
Proof Mining in Bounded Arithmetic

Amirhossein Akbar Tabatabai ∗†.
Utrecht University

Abstract

A computational flow is a pair consisting of a sequence of compu-
tational problems of a certain sort and a sequence of computational
reductions among them. In this paper we will develop a theory for
these computational flows to design a classical direct reading of the
Dialectica interpretation. This theory makes a sound and complete
interpretation for bounded theories of arithmetic as well as the low
complexity statements of strong unbounded systems. We will first use
this fact to extract the computational content of the low complex-
ity statements in some bounded theories of arithmetic such as IUk,
T kn , I∆0(exp) and PRA. And then we will apply the theory on some
strong unbounded mathematical theories such as PA and PA + TI(α)
using the bridge of continuous cut elimination technique.

1 Introduction

Intuitively speaking, proofs are information carriers that transfer the infor-
mational content of the assumptions to the informational content of the con-
clusion. This open notion of content admits many different interpretations
in many different disciplines. The most trivial one is the truth value which
is preserved along any sound proof and consequently is the least informa-
tive one. But there are more useful examples. The computational content
is one of them and it is no exaggeration to state that this type of content
is one of the main players in proof theory and theoretical computer science.
The reason is its widespread incarnations, from the witnesses of existential
quantifiers a la Herbrand to the Gödel’s Dialectica interpretation of higher
order arithmetical statements. In this paper, we follow this line to introduce

∗The author is supported by the ERC Advanced Grant 339691 (FEALORA)
†amir.akbar@gmail.com

1

another computational interpretation which can be seen as a classical and a
more direct reading of the Dialectica interpretation and in the rest of this
introduction we will try to explain its basic ideas.

Let us begin with the general idea of how any computational interpre-
tation works by summarizing the process behind it: First, any interpreta-
tion needs to interpret a sentence as a computational problem for which the
computational content roughly means any way that can solve the problem
computationally. Then it should define a computational flow as a sequence
of certain type of simple methods to transfer the previously defined content
from one point to another. And finally, it should find a way to translate any
formal proof of a given system to such a computational flow.

To implement these three stages in the case of our own interpretation, we
need to define the game theoretic interpretation of formulas. The basic idea
is the following: First interpret any quantifier-free formula A(x1, y1, x2, . . .)
as a game between the players ∀ and ∃ in which the first player, ∀, plays
x1 and then the second player, ∃, plays y1 and they continue this process
alternately. At the end of the game, if A(x1, y1, x2, . . .) holds, the second
player wins and otherwise the first one is the winner. Now, the sentence
∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .) simply means that the second player has a
winning strategy and this strategy is exactly the computational content of the
sentence ∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .). Now let us define the simple methods
or the ways that the information flows. Assume that we have a second player’s
strategy to win the game A(x1, y1, x2, . . .) and we want to provide a second
player’s strategy to win the game B(u1, v1, u2, . . .). For this purpose, we
define the computational reduction from ∀u1∃v1∀u2 . . . B(u1, v1, u2, . . .) to
∀x1∃y1∀x2 . . . A(x1, y1, x2, . . .) as a tuple of functions (fi, gi) with the lowest
possible complexity such that fi reads all uj’s for j ≤ i and yk for k < i and
finds xi, and gi reads the same data plus yi and computes vi+1 such that

A(f1(u1), y1, f2(u1, u2, y1), . . .)→ B(u1, g1(u1, y1), u2, . . .).

It is clear that these functions find a way to transfer any move from the
game B to the game A and vice versa to transfer the winning strategy of
the second player for the game A to the winning strategy for the game B.
This completes the definition of a reasonable method that we sought for. But
what about the simplicity of these methods? At the first glance, it seems
that the low complexity of the reductions ensures the expected simplicity but
unfortunately the reality is far from that. In fact, in some cases, while the

2

complexity of the functions can be extremely low, verifying the truth of

A(f1(u1), y1, f2(u1, u2, y1), . . .)→ B(u1, g1(u1, y1), u2, . . .)

can be extremely high, non-trivial and non-syntactical. This is clearly not
what we expect from a simple reduction. Hence, we also add a base weak
theory B to the definition and we force the implication to be provable in
B. This condition makes the reductions simple and syntactical as we expect
them to be.

Based on these reductions, it is now natural to define a computational
flow as a sequence of reductions and try to transform any proof in any ap-
propriate theory to a flow. This transformation is the core of a new proof
mining method tailored specifically for the weak arithmetical theories. It can
be seen as a more direct version of the Dialectica interpretation in which the
usual higher type computability is replaced by the more faithful many-one
reductions. It is important to mention that this theory is only applicable to
bounded theories because of some technical reasons. However, we will use
some classical proof theoretic methods to reduce strong unbounded theories
to the bounded ones to apply the theory indirectly also on these stronger
systems.

As the last part in this introduction, let us review the possible applications
of the theory of flows. The theory will be useful to reprove some recent
characterizations of search problems in Buss’ hierarchy of bounded arithmetic
via game induction principle [?], [?] or higher PLS problems [1]. We will also
use it to generalize these results to prove some new characterizations of low-
complexity search problems from higher order bounded theories of arithmetic
and stronger theories such as I∆0(exp) to extremely strong theories like PA
and PA + TI(α) or any other theory for which we have a reasonable ordinal
analysis.

2 Preliminaries

In this section we will introduce the language, the basic theory and the
general notion of bounded theory of arithmetic. We will also provide some
examples to show how these general notions unify the usual well-known ex-
amples.

Definition 2.1. By convention, we will assume that throughout this paper
first order formulas are constructed by literals, meaning atomic formulas

3

P (t1, · · · , tn) and their negations ¬P (t1, · · · , tn), using the following positive
connectives ∧, ∨, ∀, ∃. By ¬A we mean the formula defined inductively by
De Morgan laws and A→ B is just an abbreviation for ¬A ∨ B. When the
language has two constants 0 and 1, by > and ⊥ we mean 0 = 0 and 0 = 1,
respectively.

Definition 2.2. Let L be a first order language of arithmetic extending
LR = {0, 1,+, .−, ·, d(−,−),≤}, where x .− y and d(x, y) are interpreted as
max{0, x−y} and b x

y+1
c, in the standard model, respectively. ByR we mean

the first order theory in the language LR consisting of the following axioms:

• Axioms of the commutative semirings, namely the usual axioms of com-
mutative rings except the existence of additive inverses,

• Axioms of discrete total orders. By totality we mean x ≤ y ∨ y ≤ x
and by discreteness we mean

x ≤ y + 1↔ (x ≤ y) ∨ (x = y),

• Axioms of compatibility, i.e., the axioms to state that addition and
multiplication with non-zero elements respect the strict order <, where
x < y if (x ≤ y) ∧ (x 6= y),

• Defining axioms for .− and d:

[x ≥ y → (x .− y) + y = x] ∧ [x < y → x .− y = 0],

[(y + 1) · d(x, y) ≤ x] ∧ [x .− (y + 1) · d(x, y) < y + 1].

Note that to avoid division by zero and to have a total function symbol
in the language, we defined division as d(x, y) = b x

y+1
c and not bx

y
c,

• Axiom of non-triviality, i.e., 0 6= 1.

Remark 2.3. Here are some remarks on the basic properties that the theory
R can represent:

• For any pair x and y either x < y or x = y or y < x, and only one of
these cases happen. This is just a logical consequence of the definition
of the strict order and the totality axiom.

• The stability conditions clearly extend to non-strict inequality ≤. This
is also a logical consequence of the equivalence between x ≤ y and
x < y ∨ x = y.

4

• The discreteness of the order also implies that if x < y, then x+ 1 ≤ y,
because otherwise, y < x+1 which implies y ≤ x+1 and by discreteness
of the order we have either y ≤ x or y = x, both of which contradicts
with x < y.

• The theory R proves the cancellation laws for addition and multiplica-
tion by non-zero elements, i.e.,

R ` (x+ y ≤ x+ z)→ (y ≤ z) (∗)

R ` (x 6= 0 ∧ 0 ≤ u, v < x)→ (xy + u ≤ xz + v → y ≤ z) (∗∗)

The argument is as usual. For (∗), assume x + y ≤ x + z. Then by
the totality of the order, we have either y ≤ z or z < y. If z < y, by
the stability under the addition, we have x + z < x + y, which is a
contradiction. For (∗∗), if z < y, we have z + 1 ≤ y. Since x 6= 0, by
the stability under multiplication, we have x(z + 1) ≤ xy. Hence, by
distributivity and commutativity we have

xz + u+ x = xz + x+ u ≤ xy + u ≤ xz + v

Therefore, by (∗), we have x = 0 + x ≤ u + x ≤ v, which is a contra-
diction. Hence, y ≤ z. Note that the second cancelation law implies

R ` (x 6= 0 ∧ 0 ≤ u, v < x)→ [(xy + u = xz + v)→ (y = z) ∧ (u = v)]

because if xy + u = xz + v, then xy + u ≤ xz + v. By (∗∗), we have
y ≤ z. Similarly, we have z ≤ y, which implies y = z. Therefore,
xy = xz and by (∗), we have u = v.

• The theory R proves that x0 = 0, for any x, since by distributivity
we have x0 = x(0 + 0) = x0 + x0 and then by the cancellation law we
reach x0 = 0. Moreover, R proves that x ≥ 0 for any x. First, note
that 0 < 1, because by the discreteness of the order we have x ≤ x+ 1
by x ≤ x. Hence, 0 ≤ 1. But 0 6= 1 which means 0 < 1. Then, since
multiplying by non-zero x preserves the strict order, by 0 < 1, we have
0 = x0 < x1 = x. Hence, either x = 0 or 0 < x, which imply 0 ≤ x.

• The cancellation laws provides a way to compute x .− y and d(x, y) by
the following equalities:

R ` (x+ z = y)→ (x .− y = z),

R ` (x = (y + 1)z + w ∧ w < y + 1)→ (d(x, y) = z).

5

The first holds because using z ≥ 0, the equation x + z = y implies
x ≥ y and by the defining axiom of .− we have x = y + (x .− y). The
claim then follows from the cancellation law for the addition. The proof
of the second equality is similar to the first.

• The language LR is powerful enough to represent the conditional func-
tion:

C(x, y, z) =

{
y x = 0

z x > 0

by a term c(x, y, z) such that

R ` c(0, y, z) = y ∧ (x > 0→ c(x, y, z) = z).

First note that the term χ=0(x) = d(x+2, x) .−1 (computing bx+2
x+1
c .−1)

represents the characteristic function of the relation {0}, provably in
R, i.e.,

χ=0(x) =

{
1 x = 0

0 x > 0

It is enough to show that d(2, 0) .− 1 = 1 and d(x + 2, x) .− 1 = 1 for
x > 0. This is clear by the previous remark and the equalities

2 = 1 · 1 + 1 and x+ 2 = (x+ 1) · 1 + 1,

where 1 < x + 1 because 0 < x. Then define the representation term
c(x, y, z) = (χ(x)y + (1 .− χ(x))z. It is clear that this c represents C.
The only needed ingredients are the equalities 1 .− 0 = 1 and 1 .− 1 = 0,
both of which are easy to prove from the previous remark.

• The relation x ≤ y is equivalent to x .− y = 0. One direction is clear
from the defining axiom for .−. For the other direction, if x > y, by
the defining axiom we have x = (x .− y) + y which implies x = y; a
contradiction. Given this equivalence, we can use the term χ=0(x .− y)
to represent χ≤(x, y), the characteristic function of ≤. Finally, since we
have the power to simulate all boolean operators (multiplication for the
conjunction and x 7→ 1 .−x, for the negation) and x = y is equivalent to
x ≤ y ∧ y ≤ x, we can represent the characteristic functions of all the
quantifier-free formulas of the language LR = {0, 1,+, .−, ·, d(−,−),≤},
meaning that for any quantifier-free formula A(~x) ∈ LR, there exists
an LR-term t(~x) such that

R ` [t(~x) = 0→ A(~x)] ∧ [t(~x) 6= 0→ ¬A(~x)].

This fact plays a crucial role later in the paper.

6

Convention. Let A,B,C be some formulas whose characterisitic func-
tions are representable in the language L. When we define a term as

p(~x) =


t(~x) A(~x)

s(~x) B(~x)

r(~x) C(~x)

we mean p(~x) = χA(~x)t(~x) + χB(~x)s(~x) + χC(~x)r(~x) and when we define a
formula

D(~x) =


A′(~x) A(~x)

B′(~x) B(~x)

C ′(~x) C(~x)

we mean D(~x) = [A(~x) → A′(~x)] ∧ [B(~x) → B′(~x)] ∧ [C(~x) → C ′(~x)]. Note
that if Φ is a class of formulas including all quantifier-free formulas and closed
under disjunction and conjunction, then it is also closed under this definition
by cases.

In the following, we define a general notion of bounded arithmetic we
want to investigate in this paper. For that purpose, we first need to define
some complexity classes:

Definition 2.4. Let L ⊇ LR be a first-order language. Then the hierarchy
{Σb

k(L),Πb
k(L)}∞k=0 is recursively defined in the following manner:

(i) Πb
0(L) = Σb

0(L) is the class of all quantifier-free formulas in L,

(ii) Σb
k(L) ∪ Πb

k(L) ⊆ Σb
k+1(L) ∩ Πb

k+1(L),

(iii) Πb
k(L) and Σb

k(L) are closed under conjunction and disjunction,

(iv) If B(x) ∈ Σb
k(L) then ∃x ≤ t B(x) ∈ Σb

k(L) and ∀x ≤ t B(x) ∈
Πb
k+1(L) and

(v) If B(x) ∈ Πb
k(L) then ∀x ≤ t B(x) ∈ Πb

k(L) and ∃x ≤ t B(x) ∈
Σb
k+1(L).

A formula is called bounded if it is in
⋃∞
k=0 Σb

k(L) =
⋃∞
k=0 Πb

k(L).

Remark 2.5. Note that the classes Σb
k(L) and Πb

k(L) include all the quantifier-
free formulas. They are also closed under sub-formulas and substitutions. We
will need these properties in the free-cut elimination theorem for the arith-
metical theories we are interested in.

7

Example 2.6. The classes Σb
k(LR) and Πb

k(LR) are essentially the same as
the classes Ek and Uk in the linear hierarchy. Moreover, if we use the language
of bounded arithmetic, Lm, augmented with subtraction, division and #i for
2 ≤ i ≤ m, the classes Πb

k(Lm) and Σb
k(Lm) captures Π̂b

k(#m) and Σ̂b
k(#m),

respectively.

From now on, whenever the first-order language L ⊇ LR is fixed and
there is no risk of confusion, we will drop the letter L in Σb

k(L) and Πb
k(L).

Definition 2.7. Let A ⊇ R be a set of quantifier-free formulas and Φ be a
class of bounded formulas extending the class of all quantifier-free formulas
and closed under substitution and subformulas. By the first-order bounded
arithmetic B(Φ,A), we mean the first-order theory in the language L that
consists of the axioms A, and the Φ-induction axiom, i.e.,

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x),

where A ∈ Φ.

Example 2.8. With our definition of bounded arithmetic, different kinds
of theories can be considered as bounded theories of arithmetic, for instance
I∆0, T kn , I∆0(exp) and PRA augmented with subtraction and division in the
language and the axioms of R in the theory, are just some of the well-known
examples.

It is possible to represent the theory B(Φ,A), by the following sequent-
style calculus:

Axioms:

L⇒ L P,¬P ⇒ ⇒ P,¬P ⇒ A

where L is a literal, P is an atomic formula and in the rightmost sequent,
the formula A is a substitution of a formula in A.

Equality:

⇒ t = t t1 = s1, . . . , tn = sn ⇒ f(t1, . . . , tn) = f(s1, . . . , sn)

t1 = s1, . . . , tn = sn, L(t1, . . . , tn)⇒ L(s1, . . . , sn)

where f is a function symbol and L is a literal.

Structural Rules:

8

Γ⇒ ∆ (wL)
Γ, A⇒ ∆

Γ⇒ ∆ (wR)
Γ⇒ ∆, A

Γ, A,B,Σ⇒ ∆
(eL)

Γ, B,A,Σ⇒ ∆
Γ⇒ ∆, A,B,Λ

(eR)
Γ⇒ ∆, B,A,Λ

Γ, A,A⇒ ∆
(cL)

Γ, A⇒ ∆
Γ⇒ ∆, A,A

(cR)
Γ⇒ ∆, A

Γ⇒ ∆, A Γ, A⇒ ∆
(cut)

Γ⇒ ∆

Propositional Rules:

Γ, A⇒ ∆ ∧L1Γ, A ∧B ⇒ ∆
Γ, B ⇒ ∆ ∧L2Γ, A ∧B ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
∧R

Γ⇒ ∆, A ∧B

Γ, A⇒ ∆ Γ, B ⇒ ∆
∨L

Γ, A ∨B ⇒ ∆
Γ⇒ ∆, A ∨R1Γ⇒ ∆, A ∨B

Γ⇒ ∆, B ∨R2Γ⇒ ∆, A ∨B

Quantifier rules:

Γ, A(s)⇒ ∆
∀L

Γ,∀y A(y)⇒ ∆

Γ⇒ ∆, A(a)
∀R

Γ⇒ ∆,∀y A(y)

Γ, A(a)⇒ ∆
∃L

Γ, ∃y A(y)⇒ ∆

Γ⇒ ∆, A(s)
∃R

Γ,⇒ ∆,∃y A(y)

where in the rules (∀R) and (∃L), the variable a must not occur in the lower
sequent of the rules.

Induction:

Γ, A(a)⇒ ∆, A(a+ 1)
(Φ− Ind)

Γ, A(0)⇒ ∆, A(t)

for every A ∈ Φ, where the variable a must not occur in the lower sequent of
the rule.

Theorem 2.9. ([2]) Let Γ∪∆ ⊆ Φ, where Φ is a class of bounded formulas
extending the class of all quantifier-free formulas and closed under substitu-
tion and subformulas. Then if B(Φ,A) ` Γ⇒ ∆, there exists a proof of the
sequent Γ ⇒ ∆ in the previously defined sequent-style system such that all
formulas occurring in the proof are in the class Φ.

9

Theorem 2.10. For any set A ⊇ R of quantifier-free axioms and any k ≥ 0,
we have B(Πb

k(L),A) = B(Σb
k(L),A).

Proof. We show that B(Πb
k(L),A) ⊆ B(Σb

k(L),A). The other case is similar.
For that matter, it is enough to prove that the Πb

k(L)-induction axiom

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x),

is provable in B(Σb
k(L),A). For the sake of contradiction, let us assume that

A(0)∧∀x(A(x)→ A(x+1)) but ¬A(b), for some b. Define B(y) = ¬A(b .−y).
It is clear that B(y) ∈ Σb

k(L). Now, we need some computations. By Remark
??, it is easy to see that b .− b = 0, because 0 + b = b. Moreover, observe that
if b < y+1, we have b .− (y+1) = b .−y = 0, by the defining axioms of R, also
available in B(Σb

k(L),A). And if y + 1 ≤ b, then we have [b .− (y + 1)] + 1 =
(b .−y), because b .−(y+1)+(y+1) = b by the defining axiom and by Remark
??, since [b .− (y + 1)] + 1 + y = b, we can compute b .− y as [b .− (y + 1)] + 1.
Now, since ¬A(b), we have B(0). And since ∀x(A(x)→ A(x + 1)), we have
¬A(x + 1) → ¬A(x). If y + 1 ≤ b, put x = b .− y = [b .− (y + 1)] + 1 which
implies B(y) → B(y + 1). And if b < y + 1, then = b .− y = [b .− (y + 1)]
which implies again that B(y)→ B(y+ 1). By Σb

k(L)-induction on B(y), we
can prove B(b) which implies ¬A(b .− b). Therefore, we have ¬A(0) which is
a contradiction.

3 Reductions and Flows

In this section, we will introduce the two main notions of the paper. The
first is the notion of a reduction as the building block of the flow of the
computational information. These reductions are the generalization of the
usual polynomial-time reductions between total NP search problems and the
deterministic reductions between k-turn games as introduced in [5]. Then
we will generalize reductions to their iterated version that we call flows. In
Section 4, we will use these flows to transform any proof in a bounded theory
of arithmetic to a term-length sequence of provably simple steps.

Definition 3.1. Let L ⊇ LR be a first-order language. A theory B ⊇ R is
called a base theory for the language L if:

(i) There exists a B-provable family of monotone majorizing L-terms, i.e.,
a set M of the L-terms such that for any t(~x) ∈ M we have B `
~x ≤ ~y → t(~x) ≤ t(~x) and for any arbitrary L-term s(~x) there exists
r(~x) ∈M such that B ` s(~x) ≤ r(~x).

10

(ii) For any quantifier-free formula A(~x) ∈ L, there exists an L-term t(~x)
such that B ` [t(~x) = 0 → A(~x)] ∧ [t(~x) 6= 0 → ¬A(~x)]. We call this
term the characteristic function for the formula A(~x).

Example 3.2. Note that the theory R is a base theory for the language LR.
It is just enough to use the class of all polynomials as the majorizing family
M . The first part of the definition is clear, using the inequalities x .− y ≤ x
and d(x, y) ≤ x and the fact that all the polynomials are monotone in R.
For the second part, see Remark 2.3.

Definition 3.3. By a prenex formula A we mean any formula in the form
~Q~xB(~x, ~y), where ~Q is a block of quantifiers over distinct variables ~x and B
is a quantifier-free formula. Let C be any formula in the language L. By
the σ-prenex form of C, we mean the result of the following process: After
changing the quantified variables to make them distinct, if necessary, first
bring out all the existential quantifiers in any preferred order and then all
the universal quantifiers again in any preferred order, alternatively till they
end. If we begin by the universal quantifiers, the result is called the π-prenex
form of C.

Remark 3.4. Notice that the σ- and π-prenex forms of a formula are not
unique and depend on the new names of the variables and the order of quanti-
fiers in each block. However, we will use these prenex forms in the forthcom-
ing notion of the reduction which totally ignores these types of differences.
Therefore, for the sake of simplicity, we will also ignore the differences and
pretend that these forms are unique.

Example 3.5. Consider the formula

A = ∀yB(x, y) ∨ ∃z¬B(x, z)

where B is quantifier-free. Then the σ- and π-prenex forms of A are

∃z∀y[B(x, y) ∨ ¬B(x, z)] ∀y∃z[B(x, y) ∨ ¬B(x, z)]

respectively. Note that if the quantifiers are also bounded, the prenex form
leaves the bounds inside the formula and just brings out the quantifier. For
instance, the σ-prenex forms of ∀y ≤ t(x)B(x, y) ∨ ∃z ≤ t(x)¬B(x, z) is

∃z∀y[[y ≤ t(x)→ B(x, y)] ∨ [z ≤ t(x) ∧ ¬B(x, z)]]

Definition 3.6. Let α ∈ {σ, π} and A(~x) and B(~x) be some formulas in the

prenex form with at most k many alternations of quantifiers, F = {~Fi}ki=1

11

be a sequence of sequences of terms and B a base theory. By recursion
on the number of quantifier alternations, we will define F = {~Fi}ki=1 as an
(B, α)-reduction from B(~x) to A(~x) and we will denote it by A(~x) ≥B,Fα B(~x),
when:

(i) If A(~x), B(~x) are quantifier-free, any sequence of sequences of terms is
both a (B, σ)- and a (B, π)-reduction from B to A iff B ` A(~x)→ B(~x).

(ii) If α = π and A = ∀~uC(~x, ~u), B = ∀~vD(~x,~v), where the universal quan-
tifiers are the whole block of left-most universal quantifiers (possibly
empty), then A(~x) ≥B,Fπ B(~x) iff

C(~x, ~Fk+1(~x,~v)) ≥B,F̂σ D(~x,~v)

where F̂ = {~Fi}k−1
i=1 .

(iii) If α = σ and A = ∃~uC(~x, ~u), B = ∃~vD(~x,~v), where the existential
quantifiers are the whole block of left-most existential quantifiers (pos-
sibly empty), then A(~x) ≥B,Fσ B(~x) iff

C(~x, ~u) ≥B,F̂π D(~x, ~Fk+1(~x, ~u))

where F̂ = {~Fi}k−1
i=1 .

It is possible to extend the definition to all formulas A(~x) and B(~x) in the

following way: We say F = {~Fi}ki=1 is an (B, α)-reduction from B(~x) to A(~x)

iff F = {~Fi}ki=1 is an (B, α)-reduction from B̃(~x) to Ã(~x), where Ã(~x) and
B̃(~x) are the α-prenex forms of A and B, respectively.
Finally, we say that B is (B, π)-reducible to A and we write A ≥Bπ B, when
there exists a sequence of sequences of terms F such that A ≥B,Fπ B. More-
over, by the equivalence A ≡B,E,Fπ B, we mean the conjunction of A ≥B,Eπ B
and B ≥B,Fπ A and we define (B, σ)-reducibility and equivalence dually by
replacing π to σ, everywhere. Note that whenever the theory B is clear from
the context, we drop it from the superscripts, everywhere.

The computational way to interpret a (B, π)-reduction F = {~Fi}ki=1 from
B(~x) to A(~x) is the following: We first read the first block of the universal
quantifiers in B(~x) as the new input, added to the base input ~x. Then

using the all the inputs so far, we use the terms ~Fk as our computational
instructions to witness the first block of the universal quantifiers in A(~x).
Then we start with the first block of the existential quantifiers in A(~x).
We read and then add them as the new input to our previously aggregated
inputs. Then using these inputs and the term ~Fk−1, we witness the first block

12

of the existential quantifiers in B(~x). Then we continue with the universal
quantifiers in B(~x) again, till we reach the last block of quantifiers in the
formulas. How do we know that our witnessing process is sound? When we
reach the quantifier-free case, then the implication C(~x, ~y) → D(~x, ~y) must
be provable in B. The similar process also works for a (B, σ)-reduction with
the difference that it now begins with the existential block of A(~x).

Example 3.7. (Self-witnessing and Ignoring Techniques)
Let A(x) = ∀y∃zB(x, y, z), A′(x) = ∀y′∃z′B′(x, y′, z′), C(x) = ∃uD(x, u)
and C ′(x) = ∃u′D′(x, u′) be some formulas, where B,B′, D,D′ are quantifier-
free and B be a base theory. Since both of the formulas are in the prenex
form, a (B, π)-reduction from A′(x) to A(x) is a pair of terms like (t, s) such
that

∀y∃zB(x, y, z) ≥B,(s,t)π ∀y′∃z′B′(x, y′, z′)

meaning that t reads x, y′ to witness y = t(y′) and s reads x, y′, z to witness
z′ such that

B ` B(x, t(x, y′), z)→ B′(x, y′, s(x, y′, z))

Now, we will assume the existence of such a reduction, to construct other
reductions via the simple techniques that we call self-witnessing and ignoring.
Let A(x) ≥B,(s,t)π A′(x). We want to provide a canonical term reduction
constructed from (s, t) to show A(x)∧C(x) ≥Bπ A′(x)∧C(x). To show how,
we have to write both sides in their π-prenex form, meaning that we have to
show

∀y∃z∃u[B(x, y, z) ∧D(x, u)] ≥B,t,s,rπ ∀y′∃z′∃v[B′(x, y′, z′) ∧D(x, v)]

Note that we changed the name of the bounded variable of right-hand side
C(x) to v, as the process of π-prenexing dictates. Now, the canonical (B, π)-
reduction here is the following: Use t(x, y′) to witness y and s(x, y′, z) to
witness z′ as before. But to witness v, the most natural candidate is u. The
last thing to check is whether

B ` [B(x, t(x, y), z) ∧D(x, u)]→ [B′(x, y′, s(x, y′, z)) ∧D(x, u)]

which is an easy consequence of

B ` B(x, t(x, y), z)→ B′(x, y′, s(x, y′, z))

It is possible to describe the whole argument in the following rough line:
To provide a reduction for A(x) ∧ C(x) ≥Bπ A′(x) ∧ C(x), use the reduction
for A(x) ≥Bπ A′(x) and witness the quantifiers in C by themselves. This
is the simple technique we call self-witnessing. To see how the technique

13

simplifies the explanation, note that if A(x) ≥Bπ A′(x) then we also have
∀xA(x) ≥Bπ ∀xA′(x). The new reduction is just the previous one, plus wit-
nessing x in the left by itself, read on the right.

The second technique, the ignoring, works as follows. Let A(x) ≥B,(s,t)π

A′(x). We want to provide a canonical term reduction constructed from (s, t)
to show A(x) ∧ C(~x) ≥Bπ A′(x) ∨ C ′(x). After making both sides π-prenex,
we have to show that

∀y∃z∃u[B(x, y, z) ∧D(x, u)] ≥B,t,s,rπ ∀y′∃z′∃u[B′(x, y′, z′) ∨D′(x, u′)]

Again, it is enough to witness y by t(x, y′) and z′ by s(x, y′, z). But when it
comes to witness u′, We do not need u and we do not care how to witness u′,
because the implication holds, regardless the extra data of D(x, u) and the
value of u′. Therefore, it is enough first to ignore the input u and then to
witness u′ by some arbitrary term, usually the constant zero. Then, we have
to have

B ` [B(x, t(x, y), z) ∧D(x, u)]→ [B′(x, y′, s(x, y′, z)) ∨D′(x, 0)]

which is clearly provable. This is what we call the ignoring technique. We say
ignore some variables, both as the inputs and the ones we have to witness,
when such a situation happens.

Example 3.8. In this example we will draw the reader’s attention to the
difference between π- and σ-reductions. Consider the formula

A = ∀yB(x, y) ∨ ∃z¬B(x, z)

where B(x, y) is quantifier-free. Working with π-reductions, it is clear that
we have > ≥π A, because reading the variable y, it is enough to witness the
variable z by the term t(y) = y. Then we will reach the B-provable formula

> → B(x, y) ∨ ¬B(x, y)

However, if we work with the σ-reductions, the order of the variables changes
and we have to first witness z, only using x and without any knowledge of
the value y. This highly depends on the terms of the language and it usually
is not the case. The reason is as follows. Suppose that > ≥Rσ A. Then, there
must be a term t(x) such that

R ` > → [B(x, y) ∨ ¬B(x, t(x))]

Therefore, checking the truth value of B(x, t(x)), which is a computable task,
we can decide whether ∀yB(x, y) holds, because if B(x, t(x)) is true, then

14

since R is sound, ∀y(x, y) ∨ ¬B(x, t(x))] must be true and hence ∀yB(x, y)
will be true. If B(x, t(x)) is false then the formula ∀yB(x, y) is clearly false.
This contradicts the existence of the uncomputable Diophantine sets.

Looking at the computational process that we explained, it is not hard to
see that a reduction form B to A are some specific computational methods
to witness the existential quantifiers of A → B by its universal quantifiers,
in some certain order and only using the terms of the language, in the eyes
of a base theory B. Therefore, it is reasonable to expect that:

Theorem 3.9. Let α ∈ {σ, π}, B be a base theory and A(~x) and B(~x) be
some formulas. Then, if A(~x) ≥Bα B(~x) then B ` A(~x)→ B(~x).

Proof. First note that the α-prenex form of any formula is logically equivalent
to itself. Hence, w.l.o.g we can assume that both A(~x) and B(~x) are in α-
prenex form. Then, the claim is easy by an induction of the maximum number
of the quantifier alternations of the formulas A(~x) and B(~x). For quantifier-
free formulas there is nothing to prove. If α = π, then we have A = ∀~uC(~x, ~u)
and B = ∀~vD(~x,~v), where the universal quantifiers are the whole block of
left-most universal quantifiers (possibly empty)and terms ~t(~x,~v) such that

C(~x,~t(~x,~v)) ≥Bσ D(~x,~v)

By the induction hypothesis, we have

B ` C(~x,~t(~x,~v))→ D(~x,~v)

But since the formula ∀~uC(~x, ~u) logically implies C(~x,~t(~x,~v)), we have

B ` ∀~uC(~x, ~u)→ D(~x,~v)

Since ~v is not free in ∀~uC(~x, ~u), we finally reach B ` A(~x)→ B(~x). The case
α = σ is similar.

A natural question is whether the converse of Theorem ?? also holds,
meaning whether the computational method of reduction faithfully extract
the computational information from the proofs in B? The answer is negative.
As an example, it is just enough to use the formula A in the Example ??.
This formula is a logical tautology and hence provable in any base theory
including R. But, as we observed there is no (R, σ)-reduction from A to >.
Although, it may not be clear now, we will see that the main obstruction to
have the converse is exactly such a situation: There are some formulas whose
characteristic functions are not representable by the terms of the language.

15

As it is very well-known, the gap between the computable functions (a
reasonable arithmetical term represent such a function) and the decision
problem for the arithmetical formulas is enormous and hence there is no
hope to somehow modify the statement of Theorem ?? such that its con-
verse also becomes true. However, for bounded formulas A and B, this
modification is somehow imaginable. Here, the natural setting is using the
low complexity terms (polynomial-time computable function for instance) as
the basic functions and then try to use them to extract the computational
information from the proofs. By the same line of argument as in Example
??, we can again show that the converse of Theorem ?? for bounded for-
mulas also lead to the low complexity decision procedures for the bounded
existential problems like the NP problems. However, in the bounded case,
we have a modification to handle these complex decision problems. The ides
is the following: One computational method to decide bounded formulas is
the brute force technique to open all bounded quantifiers and check all the
simple possibilities once at a time. This is a very long sequence of simple
decision problems. We know that it is impossible to simulate this process
by one reduction. But what if we use a long sequence of them. It may be
possible to simulate any simple decision problem by a reduction and then
using a uniform sequence of reductions to do the decision for any bounded
formula. As we will see throughout this paper, this is possible and when we
handle these decision problems, we can witness any proof not only in a base
theory but in any bounded theory of arithmetic. The following notion of a
flow is the sequence of reductions that we need:

Definition 3.10. Let A(~x), B(~x) ∈ Πb
k(L) be two formulas and α ∈ {σ, π}.

A (Πk(L),B, α)-flow from A(~x) to B(~x) is the following data: A term t(~x),
a formula H(u, ~x) ∈ Πb

k(L) and sequences of terms E0, E1, G0, G1 and F (u)
such that:

(i) H(0, ~x) ≡B,E0,E1
α A(~x).

(ii) H(t(~x), ~x) ≡B,G0,G1
α B(~x).

(iii) H(u, ~x) ≥B,F (u)
α H(u+ 1, ~x).

If there exists a (Πb
k(L),B, α)-flow fromA(~x) toB(~x), we will writeA(~x)B

(Πbk(L),B)
α

B(~x). Moreover, if Γ and ∆ are sequences of formulas in Πb
k(L), by ΓB

(Πbk(L),B)
α

∆ we mean
∧

Γ B
(Πbk(L),B)
α

∨
∆. The case for (Σb

k(L),B, α)-flows is defined
similarly by replacing Πb

k(L) with Σb
k(L).

Convention. Let φ ∈ {σ, π}. Since throughout the paper, except in the
applications, the language is fixed and we want to address some statements

16

more compact, we use the notation Φk by which we mean Πb
k(L) if φ = π

and Σb
k(L) if φ = σ. Moreover, when we work with a fixed choice for B, we

drop the letter B from B(Φ,B)
α or the tuple (Φ,B, α). Moreover, we will use

the notation C(L) for {Σb
k(L),Πb

k(L)}∞k=0 and Φ for a variable over C(L).

Theorem 3.11. (Completeness) Let φ ∈ {σ, π}, A(~x), B(~x) ∈ Φk and B ⊆
B(Φk,A) be a base theory. If A(~x) B(Φk,B)

φ B(~x), then B(Φk,A) ` A(~x) →
B(~x).

Proof. If A(~x) B(Φk,B)
φ B(~x), then by Theorem 3.9, there exist a term t(~x),

and a formula H(u, ~x) ∈ Φk such that:

(i) B ` H(0, ~x)↔ A(~x),

(ii) B ` H(t(x), ~x)↔ B(~x),

(iii) B ` H(u, ~x)→ H(u+ 1, ~x).

Since B ⊆ B(Φk,A), all of these three facts are also provable in B(Φk,A).
Since H(u, ~x) ∈ Φk, by induction we have

B(Φk,A) ` H(0, ~x)→ H(t(~x), ~x).

Therefore, by (i) and (ii) we have B(Φk,A) ` A(~x)→ B(~x).

4 The Main Theorem

Now we are ready to state the main theorem of the paper. The theorem
relates the provability of an implication between a pair of bounded formulas
in a bounded theory of arithmetic to the existence of a flow between the
formulas, meaning a uniform term-length sequence of reductions between
them. The latter can also be interpreted as the existence of a uniform term-
length sequence of games with a uniform term-based sequence of methods to
transfer the winning strategies along them.

Theorem 4.1. (Main Theorem) Let φ ∈ {σ, π}, Γ(~x)∪∆(~x) ⊆ Φk and B be
a base theory such that A ⊆ B ⊆ B(Φk,A). Then, B(Φk,A) ` Γ(~x)⇒ ∆(~x)

iff Γ B(Φk,B)
φ ∆.

We have already proved one direction in Theorem 3.11. For the other
half, we need a high-level calculus to argue about the existence of the flows.
After a sequence of lemmas to bootstrap the calculus, we will come back to
the main theorem as in Theorem 4.1.

17

Lemma 4.2. (Conjunction Application) Let α ∈ {σ, π}, Φ ∈ C(L) and
A(~x), B(~x), C(~x) ∈ Φ be some formulas. If A(~x)BΦ

αB(~x) then A(~x)∧C(~x)BΦ
α

B(~x) ∧ C(~x).

Proof. Since A(~x) BΦ
α B(~x), by Definition 3.10, there exists a term t(~x), a

formula H(u, ~x) ∈ Φ and sequences of terms E0, E1, G0, G1 and F (u) such
that:

• A(~x) ≡B,E0,E1
α H(0, ~x),

• B(~x) ≡B,G0,G1
α H(t(~x), ~x),

• H(u, ~x) ≥B,F (u)
α H(u+ 1, ~x).

Now define t′(~x) = t(~x) and H ′(u, ~x) = H(u, ~x) ∧ C(~x). Since Φ is closed
under conjunction, we have H ′(u, ~x) ∈ Φ. Define the sequences of terms E ′0,
E ′1, G′0, G′1 and F ′(u) using their corresponding sequence of terms augmented
by some self-witnessing as introduced in Example 3.7. It means that to
witness a variable in C(~x), use the same variable read on the other side of
the reduction and to witness a variable outside of C(~x) use the corresponding
term from the given appropriate reduction. Therefore, it is clear that the new
data is a (Φ,B, α)-flow from A(~x) ∧ C(~x) to B(~x) ∧ C(~x).

Lemma 4.3. (Disjunction Application) Let α ∈ {σ, π}, Φ ∈ C(L) and
A(~x), B(~x), C(~x) ∈ Φ be some formulas. If A(~x)BΦ

αB(~x) then A(~x)∨C(~x)BΦ
α

B(~x) ∨ C(~x).

Proof. The proof is similar to that of 4.2. The only difference here is the
definition H ′(u, ~x) as H(u, ~x) ∨ C(~x), which is clearly in Φ.

Lemma 4.4. (Gluing) Let α ∈ {σ, π}, Φ ∈ C(L) and A(~x), B(~x), C(~x), D(y, ~x) ∈
Φ be some formulas and s(~x) be a term:

(i) (Weak Gluing) If A(~x)BΦ
α B(~x) and B(~x)BΦ

α C(~x) then A(~x)BΦ
α C(~x).

(ii) (Strong Gluing) If D(y, ~x) BΦ
α D(y + 1, ~x) then D(0, ~x) BΦ

α D(s, ~x).

Proof. For (i), since A(~x) BΦ
α B(~x), there exists a term t(~x), a formula

H(u, ~x) ∈ Φ and sequences of terms E0, E1, G0, G1 and F (u) satisfying the
conditions in the Definition 3.10. With the same reason, since B(~x)BΦ

α C(~x),
we have the corresponding data denoted by t′(~x), H ′(u, ~x), E ′0, E ′1, G′0, G′1
and F ′(u). Define r(~x) = t(~x) + t′(~x) + 1, the formula I(u, ~x) as

I(u, ~x) =


H(u, ~x) u ≤ t(~x)

B(~x) u = t(~x) + 1

H ′(u .− t(~x) .− 2, ~x) t(~x) + 1 < u ≤ t(~x) + t′(~x) + 2

18

and the sequence of reduction terms in the same pointwise manner: E ′′0 = E0,
E ′′1 = G′1 and

F ′′(u) =


F (u) u < t(~x)

E1 u = t(~x)

E ′0 u = t(~x) + 1

F ′(u .− t(~x) .− 2, ~x) t(~x) + 1 < u < t(~x) + t′(~x) + 2

It is easy to see that this new data is nothing but the result of gluing the two
given sequences of reductions, meaning a (Φ,B, α)-flow from A(~x) to C(~x).
However, to be more precise we will discuss the details of the construction
here. Later, we will use the informal style of reasoning more often.
First note that as mentioned in Convention ??, the formula I(u, ~x) is tech-
nically defined as the following formula

([u ≤ t(~x)]→ H(u, ~x)) ∧ ([u = t(~x) + 1]→ B(~x))

∧([t(~x) + 1 < u ≤ t(~x) + t′(~x) + 2]→ H ′(u .− t(~x) .− 2, ~x))

and since Φ includes all the quantifier-free formulas and it is closed under
disjunctions and conjunctions, we have I(u, ~x) ∈ Φ.
To show how the reductions work, we will handle the first case, where
u < t(~x). Here, by Remark ??, we have F ′′(u) = F (u). It is easy to see that
it would be enough to show that I(u, ~x) ≥F I(u+1, ~x). Since u, u+1 ≤ t(~x),
in both I(u, ~x) and I(u+ 1, ~x), the second and the third conjuncts in I(u, ~x)
are true, regardless of the witnesses we may use for the quantifiers involved
in those parts. Therefore, we can use the ignoring technique here, to say that
the original F (u) is also an (B, α)-reduction here.

For (ii), if we have A(y, ~x) BΦ
α A(y + 1, ~x), then to reach the intended

consequence, it is just enough to glue all copies of the sequences of reductions
for 0 ≤ y ≤ s after each other, to have a reduction to show A(0, ~x)BΦ

αA(s, ~x).

A(0) ≥ H(0, 0) ≥ H(1, 0) . . . H(t′, 0) ≥ A(1) ≥ H(0, 1) ≥ . . . ≥ H(t′, s .−1) ≥ A(s)

Spelling out the details, first note that we will intuitively use the data
from the reduction A(y, ~x) BΦ

α A(y + 1, ~x) only for y ≤ s. Therefore, w.l.o.g
we can assume that after s, the flow becomes stationary with fix formula
and identity as the reduction. Now, assume that all the reductions have the
same length t′(~x) greater than t(s, ~x). This is an immediate consequence of
the existence of a majorizing family. First find a monotone majorization for
t(y, ~x) like r(y, ~x). Since y ≤ s, we have t(y, ~x) ≤ r(y, ~x) ≤ r(s, ~x). Now it is

19

enough to repeat the last formula in the flow to make the flow longer to reach
the length t′(~x, ~z) = r(s, ~x) where ~z is a vector of variables in s. Now, define
t′′(~x, ~z) = s(t′(~x) + 2), Y (u, ~x) = d(u, t′+ 1), U(u, ~x) = u .− d(u, t′+ 1)(t′+ 2)
and

I(u, ~x) =

{
H(U(u, ~x) .− 1, Y (u, ~x), ~x) U(u, ~x) > 0

A(y, ~x) U(u, ~x) = 0

and

F ′(u) =


F (U(u, ~x) .− 1, Y (u, ~x)) 0 < U(u, ~x) < t′ + 1

E0(Y (u, ~x)) U(u, ~x) = 0

G1(Y (u, ~x)) U(u, ~x) = t′ + 1

and E ′0 = E ′1 = G′0 = G′1 = id. It is easy to see that this new sequence is a
(Φ,B, α)-flow from A(0, ~x) to A(s, ~x). First note that since H,A ∈ Φ, we have
I ∈ Φ. For the reductions, we only check one case. If 0 < U(u, ~x) < t′ + 1,
we want to show that

I(u, ~x) ≥B,F ′(u)
α I(u+ 1, ~x)

By definition the only part of the formula I(u, ~x) that plays a role in the
witnessing process is the part H(U(u, ~x) .−1, Y (u, ~x), ~x). But since F (u, y) is
a (B, α)-reduction from H(u+ 1, y, ~x) to H(u, y, ~x), for any y ≤ s, and since
Y (u, ~x) ≤ s, the reduction F (U(u, ~x) .− 1, Y (u, ~x)) provides a reduction

H(U(u, ~x) .− 1, Y (u, ~x), ~x) ≥F (U(u,~x) .−1,Y (u,~x)) H(U(u, ~x), Y (u, ~x), ~x)

Lemma 4.5. (Quantifier Application) Let α ∈ {σ, π}. Then:

(i) If A(~x, y), B(~x, y) ∈ Πb
k(L) and A(~x, y) B

Πbk(L)
π B(~x, y) then

∀y ≤ t(~x)A(~x, y) B
Πbk(L)
α ∀y ≤ t(~x)B(~x, y).

(ii) If A(~x, y), B(~x, y) ∈ Σb
k(L) and A(~x, y) B

Σbk(L)
σ B(~x, y) then

∃y ≤ t(~x)A(~x, y) B
Σbk(L)
α ∃y ≤ t(~x)B(~x, y).

Proof. For (i), since A(~x, y) B
Πbk(L)
π B(~x, y), there exists a term s(~x, y), a

formula H(u, ~x, y) ∈ Πb
k(L) and sequences of sequences of terms E0, E1,

G0, G1 and F (u) satisfying the conditions of Definition 3.6. W.l.o.g we can
assume that s is monotone, because any term is majorizable by a monotone

20

term and we can extend the sequence by repeating the last formula to reach
that majorization as the length of the flow. Define t′(~x) as s(~x, t(~x)) and
H ′(u, ~x) = ∀y ≤ t(~x)I(u, ~x, y) where

I(u, ~x, y) =

{
H(u, y, ~x) u ≤ s(~x, y)

H(s(~x, y), y, ~x) u � s(~x, y)

and also define

F ′(u) =

{
F (u) u+ 1 ≤ s(~x, y)

Id u+ 1 � s(~x, y)

It is clear that H ′(0, ~x) ≡Bπ ∀y ≤ t A(~x, y). Because, it is possible to
self-witness y and then to witness the other quantifiers according to the re-
ductions E0 and E1. The reason is that 0 ≤ s(~x, y) and hence the main part
of ∀y ≤ t I(0, ~x, y) in the witnessing process is just H(0, y, ~x).

Secondly, we have H ′(u, ~x) ≥Bπ H ′(u + 1, ~x), by self-witnessing the out-
most quantifier ∀y and then applying F ′(u). Thirdly, H ′(t′(~x), ~x) ≡Bπ ∀y ≤
tB(~x, y) by the reductions which read y and witness it by itself and then
apply the reductions G0 and G1. To prove this claim, first note that we can
assume y ≤ t, because otherwise, both sides of the reduction will be false
regardless of the reduction. Then using y ≤ t and the monotonicity of s we
have s(~x, y) ≤ t′(~x) which implies I(t′(~x), ~x, y) = I(s(~x, y), y, ~x) and since
I(s(~x, y), y, ~x) = H(s(~x, y), y, ~x) is π-equivalent to B by the reductions G0,
G1, the claim follows. Finally note that all the formulas in the flow begin
with a universal quantifier, therefore, we can also claim that all the reduc-
tions are σ-reductions and hence the flow is also a σ-flow. The proof of (ii)
is similar.

The following lemma provides a machinery to compute the value of the
formula A ∈ Φk ∈ {Πk,Σk} by a deterministic (Σk+1,B, α)-flow of reductions
for any α ∈ {π, σ}. This is a very important tool to reduce the complexity
of deciding a complex formula to just deciding one equality. We will see its
use in full force in the case of handling the contraction rule.

Lemma 4.6. (Computability of the characteristic functions) Let α ∈ {π, σ},
A(~x) ∈ Φk and B be a base theory. Then:

B(Σk+1,B)
α ∃i ≤ 1 [(i = 1→ A) ∧ (i = 0→ ¬A)]

Proof. We say a bounded quantifier is constant if it has the form ∀z ≤ s(z =
s → D(z)) or ∃z ≤ t(z = s ∧ D(z)) for some term s. We denote these

21

quantifiers by ∀{z = s} and ∃{z = s}. To prove the theorem, use induction
on the sum of the number of non-constant quantifiers of A and the number
of disjunctions and conjunctions of A.

If all the quantifiers in A are constant, then it is enough to first eliminate
all the quantifiers in A by substituting the variables by the constant terms
that the constant quantifiers suggest, i.e., substituting the variable z in the
quantifier Q{z = s} by s. Call this quantifier-free formula B and put i = χB.
If we witness all the essentially existential quantifiers by the terms that they
suggest, then we reach the implication

(χB = 1→ B) ∧ (χB = 0→ ¬B)

which is provable in B by the assumption.

If A = ~Q{~z = ~s}(B ∧ C) where Qn ∈ {∀,∃}, then by IH,

B(Σk+1,B)
α ∃j ≤ 1 [(j = 1→ ~Q{~z = ~s}B) ∧ (j = 0→ ¬ ~Q{~z = ~s}B)]

and

B(Σk+1,B)
α ∃k ≤ 1 [(k = 1→ ~Q{~z = ~s}C) ∧ (k = 0→ ¬ ~Q{~z = ~s}C)].

On the other hand, it is possible to reduce

∃i ≤ 1 [(i = 1→ ~Q{~z = ~s}(B ∧ C)) ∧ (i = 0→ ¬ ~Q{~z = ~s}(B ∧ C))]

to the conjunction of two statements

∃j ≤ 1 [(j = 1→ ~Q{~z = ~s}B) ∧ (j = 0→ ¬ ~Q{~z = ~s}B)]

and
∃k ≤ 1 [(k = 1→ ~Q{~z = ~s}C) ∧ (k = 0→ ¬ ~Q{~z = ~s}C)].

To prove this, witness i by jk, the quantifiers in ~Q by the terms that they
suggest and the other quantifiers with themselves. Therefore, by conjunction
application and then gluing, we have

B(Σk+1,B)
α ∃i ≤ 1 [(i = 1→ ~Q{~z = ~s}(B∧C))∧(i = 0→ ¬ ~Q{~z = ~s}(B∧C))].

The case for disjunction is similar to the conjunction case.

If A = ~Q{~v = ~s}∀z ≤ t(~x)B(~x, z) where Qn ∈ {∀, ∃}, then define G(u)
as

∃k ≤ 1 [(k = 1→ ~QB̃(~x, u)) ∧ (k = 0→ ¬ ~QB̃(~x, u))].

22

where B̃(~x, u) is ∀{z = u}B(~x, z) and ~Q stands for ~Q{~v = ~s}. By IH we
have a (Σk+1,B, α)-flow from > to G(u+ 1) which is

∃k ≤ 1 [(k = 1→ ~QB̃(~x, u+ 1)) ∧ (k = 0→ ¬ ~QB̃(~x, u+ 1))]

Define H(u) as

∃i ≤ 1 [(i = 1→ ~Q∀z ≤ u B(~x, z)) ∧ (i = 0→ ¬ ~Q∀z ≤ u B(~x, z))].

Now, we want to prove the existence of a reduction from H(u+ 1) which is

∃j ≤ 1 [(j = 1→ ~Q∀z ≤ u+ 1 B(~x, z)) ∧ (j = 0→ ¬ ~Q∀z ≤ u+ 1 B(~x, z))].

to the conjunction of G(u+ 1) and H(u). For this purpose, witness j by ik.
Then for the other quantifiers use the following scheme: Note that we have
three possible cases, the case when i = k = 1, the case i = 1, k = 0 and the
case i = 0. In each case, some parts of the formulas, will be true regardless
of the reduction that we will present. Hence, we ignore them altogether and
we call the other formulas the main formulas.

Now, if i = k = 1, then the main formulas are ~Q∀z ≤ u B(~x, z),

B̃(~x, u + 1) and ~Q∀z ≤ u + 1 B(~x, z). To reduce ~Q∀z ≤ u + 1 B(~x, z)

to the conjunction of ~Q∀z ≤ u B(~x, z) and ~QB̃(~x, u + 1), first witness con-

stant quantifiers in ~Q by the terms that they suggest. Then read z ≤ u+ 1,
if z = u + 1 use B̃(~x, u + 1) and ∀z ≤ u + 1 B(~x, z) as the main formulas
and ignore ∀z ≤ u B(~x, z). Then witness the last universal quantifier of
B̃(~x, u + 1) by u + 1 and all the other quantifiers in ∀z ≤ u + 1 B(~x, z)
and B̃(~x, u + 1) with themselves. If z < u + 1, then use ∀z ≤ u B(~x, z)
and ∀z ≤ u + 1 B(~x, z) as the main formulas and again witness everything

with themselves. If i = 1 and k = 0, then use ¬ ~Q∀z ≤ u + 1 B(~x, z) and

¬ ~QB̃(~x, u + 1) as the main formulas and witness constant quantifiers in ~Q
by the terms that they suggest. Then use u + 1 for z and witness all the
variables with themselves. Finally if i = 0, then use ¬ ~Q∀z ≤ u B(~x, z) and

¬ ~Q∀z ≤ u+ 1 B(~x, z) as the main formulas and witness constant quantifiers

in ~Q by the terms that they suggest and all the other variables with them-
selves.

Therefore G(u + 1) ∧ H(u) B H(u + 1). By IH, B G(u + 1). Hence,
by conjunction application H(u) B G(u + 1) ∧ H(u) and then by gluing
H(u)BH(u+ 1) and finally by strong gluing H(0)BH(t(~x)). Since H(0) ≡
G(0) and B G(0), hence B H(0) which means B H(t(~x)).

23

The case A = ~Q{~v = ~s}∃z ≤ t(~x)B(~x, z) is similar to the universal
case.

Lemma 4.7. (Canonical Normal Form) For any formula C(~x) ∈ Σk+1, there
exists C̃(~x, ~u) ∈ Πk and some terms ~s such that the σ-prenex form of C̃(~x, ~u)
is quantifier-free or it begins with a universal quantifier and ∃~u ≤ ~s C̃(~x, ~u)
is σ-deterministic equivalent to C. The same also holds for universal quan-
tifiers, Πk+1 and π-equivalence.

Proof. We will prove the claim by induction on the complexity of C. If C is
quantifier-free, then pick C̃ = C and pick ~u as the empty vector. If C begins
with a universal formula then C̃ = C and pick ~u as the empty vector again.
If C = ∃y ≤ t D, then pick C̃ = D̃ and add y to ~u and t to ~s. For the cases
C = D ∧ E or C = D ∨ E, since their proofs are similar, we will only check
the disjunction case. If C = D ∨ E, by IH, there exists C̃ and D̃ and ~s and
~r such that C ≡σ ∃~u ≤ ~s C̃ and D ≡σ ∃~v ≤ ~r D̃. Hence by propositional
rules, it is clear that

C ∨D ≡σ ∃~u ≤ ~s C̃ ∨ ∃~v ≤ ~r D̃

But
∃ ~u0 ≤ ~s C̃ ∨ ∃~v0 ≤ ~r D̃ ≡σ ∃ ~u1 ≤ ~s ∃~v1 ≤ ~r (C̃ ∨ D̃)

(For the moment we put some indices for the variables ~u and ~v for the
referring purpose.) To show the latter, for both reductions, when we read an
existential quantifier w ∈ ~u∪~v with the bound p, if wi ≤ p use wi to witness
w1−i, if not just use zero. From right to left, if at least for one variable w1 we
have w1 > p, then this choice for the variable w1 makes the left hand-side of
the reduction false, regardless the choice of the other variables, which implies
the reduction. If for all the variables we have w1 ≤ p, then after using identity
reduction both sides will be equal and there is nothing to prove. For the other
direction, let ~u0

′ and ~v0
′ be the variables that do not meet their bounds in

~u0 and ~v0, respectively. If both ~u0
′ and ~v0

′ have some variables, as before, it
makes both ∃ ~u0 ≤ ~s C̃ and ∃~v0 ≤ ~r D̃ false and hence we have the reduction.
If ~u0 is non-empty and ~v0 is empty, then ∃ ~u0 ≤ ~s C̃ is false, regardless of the
other parts of the reduction. Since we choose zero to witness the variables
~u1
′, all ~u1 meet their bounds and therefore the reduction is reduced to the

fact that the disjunction of D̃ and a substitution of C̃ is reducible to D̃. The
proof for the other cases are similar.

Lemma 4.8. (Negation Rules) If Γ,∆ ⊆ Φk+1 and A ∈ Πk ∪ Σk then

(i) If Γ, ABΦk+1

φ ∆ then Γ BΦk+1

φ ∆,¬A.

24

(ii) If Γ BΦk+1

φ ∆, A then Γ,¬ABΦk+1

φ ∆.

Proof. Since we have conjunction and disjunction application, it is enough
to prove the claim:

Claim. If A(~x) ∈ Πk ∪ Σk, then

(∗) >BΦk+1

φ A(~x) ∨ ¬A(~x).

(∗∗) A(~x) ∧ ¬A(~x) BΦk+1

φ ⊥.

The reason for this sufficiency is the following:

For (i), if we have Γ, A B ∆ then
∧

Γ ∧ A B
∨

∆, hence by disjunction
application we have (

∧
Γ ∧ A) ∨ ¬A B

∨
∆ ∨ ¬A. By the claim we have

BA ∨ ¬A, therefore by conjunction application
∧

Γ B
∧

Γ ∧ (A ∨ ¬A). But,
it is easy to see that

∧
Γ∧ (A∨¬A) ≥ (

∧
Γ∧A)∨¬A. Hence by gluing we

have
∧

Γ B
∨

∆ ∨ ¬A.

For (ii), we have
∧

ΓB
∨

∆∨A. By conjunction application
∧

Γ∧¬AB
(
∨

∆∨A)∧¬A. By the claim we have A∧¬AB⊥ therefore by disjunction
application

∨
∆ ∨ (A ∧ ¬A) B

∨
∆. But, it is clear that (

∨
∆ ∨ A) ∧ ¬A ≥∨

∆ ∨ (A ∧ ¬A). Hence by gluing,
∧

Γ ∧ ¬AB
∨

∆.

Now, we will prove both (∗) and (∗∗) for the class Σk+1. For the other two
cases for Πk+1, we will use the following duality argument: Note that using
negation on all the elements of a (Σk+1,B, σ)-flow from C to D provides a
(Πk+1,B, π)-flow from ¬D to ¬C. Therefore, the Πk+1 case of (∗) is provable
from the Σk+1 case of (∗∗) and the Πk+1 case of (∗∗) is provable from the
Σk+1 case of (∗).

Assume Φk+1 = Σk+1. For (∗), notice that

∃i ≤ 1 [(i = 1→ A) ∧ (i = 0→ ¬A)] ≥σ A ∨ ¬A

it is enough to witness A and ¬A in both sides with themselves. But since

B(Σk+1,B)
σ ∃i ≤ 1 [(i = 1→ A) ∧ (i = 0→ ¬A)]

by propositional rules and gluing we can deduce B(Σk+1,B)
σ A ∨ ¬A.

25

For (∗∗), use induction on the complexity of A. If A is quantifier-free,

then there is nothing to prove. If A = B ∧ C, by IH, B ∧ ¬B B(Σk+1,B)
σ and

C ∧ ¬C B(Σk+1,B)
σ since

(B ∧ C) ∧ ¬(B ∧ C) ≥σ (B ∧ ¬B) ∨ (C ∧ ¬C)

witnessing any quantifier by itself, using gluing we will have

(B ∧ C) ∧ ¬(B ∧ C) B(Σk+1,B)
σ

The case for the disjunction is similar.

If A begins with a universal quantifier, by Lemma 4.7, there exists A′

such that A ≡π A′ = ∀~z ≤ ~t B(~z) ∈ Πk ∪ Σk where ∀~z ≤ ~t is the whole
left-most block of bounded universal quantifiers and B ∈ Σk−1. Then by the
above considerations on duality, since we have

B(Σk,B)
σ B(~w) ∨ ¬B(~w)

hence
B(~w) ∧ ¬B(~w) B(Πk,B)

π

Now by Lemma 4.5 we have

∃~w ≤ ~t∀~z ≤ ~t [B(~w) ∧ ¬B(~w)]B(Σk+1,B)
σ

Now note that

∃~w ≤ ~t¬B(~w) ∧ ∀~z ≤ ~tB(~z) ≥σ ∃~w ≤ ~t∀~z ≤ ~t[B(~w) ∧ ¬B(~w)]

because we can witness ~w by itself and ~z by ~w. The main point here is
that σ-prenex form of ¬B(~w) do not begin with an existential quantifier
and hence after reading the first block of existential quantifiers, the formula
¬B(~w) remains intact. Therefore,

∃~w ≤ ~t¬B(~w) ∧ ∀~z ≤ ~tB(~z) B(Σk+1,B)
σ

hence A′ ∧ ¬A′B(Σk+1,B)
σ . Finally, since A begins with at least one universal

quantifier and A ≡π A′ we have A ≡σ A′. On the other hand, ¬A ≡σ ¬A′
and hence A ∧ ¬A ≡σ A′ ∧ ¬A′ which completes the proof.

The case for the existential quantifier is similar.

In the following lemma, we will show that it is possible to simulate the
contraction rule by deterministic reductions in the cost of extending one
reduction to a sequence of them, i.e., a flow.

26

Lemma 4.9. (Structural rules)

(i) If Γ, A,B,Σ BΦ
α ∆ then Γ, B,A,Σ BΦ

α ∆.

(ii) If Γ BΦ
α ∆, A,B,Σ then Γ BΦ

α ∆, B,A,Σ.

(iv) If Γ BΦ
α ∆ then Γ, ABΦ

α ∆.

(v) If Γ BΦ
α ∆ then Γ BΦ

α ∆, A.

(iii) If Γ, A,ABΦ
α ∆ then Γ, ABΦ

α ∆.

(vi) If Γ BΦ
α ∆, A,A then Γ BΦ

α ∆, A.

Proof. The weakening and the exchange cases are trivial. For the contraction
case notice that in the presence of conjunction and disjunction applications
and also the gluing rule, it is enough to prove the following claim:

Claim. For any α ∈ {π, σ}, if A ∈ Φ, then:

(i) A(~x) ∨ A(~x) BΦ
α A(~x).

(ii) A(~x) BΦ
α A(~x) ∧ A(~x).

For (i), use induction on the complexity of A. If A is quantifier-free, then
there is nothing to prove, because A ∨ A ≡Φ

α A ≡Φ
α A ∧ A.

If A = B ∧ C, then by IH, B ∨ B BΦ B and C ∨ C BΦ C. But (B ∧
C) ∨ (B ∧ C) ≥ (B ∨ B) ∧ (C ∨ C) because it is just enough to witness
any quantifier with itself. Hence, by gluing and conjunction application,
(B ∧ C) ∨ (B ∧ C) BΦ B ∧ C. The case for disjunction is easy.

Now assume A = ∀z ≤ t(~x) B(~x, z). If Φ is the class Πk, by IH we
have B(~x, z) ∨ B(~x, z) BΠk

π B(~x, z) and if Φ is Σk, since ∀z ≤ t(~x)B(~x, z) ∈
Φ, then it actually lives in the lower class Πk−1, which again by IH means
B(~x, z) ∨B(~x, z) BΠk−1

π B(~x, z). Hence, in either case

B(~x, z) ∨B(~x, z) BΠk
π B(~x, z)

By Lemma 4.5 we have

∀z ≤ t(~x) [B(~x, z) ∨B(~x, z)] BΦ
α ∀z ≤ t(~x) B(~x, z).

for any α ∈ {σ, π}. But ∀z ≤ t(~x) [B(~x, z) ∨B(~x, z)] is α-reducible to

∀u ≤ t(~x) B(~x, u) ∨ ∀v ≤ t(~x)B(~x, v)

27

using the variable z as the witness for both of u and v, hence the claim fol-
lows from gluing.

For the existential case, w.l.o.g we can assume Φ = Σk for some k. The
reason is that if Φ = Πk, then since A begins with an existential quantifier,
A ∈ Σk−1 and hence we can work with Σk−1. Therefore, we assume Φ = Σk

for some k. First note that by the Lemma 4.7, there exists A′ = ∃~z ≤
~t(~x) B(~x, ~z) such that A ≡σ A′. But since both of the formulas A and A′

begin with an existential quantifier, A ≡π A′. Therefore, it is enough to
prove the claim for A′. Note that by this assumption we can assume that
the σ-prenex form of B is quantifier-free or begins with universal quantifiers
and hence B ∈ Πk−1. Then by the Lemma 4.8, we have B(~u)∧¬B(~u)BΣk

σ ⊥
and B(~v) ∧ ¬B(~v) BΣk

σ ⊥ and then by the propositional rules

(B(~u) ∨B(~v)) ∧ ¬B(~u) ∧ ¬B(~v) BΣk
σ ⊥ (∗)

Assume the length of this flow is s. Then, there is a (Σk,B, σ)-flow from

(i ≤ 1 ∧ j ≤ 1) ∧ [B(~u) ∨B(~v)] ∧ (χB(~u) = i) ∧ (χB(~v) = j)

to
(χB(~u) = i) ∧ (χB(~v) = j)] ∧ (i = 1 ∨ j = 1)

with the length s where χB(~u) = i means (i = 1→ B(~u))∧(i = 0→ ¬B(~u)).
It is enough to use the formula G(w, i, j, ~u,~v) to fill in between, where G is
defined by the following scheme: If i > 1 or j > 1 then use ⊥. If i = j = 1,
then use G(w, i, j, ~u,~v) = B(~u)∧B(~v). If i = 1 and j = 0 use G(w, i, j, ~u,~v) =
B(u) ∧ ¬B(v). If i = 0 and j = 1 use G(w, i, j, ~u,~v) = ¬B(u) ∧ B(v). And
finally if i = j = 0, use the flow from (∗). Moreover, in the first three cases,
use identity reductions, ignoring the B(~u) ∨B(~v).

Using the Lemma 4.5, for any α ∈ {σ, π} we have a (Σk,B, α)-flow from

∃~u,~v ≤ ~t ∃i, j ≤ 1 [(i ≤ 1∧j ≤ 1)∧[B(~u)∨B(~v)]∧(χB(~u) = i)∧(χB(~v) = j)]

to

∃~u,~v ≤ ~t ∃i, j ≤ 1 [(χB(~u) = i) ∧ (χB(~v) = j)] ∧ (i = 1 ∨ j = 1)]

Since the first element of the flow is α-equivalent to

∃~u,~v ≤ ~t [[B(~u) ∨B(~v)] ∧ ∃i, j ≤ 1 [(χB(~u) = i) ∧ (χB(~v) = j)]]

28

for any α ∈ {σ, π} we will have (Σk,B, α)-flow from

∃~u,~v ≤ ~t [[B(~u) ∨B(~v)] ∧ ∃i, j ≤ 1 [(χB(~u) = i) ∧ (χB(~v) = j)]]

to

∃~u,~v ≤ ~t ∃i, j ≤ 1 [(χB(~u) = i) ∧ (χB(~v) = j)] ∧ (i = 1 ∨ j = 1)]

On the other hand, by the Lemma 4.6 and the Lemma 4.5, for any α ∈ {σ, π}
we know that there is a (Σk,B, α)-flow from

∃~u,~v ≤ ~t B(~u) ∨B(~v)

to

∃~u,~v ≤ ~t [[B(~u) ∨B(~v)] ∧ ∃i, j ≤ 1 [(χB(~u) = i) ∧ (χB(~v) = j)]]

Now, since
∃~u,~v ≤ ~t B(~u) ∨B(~v)

and
∃~u ≤ ~t B(~u) ∨ ∃~v ≤ ~t B(~v)

are α-equivalent, it is enough to show that ∃~y ≤ ~t(~x) B(~x, ~y) is α-reducible
to

∃~u,~v ≤ ~t(~x) ∃i, j ≤ 1 (i = 1 ∨ j = 1) ∧ (χB(u) = i) ∧ (χB(v) = j)

It is enough to read i and j and decide between the cases that i = 1 or
(i = 0, j = 1). Then if i = 1, use ~u to witness ~y and reduce B(~y) to B(~u)
in χB(~u) = i by identity reduction. If (i = 0, j = 1) then use ~v to witness ~y
and reduce B(~y) to B(~v) in χB(~v) = j by identity reduction.

The case (ii) is the dual of (i) and provable by just using (i) on ¬A and
then taking negations.

Lemma 4.10. (Conjunction and Disjunction Rules) Let α ∈ {σ, π}, Φ ∈
C(L) and Γ ∪∆ ∪ {A(~x), B(~x)} ⊆ Φ be some formulas. Then:

(i) If Γ, ABΦ
α ∆ or Γ, B BΦ

α ∆ then Γ, A ∧B BΦ
α ∆.

(ii) If Γ0 BΦ
α ∆0, A and Γ1 BΦ

α ∆1, B then Γ0,Γ1 BΦ
α ∆0,∆1, A ∧B.

(iii) If Γ BΦ
α ∆, A or Γ BΦ

α ∆, B then Γ BΦ
α ∆, A ∨B.

(iv) If Γ, ABΦ
α ∆ and Γ, B BΦ

α ∆ then Γ, A ∨B BΦ
α ∆.

29

Proof. (i) and (iii) are trivial, because we have the reductions∧
Γ ∧ A ∧B ≥Φ

α

∧
Γ ∧ A

∧
Γ ∧ A ∧B ≥Φ

α

∧
Γ ∧B∨

∆ ∨ A ≥Φ
α

∨
∆ ∨ A ∨B

∨
∆ ∨B ≥Φ

α

∨
∆ ∨ A ∨B

by self-witnessing the common quantifiers on both sides and ignoring the
irrelevant parts. Then glue the given flow to the the flow corresponding to the
reduction, using the weak gluing, Lemma 4.4. For (ii), if Γ0BΦ

α∆0, A, then by
conjunction application with

∧
Γ1 we have

∧
Γ0∧

∧
Γ1BΦ

α (
∨

∆0∨A)∧
∧

Γ1.
Moreover, we have

∧
Γ1 BΦ

α

∨
∆1 ∨ B and again by conjunction application∧

Γ1 ∧ (
∨

∆0 ∨ A) BΦ
α (

∨
∆1 ∨B) ∧ (

∨
∆0 ∨ A). Therefore by weak gluing∧

Γ0 ∧
∧

Γ1 B
Φ
α (

∨
∆1 ∨B) ∧ (

∨
∆0 ∨ A).

But it is easy to see that

(
∨

∆1 ∨B) ∧ (
∨

∆0 ∨ A) ≥α
∨

∆1 ∨
∨

∆0 ∨ (A ∧B).

Hence
Γ0,Γ1 B

Φ
α ∆0,∆1, (A ∧B).

For (iv), if Γ0, ABΦ
α ∆0 then by disjunction application with

∧
Γ1∧B we

have
(
∧

Γ0 ∧ A) ∨ (
∧

Γ1 ∧B) BΦ
α

∨
∆0 ∨ (

∧
Γ1 ∧B).

Moreover, we have
∧

Γ1∧BBΦ
α

∨
∆1, hence again by disjunction application

(
∧

Γ1 ∧B) ∨
∨

∆0 B
Φ
α

∨
∆0 ∨

∨
∆1.

Hence, by weak gluing,

(
∧

Γ0 ∧ A) ∨ (
∧

Γ1 ∧B) BΦ
α

∨
∆0 ∨

∨
∆1.

However, it is clear that∧
Γ0 ∧

∧
Γ1 ∧ (A ∨B) ≥α (

∧
Γ0 ∧ A) ∨ (

∧
Γ1 ∧B).

Hence,
Γ0,Γ1, (A ∨B) BΦ

α ∆0,∆1.

Lemma 4.11. (Cut and Induction) Let α ∈ {σ, π}, Φ ∈ C(L) and Γ ∪∆ ∪
{A} ⊆ Φ be some formulas:

30

(i) If Γ BΦ
α A,∆ and Γ, ABΦ

α ∆, then we have Γ BΦ
α ∆.

(ii) If Γ, A(y, ~x) BΦ
α ∆, A(y + 1, ~x) then Γ, A(0, ~x) BΦ

α ∆, A(s(~z, ~x), ~x).

Proof. For (i), Since Γ0 BΦ
α ∆0, A and Γ1, ABΦ

α ∆1 then∧
Γ0 B

Φ
α

∨
∆0 ∨ A

and
∧

Γ1 ∧ A BΦ
α

∨
∆1. Apply conjunction with

∧
Γ1 on the first one and

disjunction with
∨

∆0 on the second one to prove
∧

Γ1 ∧
∧

Γ0 BΦ
α (

∨
∆0 ∨

A)∧
∧

Γ1 and (
∧

Γ1∧A)∨
∨

∆0B
∨

∆1∨
∨

∆0. Since (
∨

∆0∨A)∧
∧

Γ1 ≥α
(
∧

Γ1∧A)∨
∨

∆0, by using gluing we will have
∧

Γ1∧
∧

Γ0 BΦ
α

∨
∆0∨

∨
∆1.

For (ii) we reduce the induction case to the strong gluing case. Since

Γ, A(y, ~x) BΦ
α ∆, A(y + 1, ~x)

by definition,
∧

Γ∧A(y, ~x) BΦ
α

∨
∆∨A(y + 1, ~x). Therefore, by the Lemma

?? we have

(
∧

Γ ∧ A(y, ~x)) ∨
∨

∆ BΦ
α

∨
∆ ∨ A(y + 1, ~x) ∨

∨
∆

and by contraction for
∨

∆ we know∨
∆ ∨ A(y + 1, ~x) ∨

∨
∆ BΦ

α

∨
∆ ∨ A(y + 1, ~x).

Hence,

(
∧

Γ ∧ A(y, ~x)) ∨
∨

∆ BΦ
α

∨
∆ ∨ A(y + 1, ~x).

Then by conjunction introduction and the fact that (
∧

Γ∧A(y, ~x))∨
∨

∆)BΦ
α∧

Γ ∨
∨

∆,

((
∧

Γ∧A(y, ~x))∨
∨

∆), (
∧

Γ∧A(y, ~x))∨
∨

∆)BΦ
α(
∨

∆∨A(y+1, ~x))∧(
∧

Γ∨
∨

∆)

By using the propositional, structural and the cut rule, it is easy to prove

(φ ∨ ψ) ∧ (σ ∨ ψ) BΦ
α (φ ∧ σ) ∨ ψ.

Hence, by using the contraction we have

(
∧

Γ ∧ A(y, ~x)) ∨
∨

∆ BΦ
α (

∧
Γ ∧ A(y + 1, ~x)) ∨

∨
∆.

Now by strong gluing we have

(
∧

Γ ∧ A(0, ~x)) ∨
∨

∆ BΦ
α (

∧
Γ ∧ A(s(~z, ~x), ~x)) ∨

∨
∆.

31

But since Γ ∧ A(0, ~x) BΦ
α (

∧
Γ ∧ A(0, ~x)) ∨

∨
∆ and

(
∧

Γ ∧ A(s(~x), ~x)) ∨
∨

∆ ≥α
∨

∆ ∨ A(s(~z, ~x), ~x),

we have
Γ(~x), A(0, ~x) BΦ

α ∆(~x), A(s(~z, ~x), ~x).

The following theorem is the main theorem of the theory of flows for
bounded theories of arithmetic:

Theorem 4.12. (Soundness) If Γ(~x) ∪∆(~x) ⊆ Φ, B(Φ,A) ` Γ(~x)⇒ ∆(~x)
and A ⊆ B has a characteristic function for any quantifier-free formula then
Γ B(Φ,B)

φ ∆.

Proof. We assume Φ is a π-type class. The other case is similar. To prove
the lemma we use induction on the length of the free-cut free proof of
Γ(~x)⇒ ∆(~x).

1. (Axioms). If Γ(~x)⇒ ∆(~x) is a logical axiom then the claim is trivial.
If it is a non-logical axiom then the claim will be also trivial because all
non-logical axioms are quantifier-free and provable in B. Therefore there is
nothing to prove.

2. (Structural Rules). It is proved in the Lemma 4.9.

3. (Cut). It is proved by Lemma 4.11.

4. (Propositional). The conjunction and disjunction cases are proved
in the Lemma 4.10. The implication and negation cases are proved in the
Lemma ??.

5. (Bounded Universal Quantifier Rules, Right). If Γ(~x) ⇒ ∆(~x),∀z ≤
p(~x)B(~x, z) is proved by the ∀≤R rule by Γ(~x), b ≤ p(~x) ⇒ ∆(~x), B(~x, b),
then by IH, Γ(~x), b ≤ p(~x) BΠk

π ∆(~x), B(~x, b). By the Lemma 4.5, we have a
(Πk,B, π)-flow from ∀b ≤ p(~x)(b ≤ p(~x) ∧

∧
Γ) to ∀b ≤ p(~x)[B(~x, b) ∨

∨
∆].

Since Γ does not have a free b, it is easy to see that
∧

Γ ≥π ∀b ≤ p(~x)(b ≤
p(~x)∧

∧
Γ). Hence it is enough to add

∧
Γ to the beginning of the flow. Do

the same for the right side to reach ∀b ≤ p(~x)B(~x, b) ∨
∨

∆. Finally note
that changing the name of a bounded variable does not change the nature of
deterministic flows which complete the proof.

32

6. (Bounded Universal Quantifier Rules, Left). Suppose

Γ(~x), s(~x) ≤ p(~x),∀z ≤ p(~x)B(~x, z)⇒ ∆(~x)

is proved by the ∀≤L rule by Γ(~x), B(~x, s(~x))⇒ ∆(~x). Then by IH,

Γ(~x), B(~x, s(~x)) BΠk
π ∆(~x)

But by witnessing z by s and the rest by themselves, we have∧
Γ(~x) ∧ s(~x) ≤ p(~x) ∧ ∀z ≤ p(~x)B(~x, z) ≥π

∧
Γ(~x) ∧B(~x, s(~x))

hence by gluing

Γ(~x), s(~x) ≤ p(~x),∀z ≤ p(~x)B(~x, z) ≥π ∆(~x).

7. (Bounded Existential Quantifier Rules, Right). If Γ(~x), s(~x) ≤ p(~x)⇒
∆(~x),∃z ≤ p(~x)B(~x, z) is proved by the ∃≤R rule by Γ(~x)⇒ ∆(~x), B(~x, s(~x))
then by IH

Γ(~x) BΠk
π ∆(~x), B(~x, s(~x)).

Since ∃z ≤ p(~x)B(~x, z) ∈ Πk, it is also in Σk−1. Therefore, by Lemma 4.8,
Γ(~x),¬B(~x, s(~x)) BΠk

π ∆(~x). By 6, Γ(~x), s(~x) ≤ p(~x),∀z ≤ p(~x)¬B(~x, z) BΠk
π

∆(~x) and again by the Lemma 4.8 we will have

Γ(~x), s(~x) ≤ p(~x) BΠk
π ∆(~x),∃z ≤ p(~x)B(~x, z).

8. (Bounded Existential Quantifier Rules, Left). If Γ,∃y ≤ p(~x)B(~x, y)⇒
∆ is proved by the ∃≤L rule by Γ, b ≤ p(~x), B(~x, b) ⇒ ∆, by IH we have
Γ, b ≤ p(~x), B(~x, b) BΠk

π ∆ then since ∃b ≤ p(~x)B(~x, b) ∈ Πk, it is also in
Σk−1. Therefore, by the Lemma 4.8

Γ, b ≤ p(~x) BΠk
π ∆,¬B(~x, b)

by 5, we have
Γ BΠk

π ∆,∀y ≤ p(~x) ¬B(~x, y)

Finally again by Lemma 4.8 we have

Γ, ∃y ≤ p(~x)B(~x, y) BΠk
π ∆.

9. (Induction). It is proved in Lemma 4.11.

33

5 Applications

In this subsection we will use the soundness and completeness theorems that
we have proved in the previous subsection to extract the computational con-
tent of the low complexity statements of some concrete weak bounded the-
ories such as Buss’ hierarchy of bounded theories of arithmetic and some
strong theories such as I∆0(exp), PRA and PA + TI(α).

For the first application, consider the theories IUk = B(Πk(LR),R) for
k ≥ 1. These theories are the fragments of the theory I∆0 corresponding
to the computational world of the linear time hierarchy. Moreover, consider
the class of all functions constructed from zero, projections and closed under
successor, addition, production, subtraction and division and call it R:

Corollary 5.1. Let Γ(~x) ∪ ∆(~x) ⊆ Uk. Then, IUk ` Γ(~x) ⇒ ∆(~x) iff

Γ B(Uk,R)
π ∆. The second condition means that there exists a sequence of

length t ∈ R of formulas in Uk beginning from
∧

Γ ending with
∨

∆ such
that each formula is (π,R)-reducible to its successor using just the functions
in R.

Proof. The only thing that we have to check is the fact that R has the
characteristic functions for any quantifier-free formula in the language LR.
It has been proved in the Remark 2.3.

The second application, and maybe the more important one, is the case
of Buss’ hierarchy of bounded arithmetic, in which we assume the language
has a symbol for any PV function and we denote the class of all strict Σb

k

and Πb
k formulas with Σ̂b

k and Π̂b
k.

Corollary 5.2. Let Γ(~x) ∪ ∆(~x) ⊆ Π̂b
k(#n). Then, T kn ` Γ(~x) ⇒ ∆(~x) iff

Γ B
(Π̂bk(#n),BASICn(PV))
π ∆, where BASICn(PV)) is the theory BASICn plus all

the defining axioms of PV. Specifically, for n = 2, T k2 ` Γ(~x) ⇒ ∆(~x) iff

Γ B
(Π̂bk,PV)
π ∆. The second condition in the latter case means the existence of

a uniform sequence of length 2p(|~x|) of formulas in Πb
k starting with

∧
Γ and

ending in
∨

∆ such that each formula is (π,PV)-reducible to its successor,
using just the polynomial time computable functions.

Proof. Observe that in the presence of all PV functions, any formula in
Π̂b
k(#n) is equivalent to a formula in Πk. Therefore, since T kn is axiomatizable

by Π̂b
k(#n)-induction, it is also axiomatizable by Πk-induction.

34

And also we can apply the soundness theorem on stronger theories with
full exponentiation like I∆0(exp) and PRA. Consider the theory R aug-
mented with a function symbol for exponentiation with the usual recursive
definition and denote it by R(exp) and also denote the union of R and the
induction-free part of PRA by PRA−. Then:

Corollary 5.3. Let Γ(~x) ∪∆(~x) ⊆ Πk. Then:

(i) I∆0(exp) ` Γ(~x)⇒ ∆(~x) iff Γ B(Πk,R(exp))
π ∆.

(ii) PRA ` Γ(~x)⇒ ∆(~x) iff Γ B(Πk,PRA−)
π ∆.

Proof. The only point to mention is that both of the theories I∆0(exp) and
PRA are axiomatizable by IΠk for any k. Hence we can apply the theory of
deterministic flows here.

We can also use the theory of flows to extract the computational content
of low complexity sentences of the very strong theories of arithmetic such
as PA and PA + TI(α). But this is not what we can implement in a very
direct way. The reason is that our method is tailored for bounded theories
while these theories are unbounded. Hence, to use our theory, we have to
find a way to transfer low complexity statements from these theories to some
corresponding bounded theories. This is what the continuous cut elimination
method makes possible in its very elegant enterprise. It transfers all Π0

2

consequences of a strong theory T to some quantifier-free extensions of PRA
and then makes it possible to apply the flow decomposition technique. To
explain how it works, we need some definitions:

Definition 5.4. Let T be a theory of arithmetic. We say that α is a Π0
2-proof

theoretical ordinal of T when ≺ is the primitive recursive representation of
the order on α and T ≡Π0

2
PRA +

⋃
β≺α TI(≺β) where TI(≺β) means full

transfinite induction up to the ordinal β.

Convention. From now on wherever we have a proof theoretic ordinal,
we always assume that it is closed under the operation β 7→ ωβ.

Definition 5.5. Let ≺ be a quantifier-free formula in the language of PRA.
By theory PRA +

⋃
β≺α PRWO(≺β) we mean PRA plus the axiom schema

PRWO(≺β) : ∀~x∃y f(~x, y + 1) ⊀β f(~x, y)

for any function symbol f .

The following theorem uses continuous cut elimination technique to re-
duce transfinite induction to PRWO.

35

Theorem 5.6. [4] Let T be a theory of arithmetic and α its Π0
2-proof theo-

retical ordinal. Then

T ≡Π0
2

PRA +
⋃
β≺α

PRWO(≺β)

The following theory is the skolemization of PRA +
⋃
β≺α PRWO(≺β):

Definition 5.7. The language of the theory PRA≺ consists of the language
of PRA plus the scheme which says that for any PRA-function symbol f(~x, y)
and any β ≺ α, there exists a function symbol [µβy.f](~x). Then BASIC≺
is the theory axiomatized by the axioms of PRA plus the theory R and the
following definitional equations: f(~x, 1 + [µβy.f](~x)) ⊀β f(~x, [µβy.f](~x)) and
z < [µβy.f](~x)→ f(~x, z + 1) ≺β f(~x, z). Finally, PRA≺ is BASIC≺ plus the
usual quantifier-free induction.

Combining all of these steps together we can reduce a theory T to a
bounded arithmetical theory PRA≺.

Corollary 5.8. Let T be a theory of arithmetic and α its Π0
2-proof theoretical

ordinal. Then T ≡Π0
2

PRA≺.

Now we are ready to have the following corollary:

Corollary 5.9. Let Γ(~x) ∪∆(~x) ⊆ Πk, and αT is the Π0
2-ordinal of T with

the primitive recursive representation ≺αT , then T ` Γ(~x)⇒ ∆(~x) iff

Γ(~x) B
(Πk,BASIC≺αT)
π ∆(~x).

Proof. Note that the existence of the flow is equivalent to the provability
of Γ ⇒ ∆ in PRA≺αT because PRA≺αT is a bounded theory axiomatizable
by the usual induction on formulas in Πk. On the other hand, we have
Γ(~x)∪∆(~x) ⊆ Πk. Hence the sequent is bounded and is in Π0

2. Therefore, by
the definition of Π0

2-ordinals, we know that PRA≺αT ` Γ⇒ ∆ iff T ` Γ⇒ ∆,
which completes the proof.

Corollary 5.10. Let Γ(~x)∪∆(~x) ⊆ Πk, and ε(α) be the least ε number after
α with a primitive recursive representation. Then PA+TI(α) ` Γ(~x)⇒ ∆(~x)
iff

Γ(~x) B
(Πk,BASIC≺ε(α))

π ∆(~x).

So far, we have used the theory of deterministic flows to decompose first
order proofs of bounded theories. In the following we will introduce two dif-
ferent kinds of characterizations and we will use them to reprove some recent

36

results for some specific classes of formulas. The types that we want to use
are generalizations of some recent characterizations of some low complex-
ity statements in Buss’ hierarchy of bounded arithmetic by Game induction
principles [5], [6] and some kind of PLS problems [?].

First let us generalize our game interpretation of the Remark ?? to inter-
pret any formula of the form

A = ∀~y1 ≤ ~p1(~x)∃~z1 ≤ ~q1(~x)∀~y2 ≤ ~p2(~x) . . . GA(~x, ~y1, ~z1, ~y2, ~z2, . . .)

as a k-turn game GA in which the players can have some but fixed predefined
number of simultaneous moves. More precisely, in the game GA, the first
player begins by choosing the moves ~y1 ≤ ~p1(~x) altogether, then the second
player chooses the moves ~z1 ≤ ~q1(~x) and they continue alternately. Again
if GA(~x, ~y1, ~z1, ~y2, ~z2, . . .) becomes true the second player wins and otherwise
the first player is the winner. Note that in this multi-move version, we still
have the equivalence between the truth of A and the existence of the winning
strategy for the second player. What we want to add to this fact is its explicit
version which states that any deterministic reduction from A to > is nothing
but an explicit winning strategy for the second player in the game GA.

Definition 5.11. Let L ⊇ LR be a language. An instance of the (j, k)-game
induction principle, GIjk(L), is given by size parameters a and b, a quantifier-
free formula G(u,~v) with a fixed partition of the variables ~v into k groups, a
sequence of terms V and a uniform sequence Wu of sequences of terms. The
instance GI(G, V,W, a, b) states that, interpreting G(u,~v) as a k-turn game
on moves ~v in which all moves are bounded by b, the following cannot all be
true:

(i) Deciding the winner of the game G(0, ~v) depends only on the first j
moves,

(ii) The second player has a winning strategy for G(0, ~v) (expressed as a
Πj formula.)

(iii) For u ≤ a .− 2, Wu gives a deterministic reduction from G(u + 1, ~v) to
G(u,~v),

(iv) V is an explicit winning strategy for the first player in G(a .− 1, ~v).

Notation. Let C and D be two classes of formulas and B be a theory. By
C ≡B D we mean that for any A ∈ C there exists B ∈ D such that B ≥π A
and for any A ∈ D there exists B ∈ C such that B ≥π A.

37

Theorem 5.12. Let j ≤ k. Then,

∀Σj[B(Πk,B)] ≡B GIjk(L).

Proof. It is clear that B(Πk,B) ` GIjk(L) and GIjk(L) is expressible by a
∀Σj sentence. For the converse, assume B(Πk,B) ` ∀~xA(~x) where A ∈ Σj

and j ≤ k. Then, we know that B(Πk,B) ` ¬A(~x) ⇒ ⊥ and ¬A ∈ Πj. By
Corollary 5.2, there exist a term t(~x), a formula H(u, ~x) ∈ Πk and sequences
of terms E0, E1, I0, I1 and F (u) such that the following statements are
provable in B:

(i) H(0, ~x) ≡(E0,E1)
π ¬A(~x).

(ii) H(t(~x), ~x) ≡(I0,I1)
π ⊥.

(iii) ∀u < t(~x)[H(u, ~x) ≥Fuπ H(u+ 1, ~x)].

First of all, note that we can change the definition of H in the following way:

H ′(u, ~x) = (u = 0→ ¬A(~x)) ∧ (u 6= 0→ H(u .− 1, ~x)).

And, it is possible to shift also the reductions to have (i) to (iii) for H ′.
Call these reductions E ′0, E ′1, F ′u, I

′
0 and I ′1. Note that the truth of H ′(0, x)

depends only on first j blocks of quantifiers when we write it in the Πk form.

W.l.o.g., we assume that all bounds in H ′(u, ~x) are the same and depend
only on ~x. Call this bound s(~x). This is possible because any term is ma-
jorizable by a monotone term. Again w.l.o.g we can assume that H ′ is in the
following prenex form:

H ′(u, ~x) = ∀~z1 ≤ s∃~y1 ≤ s∀~z2 ≤ s . . . G(u, ~x, ~z1, ~y1, ~z2, . . .)

where G is quantifier-free and the number of quantifier groups are k. Define
a = t(~x), b = s(~x), Wu = F ′u and V = I ′0 and pick G for the game predicate
with its natural partition of variables. Therefore, we have an instance of the
game induction. Now we want to show that A(~x) is reducible to this game

induction provably in B. Since B ` ∀u < t(~x)[H ′(u, ~x) ≥F
′
u
π H ′(u+ 1, ~x)] and

B ` H(t(~x), ~x) ≡(I0,I1) ⊥, the false part of GIjk(L) is the part which states
“The second player has a winning strategy for G(0, ~v).” which means that
H ′(0, ~x) is false. Since H ′(0, ~x) is equivalent with ¬A(~x) provably in B, the
reduction of the sentence A(~x) to the game induction principle is proved.

Using this generalization it is trivial to reprove the case for Buss’ hierarchy
of bounded arithmetic:

38

Corollary 5.13. ([5], [6]) For all j ≤ k, ∀Σj(T
k
2) ≡PV GIjk(LPV).

Now, let us explain the second type of problems, i.e., the generalized local
search problems:

Definition 5.14. A formalized (Ψ,Λ,B,≺)-GLS problem consists of the
following data:

(i) A sequence of terms ~N(~x,~s) ∈ LB as the local improvements.

(ii) A term c(~x,~s) ∈ LB as a cost function.

(iii) A predicate F (~x,~s) ∈ Ψ which intuitively means that ~s is a feasible
solution for the input ~x.

(iv) An initial sequence of terms ~i(~x) ∈ LB.

(v) A goal predicate G(~x, ~s′) ∈ Λ.

(vi) A quantifier-free predicate ≺ ∈ LB as a well-ordering.

(vii) A sequence of bounding terms ~t(~x).

(viii) A projection function I.

such that B proves that ≺ is a total order and

B ` ∀~x F (~x,~i(~x))

B ` ∀~x~s (F (~x,~s)→ F (~x, ~N(~x,~s)))

B ` ∀~x~s (~N(~x,~s) = ~s ∨ c(~x, ~N(~x,~s)) ≺ c(~x,~s))

B ` ∀~x~s ((~N(~x,~s) = ~s ∧ F (~x,~s))→ G(~x, I(~s)))

B ` ∀~x~s′ (G(~x, ~s′)→ ~s′ ≤ ~t(~x))

By the computational problem associated to a GLS problem, we mean find-
ing ~s′ ≤ ~t(~x) such that G(~x, ~s′).

If there is also a sequence of terms ~b(~x) such that

B ` ∀~x~s (F (~x,~s)→ ~s ≤ ~b(~x))

The GLS-problem is called bounded and their class is denoted by BGLS(Ψ,Λ,B,≺
). Moreover, if LPV ⊆ LB and ~t(~x) = 2~p(|x|) for some polynomials ~p we de-
note the class by PLS(Ψ,Λ,≺,B) and if we have also the conditions that F
is quantifier-free in the language of B and G is quantifier-free in the language
of PV, we denote the class by PLS(≺,B). Finally if we also add B = PV,
then we write PLS(≺) for the class of these GLS-problems.

39

Theorem 5.15. (i) For any BGLS(Πk,Λ,B,≤)-problem we have:

B(Πk+1,B) ` ∀~x∃~s′G(~x, ~s′)

(ii) Let Λ ⊆ Ψ be a class of formulas, A ∈ Λ a formula and ~t(~x) are terms
such that ~z ≤ ~t(~x) ∈ Λ for all variables ~z. Then if

B(Πk+1,B) ` ∀~x∃~y ≤ ~t(~x)A(~x, ~y)

then there exists a BGLS(Πk,Λ,B,≤)-problem with the condition that

G(~x, ~y) = A(~x, ~y) ∧ ~y ≤ ~t(~x)

Proof. For (i), argue inside B and assume that there is no ~s′ such that

G(~x, ~s′). It implies that ∀~s(F (~x,~s) → ~N(~x,~s) 6= ~s). Use induction on the
formula

∀~s ≤ ~r(~x)[F (~x,~s)→ c(~x,~s) ≥ n]

where ~r(~x) is the bound for F . This bound exists because the GLS problem
is bounded. First note that the formula is in Πk+1. Hence in B(Πk+1,B) we
can afford such an induction. For n = 0 the claim is clear. For n+ 1, assume
F (~x,~s), therefore by the assumption ~N(~x,~s) 6= ~s which implies

c(~x, ~N(~x,~s)) < c(~x,~s)

On the other hand, by F (~x,~s) we know that F (~x, ~N(~x,~s)) and hence ~N(~x,~s) ≤
r(~x). By IH, we have c(~x, ~N(~x,~s)) ≥ n which implies c(~x,~s) ≥ n+ 1. There-
fore, we have

∀n∀~s ≤ ~r(~x)[F (~x,~s)→ c(~x,~s) ≥ n]

Define c0 = c(~x,~i(~x)). For n = c0 + 1 and ~s = ~i(~x) we will have c0 ≥ c0 + 1
which is a contradiction. Hence there exists ~s such that Goal(~x,~s) which also
implies that ~s ≤ ~t(~x).

For (ii), assume

B(Πk+1,B) ` ∀~x∃~y ≤ ~t(~x)A(~x, ~y).

Then, we know that ∀~y ≤ ~t(~x)¬A(~x, ~y)⇒ ⊥ is provable in the theory. Since
A ∈ Λ ⊆ Πk, we have ∀~y ≤ ~t(~x)¬A(~x, ~y) ∈ Πk+1. By soundness theorem 4.12,
there exist a term s(~x), a formula H(u, ~x) ∈ Πk+1 and sequences of terms
E0, E1, G0, G1 and F (u) such that the following statements are provable in
B:

40

(i) H(0, ~x) ≡(E0,E1)
π ∀~y ≤ ~t(~x)¬A(~x, ~y).

(ii) H(s(~x), ~x) ≡(G0,G1)
π ⊥.

(iii) ∀u < s(~x) H(u, ~x) ≥Fuπ H(u+ 1, ~x).

Since H ∈ Πk+1, w.l.o.g we can assume H(u, ~x) = ∀~v ≤ ~r(~x, u)G(u,~v, ~x)
where G(u,~v, ~x) ∈ Σk and ~r are monotone. Use the deterministic reductions
to show the existence of terms U , V and Z such that

(i) B ` [~Z(~x,~v) ≤ ~t(~x)→ ¬A(~Z(~x,~v), ~x)]→ [~v ≤ ~r(~x, 0)→ G(0, ~v, ~x)].

(ii) B ` [~U(~x) ≤ ~r(~x, s(~x))→ G(s(~x), ~U(~x), ~x)]→ ⊥.

(iii) B ` ∀u < s(~x)[~V (u,~v, ~x) ≤ ~r(~x, u) → G(u, ~V (u,~v, ~x), ~x)] → [~v ≤
~r(~x, u+ 1)→ G(u+ 1, ~v, ~x)].

Now define B(u,~v, ~z) = [u ≤ s(~x) ∧ ~v ≤ ~r(~x, s(~x)) ∧ ~z ≤ ~t(~x)]

F (~x;u,~v, ~z) =

{
~v ≤ ~r(~x, u .− 1) ∧ ¬G(u .− 1, ~v, ~x) ∧B(u,~v, ~z) u > 0

~z ≤ ~t(~x) ∧ A(~x, ~z) ∧B(u,~v, ~z) u = 0

and

~N(~x;u,~v, ~z) =


(u .− 1, ~V (u,~v, ~x), ~z) u > 1

(0, ~v, ~Z(~x,~v)) u = 1

(u,~v, ~z) u = 0

and Goal(~x; ~z) = [~z ≤ ~t(~x) ∧ A(~x, ~z)], ~i(~x) = (s(~x) + 1, ~U(~x), 0), and
c(~x;u,~v, ~z) = u. It is clear to see that this data is a BGLS(Πk,Λ,B,≤)-
problem. The reason is that F ∈ Πk and Goal ∈ Λ by the assumption. The
answer to this problem is ~z such that ~z ≤ ~t and A(~x, ~z) which completes the
proof.

Corollary 5.16.

∀Σj+1[B(Πk+1,B)] ≡B BGLS(Πk,Πj,B,≤).

for all j ≤ k.

And again the special case for Buss’ hierarchy will be:

Corollary 5.17. ([?]) For all j ≤ k, ∀Σj+1(T k+1
2) ≡PV PLS(Πk,Πj,PV,≤).

41

Remark 5.18. Local search problems and the game induction principles pro-
vide weaker characterizations than what the theory of flows has to offer. The
game induction principle relaxes the B-provability condition of the reductions
to make the statement purely combinatorial at the expense of missing some
useful information about the provability. The GLS problems, though, keep
the base theories present, but instead they reduce their reductions to unwind
only the outmost block of bounded universal quantifiers, sweeping the rest
under the carpet of the feasibility predicate. This is helpful to simplify the
formalization, but it clearly misses the huge reduction information that lies
in the witnessing of the other quantifiers.

Using this characterization by the GLS problems, we can also capture
the class of all low complexity search problems in strong theories. For the
remaining part of this subsection, assume that the languages LI∆0(exp) and

LPRA(≺) has a separate copy of the language of PV and define Σ̃b
j and Π̃b

j as Σj

and Πj in the language of PV. For instance, a formula in Σ̃b
1 is essentially in

the form ∃~y ≤ ~t(~x)A(~x, ~y) where ~t are polynomial-time computable functions
and A is a polynomial-time computable predicate. Hence, Σ̃b

1 represents the
NP predicates in our greater languages. Moreover, assume that our theories
have access to all definitional axioms of PV for their separate language. To
emphasize on this modification, we will denote the new version of any theory
by the superscript p.

Corollary 5.19. (i) ∀Σ̃b
j+1[I∆p

0(exp)] ≡Rp(exp) BGLS(Πj, Π̃
b
j,Rp(exp),≤

).

(ii) ∀Σ̃b
j+1(PRAp) ≡ PLS((PRA−)p,≤) ≡(PRA−)p, BGLS(Πj, Π̃

b
j, (PRA−)p,≤

).

Since we have ∀Σ̃b
j+1(PRAp

≺) ≡BASICp≺
BGLS(Πj, Π̃

b
j,BASICp

≺,≤), by the
fact that T ≡Π0

2
PRA≺αT we will have:

Theorem 5.20. Let T be a theory of arithmetic with Π0
2-ordinal αT with a

primitive recursive representation ≺αT , then

∀Σ̃b
j+1(T p) ≡BASICp≺αT

BGLS(Πj, Π̃
b
j,BASICp

≺αT
,≤)

Corollary 5.21. Let ε(α) be the least ε number after α with a primitive
recursive representation. Then

∀Σ̃b
j+1([PA + TI(α)]p) ≡BASICp≺ε(α)

BGLS(Πj, Π̃
b
j,BASICp

≺ε(α) ,≤)

42

Remark 5.22. These characterizations of the low complexity consequences
of the strong theories of arithmetic may seem a bit counter-intuitive. The
reason is the paradoxical situation in which we have full access to a class of
extremely complex functions while the search problems that we try to solve
are much easier. A typical example of such a mismatch is our characteriza-
tion of the total Σ̃b

1 = NP search problems of the theory I∆0(exp). What
the Lemma 5.19 presents is an algorithm based on a sequence of elementary
computable reductions, while our NP search problem is just a very low com-
plexity problem solvable by a brute force search in exponential time. Based
on this mismatch, it may seem natural to conclude the sufficiency of one ob-
vious reduction which implies the triviality of our characterizations. This is
not a sound argument. It is correct that we have full access to a certain class
of complex functions but it does not mean that we have full access to their
complete theory about their behavior. What we know is usually a very basic
theory consisting of the defining axioms of the function symbols. These com-
plex functions behave as oracles to which we can impose our questions, but
we can’t fully understand their behavior, and hence we can’t be sure about
the correctness of their computations. Here is where the long sequences of
reductions come to rescue. They consist of very simple computational steps
based on the definitional axioms of the functions so that in each reduction we
can ensure that our computation works correctly. In fact, reductions decom-
pose a computation to simple verifiable steps which actually simulates the
application of the induction axiom in the proof of the totality of the search
problem.

Acknowledgment. We wish to thank Pavel Pudlak for his support,
his suggestions and the invaluable discussions that we had. We are also
genuinely grateful to Sam Buss, Neil Thapen, Emil Jeřabek and Raheleh
Jalali for their constructive suggestions and the helpful discussions on the
crucial and primitive stages of developing the theory.

References

[1] A. Beckmann, S. R. Buss, Polynomial Local Search in the Polynomial
Hierarchy and Witnessing in Fragments of Bounded Arithmetic, Journal
of Mathematical Logic 9, 1 (2009) 103-138.

[2] Buss, S. R. (1998). An introduction to proof theory. Handbook of proof
theory, 137, 1-78.

[3] Buss, S. R. (1986). Bounded arithmetic (Vol. 86). Napoli: Bibliopolis.

43

[4] H. Friedman and S. Sheard, Elementary descent recursion and proof
theory, Annals of Pure and Applied Logic 71 (1995) 145.

[5] A. Skelley, N. Thapen, The provably total search problems of bounded
arithmetic, Proceedings of the London Mathematical Society, Vol 103:1,
pages 106-138, 2011.

[6] N. Thapen, Higher complexity search problems for bounded arithmetic
and a formalized no-gap theorem, Archive for Mathematical Logic, Vol
50:7-8, pages 665-680, 2011.

44

	Introduction
	Preliminaries
	Reductions and Flows
	The Main Theorem
	Applications
	References

