commutes with the propositional
connectives and Lh proves all propositional tautologies. For the modal rules,
we have the following two cases:

1. If L = K4(Q) and if the last rule is the modal rule �4R, then by
IH, we know (�Γ)s,Γs `K4h

As. If �A ∈ X is of the second kind, then
by definition (�A)s = > and therefore there is nothing to prove. If it is of
the first kind, then r((�A)s) = r(A). Since the proof is a good X-proof,
r(A) ≥ r(�Γ). Furthermore, we know that r((�Γ)s) ≤ r(�Γ). Therefore,
r((�A)s) ≥ r((�Γ)s).
On the other hand, for any �γ ∈ �Γ ⊆ X, if the formula is of the second
kind, then γs is equivalent to > provably in L. Moreover, (�γ)s = > by
definition. Therefore, we can ignore this kind of boxed formulas in �Γ and
w.l.o.g. we can assume that all formulas in �Γ are of the first kind. Therefore,
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γi =
∧ni

i=0 qi → βi, hence γsi =
∧ni

i=0> → βsi which means that γsi and βsi
are provably equivalent in K4h. If A =

∧m
i=0 qi → B, by IH we know that

(�Γ)s,Γs `K4h
As and therefore, �ni

βsi , β
s
i `K4h

Bs. Since m = r(A) ≥ ni =
r(γi) for any i, by strong necessitation Theorem 3.9, we have

�ni
βsi `K4h

�m(
∧

βsi → Bs).

Hence
�ni

βsi ,�mβ
s
i `K4h

�mB
s.

Since ni ≤ m, we have
�ni

βsi `K4h
�mB

s.

Hence (�Γ)s `K4h
(�A)s which completes the proof.

2. If L = S4(Q) and the last rule is �SR the proof is similar to the case 1.
Consider the last rule is �L. Then Γ,�A ⇒ ∆ is proved by Γ, A ⇒ ∆. By
IH, we have S4h `

∧
Γs ∧ As →

∨
∆s. If �A is of the second kind, then As

is equivalent to > provably in S4h and (�A)s = > by definition. Therefore,
there is nothing to prove. If A is of the first kind, then A =

∧m
i=0 qi → B.

Then we know that As is equivalent to Bs provably in S4h. Therefore

S4h `
∧

Γs ∧Bs →
∨

∆s.

Since S4h ` �mB
s → Bs, we have

S4h `
∧

Γs ∧�mB
s →

∨
∆s

which is what we wanted.

Based on the claims we have proved so far, we can prove the theorem. If
L ` At, then we know that there is an X-proof of ⇒ At. Then by Claim 2,
there is �Σ ⊆ X such that �Σ⇒ At has a good X-proof and every formula
in �Σ is of the second kind. Then by Claim 3, we know that Lh `

∧
(�Σ)s →

(At)s. We know that (At)s = A. On the other hand, since the elements in
�Σ are of the second kind, for any σ ∈ Σ, (�σ)s = >. Therefore, we have
Lh ` A.

From now on, if A ∈ L� is a usual modal formula, and w is a witness
for it, by A(w) we mean a formula in L∞ substituting any occurrence of
box with �n, when n is a witness for that occurrence. Moreover, by the
forgetful translation f : L∞ → L� we mean a function which translates
atomic formulas and propositional connectives to themselves and sends �n

to �. Notice that there exists some witness w for Af such that Af (w) = A.
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Lemma 3.12. (i) For any A ∈ L∞ and any natural numbers m,n > r(A),
GLh ` �mA↔ �nA.

(ii) For any A ∈ L� and any witnesses u and v for A, GLh ` A(u)→ A(v).

Proof. For (i) it is enough to show that if n > r(A), GLh ` �nA↔ �n+1A.
The part �nA → �n+1A is an instance of the axiom H and is provable in
GLh. To prove the other part, use the axiom Lh for A. We have GLh `
�n+1(�nA→ A)→ �nA. Since

GLh ` �n+1A→ �n+1(�nA→ A)

we have GLh ` �n+1A→ �nA.
For (ii). Use induction on A. The atomic and propositional cases are
straightforward. For the modal case assume A = �B. Then we know that
u = (n, u′) and v = (m, v′) such that n is larger than all numbers in u′ and
m is larger than all numbers in v′. Pick k = max{m,n}. By IH, GLh `
B(u′) ↔ B(v′). Therefore, GLh ` �kB(u′) ↔ �kB(v′). On the other hand
by (i) we have GLh ` �kB(u′)↔ �nB(u′) and GLh ` �kB(v′)↔ �mB(v′).
Hence GLh ` �nB(u′)↔ �mB(v′).

Theorem 3.13. (i) If Γ `GLh
A then Γf `GL A

f .

(ii) For any set of modal formulas Γ ∪ {A} ⊆ L� and any witnesses v and
w for Γ and A respectively, if Γ `GL A then Γ(v) `GLh

A(w).

Proof. (i) is easy to check. For (ii), first of all notice that it is enough to prove
the theorem for Γ = ∅. Secondly, to prove this simpler case, use induction
on the length of the proof of A. Consider A to be an axiom. It is easy to
see that by using the same axiom in GLh and using the Lemma 3.12, we can
prove the theorem. For the modus ponens case if GL ` A and GL ` A→ B,
by IH we have GLh ` A(w) and GLh ` A(u) → B(v) for all witnesses w,
u for A and v for B. Put w = u, therefore for any witness v for B we have
GLh ` B(v). For the necessitation case if GL ` A and w = (n, u) is witness
for �A then by IH we have GLh ` A(u), then since n is bigger than all the
numbers in A(u), by necessitation in GLh we have GLh ` �nA(u).

And as a final word in this section, we will prove that some of the logics
we have introduced so far, have the strong disjunction property:

Definition 3.14. A modal logic L in the language L∞ has the strong dis-
junction property, if for any formula �nA and �mB, if L ` �nA ∨ �mB,
then L ` A or L ` B.
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Theorem 3.15. Logics K4h, KD4h, S4h and GLh have the strong disjunc-
tion property.

Proof. First we prove the claim for logics K4h, KD4h and S4h. The proof
for all of them are the same and is based on the usual technique of using
cute-free proofs. If we denote the logic by L and its sequent calculus by
G(L), then since L ` �nA ∨ �mB, we know that G(L) ` ⇒ �nA ∨ �mB.
Since G(L) ` �nA ∨ �mB ⇒ �nA,�mB, therefore by cut we have G(L) `
⇒ �nA,�mB. Pick a cut-free proof of this sequent and call it π. By The-
orem 3.8 we know that π exists. Scan π from below and find the first point
that the rule is not an structural rule. Call it level i. Note that this i ex-
ists, because if not, then by just using weakening and contraction we have
to reach the axiom. It is easy to see that all valid rules in this situation are
right weakening and right contraction, therefore all sequents under i have the
form ⇒ �nA, . . . ,�nA,�mB, . . . ,�mB. Hence we can not reach an axiom.
Concludingly, i exists. Moreover, since the form of all sequents under i is
⇒ �nA, . . . ,�nA,�mB, . . . ,�mB, hence the rule in the i-th level should be
a right modal rule. For that reason, the right side of the i-th level sequent
should be a singleton which means that it should be �nA or �mB. There-
fore, the line above the i-th rule is ⇒ A or ⇒ B which means that we have
L ` A or L ` B.

For GLh, if GLh ` �nA∨�mB, then by Theorem 3.13 part (i), we have
GL ` �Af ∨ �Bf . Since GL has the strong disjunction property, we have
GL ` Af or GL ` Bf . Choose wA and wB as witnesses for Af and Bf such
that Af (wA) = A and Bf (wB) = B. Then by Theorem 3.13 part (ii), we
have GLh ` Af (wA) or GLh ` Bf (wB), which completes the proof.

4 The Logic K4h

The system K4h consists of the modal axioms Kh and 4h. Let us investigate
the intended meaning of these axioms. The axiom Kh actually means that
the theory Tn is closed under modus ponens which is what we expect of
any first order arithmetical theory. The axiom 4h states that if Tn ` A then
Tn+1 ` Prn(A) which is true for any strong enough theory Tn+1. Therefore, it
is natural to assume that the theorems of K4h should be true in all provability
models. In other words, K4h should be the minimum possible provability
logic of hierarchies. In this section we will show this fact by proving that
K4h is sound and strongly complete with respect to the class of all provability
models.
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Theorem 4.1. (Soundness) If Γ `K4h
A then PrM � Γ⇒ A.

Proof. To prove the soundness, we will show the following claim:

Claim. Let (M, {Tn}∞n=0) be a provability model. Then if K4h ` A then
for all arithmetical substitutions σ, IΣ1 ` Aσ.

The proof of the claim is by induction on the length of the proof of A in
K4h. If A is a classical tautology then it is obvious that Aσ is an arithmetical
tautology. Therefore, IΣ1 ` Aσ.

If A is an instance of the axiom H, then for some B and some n, we have
A = �nB → �n+1B. Then Aσ = Prn(Bσ)→ Prn+1(Bσ). Since the hierarchy
{Tn}∞n=0 is provably increasing in IΣ1, we have IΣ1 ` Prn(Bσ)→ Prn+1(Bσ).

If A is an instance of the axiom Kh, then there are B and C and some n
such that A = �n(B → C) → (�nB → �nC). Therefore, Aσ = Prn(Bσ →
Cσ)→ (Prn(Bσ)→ Prn(Cσ)). Since the predicate Prn is a provability pred-
icate then the claim holds.

If A is an instance of the axiom 4h, then for some B and some n we
have A = �nB → �n+1�nB. Therefore, Aσ = Prn(Bσ) → Prn+1(Prn(Bσ)).
It is provable in IΣ1 since Prn(·) is a Σ1 predicate and IΣ1 proves the Σ1-
completeness theorem for IΣ1. Therefore,

IΣ1 ` Prn(Bσ)→ Pr(Prn(Bσ))

in which Pr() is a provability predicate of IΣ1. Since all theories Tn are
provably greater than IΣ1 we have

IΣ1 ` Prn(Bσ)→ Prn+1(Prn(Bσ)).

If A is a result of the modus ponens rule, then the claim is easy to prove by
using IH. And finally, if A is a consequence of the necessitation rule, then
there exist B and n such that A = �nB. By IH, we have IΣ1 ` Bσ. Since
IΣ1 ⊆ Tn, we have Tn ` Bσ. Therefore, by Σ1-completeness and the fact
that Prn(Bσ) is a Σ1 sentence, we have IΣ1 ` Prn(Bσ).

It is easy to prove the soundness theorem by the claim. If Γ `K4h
A, then

there exists a finite ∆ ⊆ Γ such that K4h `
∧

∆ → A. Then by the claim,
for any arithmetical substitution σ we have

IΣ1 `
∧

∆σ → Aσ.
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We know that M � IΣ1. Therefore,

M �
∧

∆σ → Aσ

which means if M � Γσ, then M � Aσ.

For the completeness, we will use the completeness of the translation t in
the previous section to reduce the completeness of K4h to the completeness
of K4(Q) which is proved in [1] and mentioned in the Preliminaries.

Theorem 4.2. (Strong Completeness) If PrM � Γ⇒ A, then Γ `K4h
A.

Proof. We will show that Γt `K4(Q) A
t. By completeness of K4(Q) with

respect to all provability models, it is enough to prove that PrM � Γt ⇒ At.
To do that, we will define a canonical witness wC for Ct when C ∈ L∞.
Pick n as a witness for some occurrence of a box in Ct, if that occurrence
is the translation of �n in C. Since C ∈ L∞, the index of the outer box
is bigger than the index of the inner boxes. Therefore, wC is actually a
witness. We want to show that for any provability model (M, {Tn}∞n=0) and
any arithmetical substitution σ,

M � Γσ(wΓ)⇒ Aσ(wA).

It is easy to see that for any arithmetical substitution σ, (Ct)σ(wC) in the
provability model (M, {Tn}∞n=0) is equivalent to Cσ in the provability model
(M, {Tn +

∧n
i=0 q

σ
i }∞n=0). Since Γσ ⇒ Aσ is true in any provability model,

hence (Γt)σ(wΓ)⇒ (At)σ(w) is true in all provability models, as well. There-
fore, Γt `K4(Q) A

t and by Theorem 3.11 we have Γ `K4h
A.

5 The Logic KD4h

We know that the axioms Kh and 4h are true in all provability models. What
about the axiom Dh? It is obvious that the intended meaning of ¬�n⊥ is
the consistency of the theory Tn. But since we have also the proved version,
i.e. �n+1¬�n⊥, the axiom also implies Tn+1 ` Cons(Tn). Therefore, it
seems that the essence of the axiom Dh is the following two statements:
Cons(Tn) and Tn+1 ` Cons(Tn). Notice that we have the Σ1-completeness in
our theories which means that there is no need to think of �n+2�n+1¬�n⊥ or
more necessitated instances of Dh. Thus, it seems natural to guess that the
logic KD4h is sound and complete with respect to the class of all consistent
provability models. In this section we will prove this fact.

Theorem 5.1. (Soundness) If Γ `KD4h
A, then Cons � Γ⇒ A.
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Proof. To prove the theorem we need the following claim:

Claim. Let (M, {Tn}∞n=0) be a consistent provability model, then if
G(KD4h) ` Γ ⇒ ∆ then for any arithmetical substitution σ, and any
n > r(Γ ∪∆), M � Γσ ⇒ ∆σ and also M thinks that Tn ` Γσ ⇒ ∆σ.

The proof of the claim is by induction on the length of the cut-free proof
of Γ⇒ ∆ in G(KD4h). The axiom cases, the structural cases and the propo-
sitional cases are easy to prove. We will check just the modal rules.

1. If the sequent {�nαr}r∈R, {�ni
γi}i∈I ⇒ �nA is proved by

{αr}r∈R, {γi,�ni
γi}i∈I ⇒ A

and if m > r({�nαr}r∈R, {�ni
γi}i∈I ∪ �nA), we have the following: Since

n > ni, we know that n > r({αr}r∈R, {γi,�ni
γi}i∈I ∪{A}). By IH, M thinks

Tn `
∧
{ασr }r∈R, {γσi ,Prni

(γσi )}i∈I → Aσ.

On the other hand, the following argument is formalizable in IΣ1: If

Tn `
∧
{ασr }r∈R, {γσi ,Prni

(γσi )}i∈I → Aσ,

then we have

IΣ1 ` Prn(
∧

ασr ) ∧ Prn(
∧

γσi ) ∧ Prn(
∧

Prni
(γσi ))→ Prn(Aσ).

Hence,

IΣ1 `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(Aσ).

And therefore,

Tm `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(Aσ).

The reason is that the first and the second line of the argument are easy
consequences of the formalized Σ1-completeness in IΣ1 and provability of
the fact that the provability predicate and conjunction commute and also the
fact that ni < n. The third line is a consequence of the fact that IΣ1 ⊆ Tm
is formalizable in IΣ1. Therefore, the argument is true in M and hence M
thinks

Tm `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(Aσ)

which is what we wanted. For the truth of∧
Prn(ασr ) ∧

∧
Prni

(γσi )→ Prn(Aσ)
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notice that the following argument is provable in IΣ1: If

Tn `
∧
{ασr }r∈R, {γσi ,Prni

(γσi )}i∈I → Aσ

then
Prn(

∧
ασr ) ∧ Prn(

∧
γσi ) ∧ Prn(

∧
Prni

γσi )→ Prn(Aσ)

and then ∧
Prn(ασr ) ∧

∧
Prni

(γσi )→ Prn(Aσ).

Therefore, M thinks that the argument is true and hence

M �
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(Aσ).

2. For the case that the right side of the sequent is empty, it is enough
to put ⊥ for A in the above proof and then we have

Tm `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(⊥).

Since m > n, and the provability model is consistent, we know that M thinks
Tm ` Cons(Tn). Therefore, M thinks

Tm `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ ⊥

which is what we wanted. For the truth part, do the same thing for the truth
part above:

M �
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(⊥).

Since the provability model is consistent, we have M � Cons(Tn). Hence

M �
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ ⊥.

This completes the proof of the claim.

By the claim, it is easy to prove the soundness theorem. If Γ `KD4h
A,

then it is obvious by the definition that there exists a finite ∆ ⊆ Γ such
that ∆ `KD4h

A. By Theorem 3.8, there is a cut free proof of ∆ ⇒ A in
G(KD4h). Hence by the claim we know that for any consistent provability
model (M, {Tn}∞n=0) and any arithmetical substitution σ, M � ∆σ ⇒ Aσ.
And finally since ∆ ⊆ Γ, we have M � Γσ ⇒ Aσ which completes the
proof.

The completeness is an easy consequence of the completeness of K4h.
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Theorem 5.2. (Strong Completeness) If Cons � Γ⇒ A, then Γ `KD4h
A.

Proof. Let ∆ be the set of all instances of the schemes ¬�n⊥ and �n+1¬�n⊥.
Then it is easy to see that PrM � Γ + ∆ ⇒ A. The reason is that if a
provability model (M, {Tn}∞n=0) is a model of ∆, then it should be a consistent
provability model. Therefore, by strong completeness for K4h, we have Γ +
∆ `K4h

A. Since KD4h proves all formulas in ∆, we have Γ `KD4h
A.

6 The Logic S4h

What is the intended meaning of the axiom Th? It is easy to see that
�nA → A means that Tn is sound. But we also have �n+1(�nA → A)
which means that the soundness of Tn should be provable in Tn+1. Similar
to the case of KD4h, there is no need to worry about more applications
of necessitation. Therefore, it seems that the natural canonical models for
S4h are the reflexive provability models. In this section we will show that
S4h is sound and strongly complete with respect to the class of all reflexive
provability models.

Theorem 6.1. (Soundness) If Γ `S4h
A, then Ref � Γ⇒ A.

Proof. To prove the theorem, we will prove the following claim.

Claim. Let (M, {Tn}∞n=0) be a reflexive provability model, then ifG(S4h) `
Γ ⇒ ∆ then for any arithmetical substitution σ, and any n > r(Γ ∪∆), M
thinks that Tn ` Γσ ⇒ ∆σ.

The proof of the claim is by induction on the length of the cut-free proof
of Γ ⇒ ∆ in G(S4h). The axiom cases, the structural cases and the propo-
sitional cases are easy to prove. We will check just the modal rules.

1. If the sequent Γ,�nA⇒ ∆ is proved by Γ, A⇒ ∆ and m > r(Γ,�nA∪
∆), then m > r(Γ, A ∪∆). Therefore by IH, we know that M thinks that

Tm ` Γσ, Aσ ⇒ ∆σ.

On the other hand, the following fact is formalizable in IΣ1: If

Tm ` Γσ, Aσ ⇒ ∆σ

and
Tm ` Prn(Aσ)→ Aσ
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then
Tm ` Γσ,Prn(Aσ)⇒ ∆σ.

Therefore, the argument is true in M � IΣ1. Since m > n and the provabil-
ity model is reflexive, both of the assumptions are true in M . Hence, the
conclusion is true in M .

2. If the sequent {�nαr}r∈R, {�ni
γi}i∈I ⇒ �nA is proved by

{αr}r∈R, {�ni
γi}i∈I ⇒ A

and if m > r({�nαr}r∈R, {�ni
γi}i∈I ∪ �nA) we have the following: Since

n > ni, we know that n > r({αr}r∈R, {�ni
γi}i∈I ∪ {A}). By IH, M thinks

Tn `
∧
{ασr }r∈R, {Prni

(γσi )}i∈I → Aσ.

On the other hand, the following argument is formalizable in IΣ1: If

Tn `
∧
{ασr }r∈R, {Prni

(γσi )}i∈I → Aσ

then
Tm `

∧
Prn(ασr ∧

∧
Prni

(γσi ))→ Prn(Aσ)

and hence
Tm `

∧
Prn(ασr ) ∧

∧
Prni

(γσi )→ Prn(Aσ).

The reason is that the first and the second line of the argument are easy
consequences of the formalized Σ1-completeness in IΣ1 and the fact that Prn
commutes with conjunction provably in IΣ1. Therefore, the argument is true
in M and hence M thinks

Tm `
∧

Prn(ασr ) ∧
∧

Prni
(γσi )→ Prn(Aσ)

which is what we wanted.

By the claim, it is easy to prove the soundness theorem. If Γ `S4h
A,

then it is obvious by the definition that there exists a finite ∆ ⊆ Γ such
that ∆ `S4h

A. By Theorem 3.8, there is a cut free proof of ∆ ⇒ A in
G(S4h). Hence if we choose a natural number n bigger than r(∆∪{A}) then
by the claim we know that for any reflexive provability model (M, {Tn}∞n=0)
and any arithmetical substitution σ, M thinks that Tn ` ∆σ ⇒ Aσ which
means M � Prn(

∧
∆σ → Aσ). But the provability model is a reflexive model,

therefore, M � Prn(φ) → φ, hence M � ∆σ ⇒ Aσ. Finally since ∆ ⊆ Γ,
M � Γσ ⇒ Aσ which completes the proof.
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To prove the completeness, similar to the case K4h, we will reduce the
completeness of S4h to the completeness of S4(Q) which is proved in [1] and
also mentioned in the Preliminaries.

Theorem 6.2. (Strong Completeness) If Ref � Γ⇒ A, then Γ `S4h
A.

Proof. Let {Tn}∞n=0 be a uniformly reflexive hierarchy of sound theories. And
assume that ∗ is a uniform substitution of the Theorem 2.7. Remind from the
proof of the Theorem 4.2 that we have a canonical witness wC for Ct when
C ∈ L∞. It was defined as follows: Pick n as a witness for some occurrence
of a box in Ct, if that occurrence is the translation of �n in C. First of all,
we want to show that there exists a finite ∆ ⊆ Γ and m greater than all the
numbers in w∆ and wA such that

Tm + (∆t)∗(w∆) `
m∧
i=0

q∗i → (At)∗(wA).

Pick a model M �
⋃∞
n=0 Tn + {q∗i }∞i=0. Then (M, {Tn +

∧n
i=0 q

∗
i }∞n=0) is a

reflexive provability model. Therefore, M � Γ∗ ⇒ A∗. It is easy to check
that for any formula B, B∗ with respect to the provability model (M, {Tn +∧n
i=0 q

∗
i }∞n=0) is equivalent to (Bt)∗(wB) with respect to the provability model

(M, {Tn}∞n=0). Therefore, (M, {Tn}∞n=0) � (Γt)∗(wΓ)⇒ (At)∗(wA). Since it is
true for all M �

⋃∞
n=0 Tn + {q∗i }∞i=0, we have
∞⋃
n=0

Tn + {q∗i }∞i=0 + (Γt)∗(wΓ) ` (At)∗(wA).

Therefore there exists some m and some finite ∆ ⊆ Γ such that

Tm + (∆t)∗(w∆) `
m∧
i=0

q∗i → (At)∗(wA).

Notice that w.l.o.g we can choose m big enough to reach the condition that
m should be greater that all the numbers in w∆ and wA. Hence,

IΣ1 ` Prm(
m∧
i=0

q∗i → (
∧

(∆t)∗(w∆)→ (At)∗(wA))).

But

Prm(
m∧
i=0

q∗i → (
∧

(∆t)∗(w∆)→ (At)∗(wA)))

is ((�m(
∧

∆→ A))t)∗(w), where w = w(�m(
∧

∆→A))t . Therefore, ((�m(
∧

∆→
A))t)∗(w) is true in all the models of the form (M, {Tn}∞n=0) in which M �⋃∞
n=0 Tn. By strong uniform completeness for S4(Q), Theorem 2.7, we

have S4(Q) ` (�m(
∧

∆ → A))t. Then by Theorem 3.11, we have S4h `
�m(

∧
∆→ A). Hence S4h `

∧
∆→ A which means that Γ `S4h

A.
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7 The Logic GLh

In this section we will show that the usual provability logic approach to
investigate the provability-based behavior of theories (instead of hierarchies)
is a special case of this new framework. It is enough to limit ourselves to the
constant hierarchies.

Theorem 7.1. (Soundness) If Γ `GLh
A, then Cst � Γ⇒ A.

Proof. By definition it is enough to show that if GLh ` A then Cst � A. To
do that we prove the following claim:

Claim. Let (M, {Tn}∞n=0) be a constant provability model and GLh ` A.
Then for any arithmetical substitution σ, M � Aσ and also M thinks that
T0 ` Aσ.

The proof of the claim is by induction on the length of the proof of A.
First of all the axioms. Since the substituted version of all axioms of GLh

except Lh are provable in IΣ1 (see the proof of Theorem 4.1), it is easy
to see that the claim holds. If A is an instance of the Löb axiom, then
A = �n+1(�nB → B)→ �nB. By the formalized Löb’s theorem for Tn, we
have

IΣ1 ` Prn(Prn(Bσ)→ Bσ)→ Prn(Bσ).

Therefore it is true in M , and since M thinks that Tn = Tn+1, we have

M � Prn+1(Prn(Bσ)→ Bσ)→ Prn(Bσ).

On the other hand, we know that the following is formalizable in IΣ1: If

T0 ` Prn(Prn(Bσ)→ Bσ)→ Prn(Bσ) (∗)

and
T0 ` Prn+1(Prn(Bσ)→ Bσ)↔ Prn(Prn(Bσ)→ Bσ)

then
T0 ` Prn+1(Prn(Bσ)→ Bσ)→ Prn(Bσ).

Moreover, the line (∗) is a Σ1 true statement, hence it is provable in IΣ1.
Therefore, it is formalizable in IΣ1. Hence the following is formalizable in
IΣ1: If

T0 ` Prn+1(Prn(Bσ)→ Bσ)↔ Prn(Prn(Bσ)→ Bσ)

then
T0 ` Prn+1(Prn(Bσ)→ Bσ)→ Prn(Bσ).
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Therefore, this fact is true in M � IΣ1, and since the provablity model is
constant, M thinks that

T0 ` Prn+1(Prn(Bσ)→ Bσ)↔ Prn(Prn(Bσ)→ Bσ).

Hence M thinks that

T0 ` Prn+1(Prn(Bσ)→ Bσ)→ Prn(Bσ).

The case of modus ponens is easy to see. For the necessitation, if �nA is
proved by A, then by IH we know that M thinks that T0 ` Aσ. There-
fore by the formalized Σ1-completeness in IΣ1, we know that M thinks
IΣ1 ` Pr0(Aσ) and since n ≥ 0, then M thinks IΣ1 ` Prn(Aσ). And since
IΣ1 ⊆ T0 provably in IΣ1, we know that T0 ` Prn(Aσ). To prove the truth
of Prn(Aσ) in M , by IH, M thinks that T0 ` Aσ. Therefore, M � Pr0(Aσ)
and since n ≥ 0, we have M � Prn(Aσ).

It is clear that the theorem is a consequence of the claim.

Theorem 7.2. (Strong Completeness) Let T be a Σ1-sound theory. Then
if for all models M � T we have (M, {T}∞n=0) � Γ ⇒ A, then Γ `GLh

A.
Specially, if Cst � Γ⇒ A then Γ `GLh

A.

Proof. Let us remind the forgetful translation from the third section. The
forgetful translation f : L∞ → L� translates atomic formulas and propo-
sitional connectives to themselves and sends �n to �. Moreover, we know
that there exists some witness wB for Bf such that Bf (wB) = B. Since all
theories in the hierarchy of the provability models (M, {T}∞n=0) � Γ⇒ A are
equal, we can conclude that for all arithmetical substitutions σ and all for-
mula B, M � Bσ ↔ (Bf )σ(wB). Therefore, M � (Γf )σ(wΓ) ⇒ (Af )σ(wA).
Since Γf ∪ {Af} ⊆ L�, by Theorem 2.7, we have Γf `GL A

f . By Theorem
3.13, Γf (wΓ) `GLh

Af (wA). Hence, Γ `GLh
A.

8 The Extensions of KD45h

As expected, the axiom 5h in the presence of the axioms Th and 4h are too
strong to have a provability interpretation. It informally means that the
theory Tn should be decidable in Tn+1 which implies the decidability of Tn.
(See [1]). In this section we will show a more strong version which states
that there is no provability interpretation for the extensions of KD45h.
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Theorem 8.1. There is no provability model (M, {Tn}∞n=0) such that

(M, {Tn}∞n=0) � KD45h.

Hence, there are no provability models for any extension of the logic KD45h.
Specially, S5h does not have any provability interpretation.

Proof. Assume that (M, {Tn}∞n=0) � KD45h. Then we know that for any
arithmetical substitution σ we have

M � ¬Prn(pσ)→ Prn+1(¬Prn(pσ)).

Pick an arithmetical substitution which send p to Prn+1(⊥). Therefore, we
have

M � ¬Prn(Prn+1(⊥))→ Prn+1(¬Prn(Prn+1(⊥))). (∗)
On other hand by the formalized Σ1-completeness, we have

IΣ1 ` ¬Prn(Prn+1(⊥))→ ¬Prn+1(⊥).

Hence,
Tn+1 ` ¬Prn(Prn+1(⊥))→ ¬Prn+1(⊥).

Moreover, by Σ1-completeness, we have

IΣ1 ` Prn+1(¬Prn(Prn+1(⊥))→ ¬Prn+1(⊥)).

Therefore,

IΣ1 ` Prn+1(¬Prn(Prn+1(⊥)))→ Prn+1(¬Prn+1(⊥)).

And since M � IΣ1, we have

M � Prn+1(¬Prn(Prn+1(⊥)))→ Prn+1(¬Prn+1(⊥)).

Therefore by (∗) we have

M � ¬Prn(Prn+1(⊥))→ Prn+1(¬Prn+1(⊥)).

Based on Gödel’s second incompleteness theorem formalized in IΣ1, we can
conclude

IΣ1 ` ¬Prn+1(⊥)→ ¬Prn+1(¬Prn+1(⊥)).

Therefore,
M � ¬Prn(Prn+1(⊥))→ Prn+1(⊥).

But we know that the provability model (M, {Tn}∞n=0) is a model for Dh,
therefore M � ¬Prn+1(⊥). Hence, M � Prn(Prn+1(⊥)). Since the theories
are provably increasing, we have M � Prn+2(Prn+1(⊥)). Again, since the
provability model is a model for the logic KD4h, therefore, it is a model
of the formula �n+2¬�n+1⊥. Hence, M � Prn+2(¬Prn+1(⊥)). Therefore,
M � Prn+2(⊥), which contradicts with an instance of the axiom Dh.
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