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Abstract

In 1933 [6], Gödel introduced a provability interpretation of the
propositional intuitionistic logic to establish a formalization for the
BHK interpretation. He used the modal system, S4, as a formalization
of the intuitive concept of provability and then translated IPC to
S4. His work suggested the problem to find a concrete provability
interpretation of the modal logic S4. In this paper, we will try to
answer this problem. In fact, we will generalize Solovay’s provability
interpretation of the modal logic GL to capture other modal logics
such as K4, KD4 and S4. Then we will use these results to find a
formalization for the BHK interpretation and we will show that with
different interpretations of the BHK interpretation, we can capture
some of the propositional logics such as Intuitionistic logic, minimal
logic and Visser-Ruitenburg’s basic logic.
Moreover, we will show that there is no provability interpretation for
any extension of KD45 and also there is no BHK interpretation for
the classical propositional logic.
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1 Introduction

1.1 BHK Interpretation

In the intuitionistic tradition, mathematics is considered as a theory of men-
tal constructions and hence, truth naturally means the existence of a proof.
Thus, provability is the cornerstone of the whole intuitionistic paradigm.
With this fact in mind, like any other logic, the intuitionistic logic would
be a calculus to describe the behavior of truth, which in this case, is the
concept of provability. In other words, intuitionistic logic is a meta-theory of
the concept of provability. Let us explain the role of connectives in this logic.
Again, like any other logic, a connective is an operation on the truth content
of its inputs, which in the case of intuitionistic logic means the operations on
the proofs. If we want an intuitive semantics for intuitionistic logic, we have
to find out what the meaning of a connective is. The answer to this question
is the well-known BHK interpretation. Its propositional part is the following:

• a proof for A ∧B is a pair of a proof for A and a proof for B.
• a proof for A ∨B is a proof for A or a proof for B.
• a proof for A→ B is a construction which transforms any proof of A to a
proof for B.
• a proof for ¬A is a construction which transforms any proof of A to a proof
for ⊥.
• ⊥ does not have any proof.

Clearly, what we presented as the BHK interpretation is just an infor-
mal interpretation and we need to find its exact formalization if we want
to use it as a mathematical tool. For instance, if we want to establish an
argument which shows that Heyting’s formalization of IPC is an adequate
formalization of intuitionistic viewpoint, we have to prove the soundness and
completeness of IPC with respect to the BHK interpretation and this obvi-
ously needs an exact formalizion. Now, to formalize the interpretation, we
firstly need a formalization of the concept of proof. Based on the extensive
works in proof theory that have been done so far, it seems quite possible to
find an appropriate formalization of the concept of proof and hence of the
BHK interpretation. But, unfortunately, despite all the attempts that have
been made, the BHK interpretation has not been formalized so far (for an
extensive history of the problem see [1]). Why does this natural and simple
interpretation resist formalization? To find an answer to this question, let
us review one of the key properties of the interpretation. Think of a propo-
sition A→ B. Its proof is a construction that transforms any proof of A to
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a proof of B. It is clear that this construction would be a meta-proof and
not just a proof, because it talks about proofs and therefore it should belong
to the meta-language of A and B. In other words, we could claim that the
act of introducing an implication increases the layer of the meta-language
which we are arguing in. Therefore, in BHK interpretation all levels of our
meta-languages are involved and this is the reason why this interpretation is
so complex to formalize. Since we need to formalize the meaning of proof,
we have to extend our task to find a meaning of a proof at any level of the
meta-languages.

There are two different approaches to implement this idea. In the first
approach, we could be faithful to the intuitionistic paradigm and find an
intuitionistically valid interpretation of the proofs. However, in the second
approach we could change our viewpoint and construct a bridge to find an
appropriate classical interpretation of the concept of a proof to formalize the
BHK interpretation. The first approach is Heyting’s approach and the second
one is Kolmogorov’s. At first glance, the first approach seems very natural to
try but there is a huge problem there; a conceptual vicious circle which forces
us to understand the semantics of the paradigm, the BHK interpretation, in
terms of itself and it makes the whole process very complicated. We want to
emphasize that this vicious circle does not mean that the first approach is
philosophically invalid, but it just shows how complex it could be. (Think of
classical logic and its semantics which is based on the classical meta-theory.
This is an obvious vicious circle, but these kinds of vicious circles are the
inherent properties of any paradigm in the philosophy of mathematics and
we have to deal with them.) In this chapter we follow the second approach
and interpret all proofs as the classical proofs in different layers of meta-
languages. But this is not an easy task to do and in the forthcoming part of
the Introduction we will investigate the problems in this approach.

The last thing we want to mention here is that what we are going to
formalize, is actually an implicit version of the BHK interpretation, instead
of the original one. In the original interpretation we interpret all the con-
nectives as operations on explicitly specified proofs. But we could somehow
eliminate the proofs from the interpretation and just talk about the prov-
ability of a sentence. For instance, the disjunction case in the original BHK
interpretation transforms to the following one: A∨B is provable if A is prov-
able or B is provable. The problem here, is the case of implication which
is not reducible to a simpler one. In order to solve this problem, we need
a primitive connective to formalize the concept of provability. A role which
would be played by the connective “box” in modal logics and this is one of
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the most important contributions to the problem, which was made by Kurt
Gödel. Now, Gödel’s contribution.

Gödel’s Translation

In 1933 [6], Gödel introduced a provability interpretation of IPC that can
be seen as an implicit version of the well-known BHK interpretation of the
intuitionistic logic. By this interpretation he could justify the fact that Heyt-
ing’s formalization of IPC is sound and complete for its intended semantics
which is the BHK interpretation. Let us review some steps of his work.

1. Giving a proof interpretation: Before giving any provability interpre-
tation of IPC, we should explain our intention of the concept of provability
and the properties that we want to have. As you expect, Gödel began his
work exactly from this point. He used the language of modal logics, in which
the symbol “�” is interpreted as a provability predicate. In the next step,
he formalized the expected properties of this provability predicate by some
axioms which make up the well-known modal system S4. Notice that in
contrast with using a concrete interpretation of provability, he used a theory
for formalizing this concept (S4). In fact, his system just characterizes the
properties of our intuitive provability predicate by some formal system, and
is totally silent about its real nature.
After this introduction, we are ready to give the definition of his interpreta-
tion. Consider the translation function b : L → L� as follows:
L and L� are the languages of IPC and S4 respectively. 1

(i) pb = �p and ⊥b = �⊥

(ii) (A ∧B)b = Ab ∧Bb

(iii) (A ∨B)b = Ab ∨Bb

(iv) (A→ B)b = �(Ab → Bb)

(v) (¬A)b = �(Ab → �⊥)

It is clear that Ab is the implicit BHK interpretation of A. In fact, the def-
inition of b is the natural paraphrase of the original BHK interpretation in

1 In fact, our translation is different from the translation of the paper [6]. The differ-
ences are the following: pb = p, ⊥b = ⊥, (A → B)b = �Ab → �Bb, and (¬A)b = ¬�Ab.
While both of these two translations basically do the same task, we use the first one, be-
cause it is more compatible with our intuition of intuitionistic semantics and it is adequate
for the systems weaker than S4.
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terms of provability instead of proofs.
It is time to investigate the soundness-completeness property of the interpre-
tation.

2. Soundness and Completeness: Consider the following theorem:

Theorem 1.1. For any proposition A ∈ L, IPC ` A iff S4 ` Ab.

Proof. For the complete investigation of this theorem and some related re-
sults2 see [6].

We have the system S4 which formalizes what we expect from a prov-
ability predicate and based on the mentioned soundness-completeness result
we can reduce the problem of finding a formalization of the implicit BHK
interpretation to the problem of finding a provability interpretation for S4.
Therefore, our task will be to find a concrete interpretation of this provabil-
ity predicate (the connective box) in terms of classical provability in classical
theories. But, consider the fact that the problem of finding a provability in-
terpretation for S4 has its own importance itself, independent of its relation
to the BHK interpretation.

The first attempt to find a concrete provability interpretation for S4 was
made by Gödel himself. In a very negative way, he showed that the natural
expected interpretation of the provability predicate is not sound for S4. Let
us explain his result in more detail:
The most natural choice to interpret the box operator is the provability pred-
icate of a formal theory 3. Let T be a formal system; therefore, the meaning
of �A would be PrT (A) such that PrT (·) is a provability predicate for T .
(Notice that in this case we suppose our formal system T to be sufficiently
strong to be able to formalize some parts of the meta-mathematics.) Con-
sider the theorem �¬�⊥ of S4. Its interpretation is PrT (¬PrT (⊥)) and if
it were true we would have T ` ¬PrT (⊥) which contradicts Gödel’s second
incompleteness theorem.
Therefore, we know that on the one hand, the seemingly natural way to for-
malize the concept of proof and provability in the BHK interpretation is to
fix a formal system and interpret all the proofs as the proofs in that theory.
And on the other hand, the logic S4 is not sound with respect to this natural

2While this theorem is the heart of Gödel’s work, he only stated it and left it without
any proof. The soundness part is an easy consequence of induction on the length of the
proof, but the completeness part was finally proved in 1947 by Tarski and McKinsey using
the algebraic semantics for S4.

3The system T is formal iff the set of its consequences is recursively enumerable.

6



interpretation. This is for the case of S4. However, we could claim that
the natural formalization of the BHK interpretation is not sound either. For
instance, if you try to interpret the sentence A∧ (A→ B)→ B of intuition-
istic logic, you find out that it is more or less the same as the modal formula
�(�p→ p) and hence intuitionistic logic inherits the same problem. In sum,
we can say that the natural formalization of the BHK interpretation and also
the natural interpretation of S4 do not work. Based on these observations,
we have intuition why finding a formalization of the BHK interpretation is a
difficult task.

There is a natural question to ask. If the theory S4 is intuitively valid
and we know that we can not interpret the box as a provability predicate in
some formal system, then what could be a natural provability interpretation
of S4? Unfortunately, despite a lot of attempts which have been made so far,
this question remains open. For instance, Kripke [7] introduced a provability
interpretation which is based on his Kripke models and just captures our
provability intuition for formulas without nested modalities. Or in [4], Buss
introduced the “pure provability” which have the same problem with the
nested modalities. Actually, the only successful attempt to find a provability
interpretation is Artemov’s “logic of proofs” which is based on the idea of
introducing all explicit proofs, investigating the intended behavior of proofs
in a theory (logic of proofs) and then interpreting the box as the existence of
the proof. These explicitly mentioned proofs could empower us to avoid non-
standard proofs which have the main role in Gödel’s second incompleteness
theorem and some of the counter-intuitive theorems in meta-mathematics.
In Section 9 we will come back to Artemov’s logic of proofs and we will dis-
cuss its advantages and disadvantages.

As this long introduction shows, our main problem is to find a provability
interpretation for the modal logic S4 to formalize the BHK interpretation.
In this chapter, we will try to solve this problem and in the forthcoming
part of the Introduction we will sketch the idea of our semantics and our key
results.

1.2 The Main Idea and the Main Results

Why the mentioned natural proof interpretation is not a solution to our
problem? One of the possible answers is the fact that this interpretation does
not distinguish between languages and meta-languages. Let us illuminate
this fact by an example. Suppose p is an atom. What should be an intended
interpretation of p? p is an atomic sentence about the real world, it is just
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a description of the world and this description is in the first level. But how
about �p? The intended interpretation of this formula is the provability of
p in some theory. But, what is important here, is the level of the theory
and the level of this sentence. Since p is a fact about the real world, the
theory in which p is proved, should be a first level theory, i.e. a theory about
the world. However, the sentence (�p) is not about the real world; it is
about provability and hence it should be characterized as a sentence in the
second level. Therefore, the intended meaning of this second level sentence
is PrT0(p). Let us ask about the interpretation of ��p. This is about the
provability of provability of p. The first box refers to a first level theory T0.
But the second box is about the provability of the provability, which has
higher order, and it means the provability should be investigated in a second
level theory, T1. The important thing is the fact that there is no reason to
assume that T1 = T0. Actually, our experience in mathematical logic shows
that it is genuinely important to distinguish the meta-theory and the object
theory, and in some crucial cases the power of the meta-theory should be
more than the theory itself. For instance, Gödel’s incompleteness theorems
show that to answer a very basic meta-mathematical question about the
system, i.e. its consistency, we need a more powerful meta-theory. Based
on these sentiments, the natural way to interpret boxes in a modal sentence
is interpreting them in different theories depending on the nesting level of
the individual occurrence of a box. To formalize this idea, we need two
different ingredients. First, a model for the real world to interpret atoms
as facts about the world and second a hierarchy of theories which plays
the role of the hierarchy of the meta-theories. Hence, the intended model
would be (M, {Tn}∞n=0) in which M is a classical model and Tn is the theory
in the n-th level of the hierarchy. (We call these models, the provability
models.) Moreover, we need a way of witnessing all boxes as the provability
predicates of these theories in a coherent way. This is the complex part of the
formalization and we will talk about it in the next section. But for now, just
think of the interpretation intuitively in the sense that any outer box should
be interpreted as the provability predicate of a stronger theory. Therefore,
our main result for modal logics is the following:

Theorem 1.2. (i) The logic K4 is sound and complete with respect to the
provability interpretation in all provability models.

(ii) The logic KD4 is sound and complete with respect to the provability
interpretation in consistent provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn is consistent and Tn+1 ` Cons(Tn).

(iii) The logic S4 is sound and complete with respect to the provability in-
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terpretation in all reflexive provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn is sound and Tn+1 ` Rfn(Tn).

(iv) The logic GL is sound and complete with respect to the provability in-
terpretation in all constant provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn = T0.

(v) The logic GLS is sound and complete with respect to the provability in-
terpretation in all sound constant provability models, i.e. (M, {Tn}∞n=0)
where for any n, M thinks that Tn is sound and Tn = T0.

(vi) No extensions of the logic KD45 are sound in any provability model.

Here are some remarks about this main theorem. First of all, it shows that
the use of a hierarchy of meta-theories instead of just one theory to witness
the box operators could define a brand new framework to capture different
modal logics depending on provability interpretation. In fact, it shows that
modal logics could be seen as the formal theories to describe the relation be-
tween the real world and the theories in the hierarchy of meta-theories which
we use; in other words, they are theories for the whole discourse of prov-
ability. Moreover, in the case of the logics K4, KD4 and S4 it shows that
they describe the relation of the model and meta-theories in a natural and
expected way. For instance, in an informal reading of the axiom �A → A
in S4, we mean that our proofs are sound. And this is exactly one of the
conditions we put on the models to capture the logic S4. It is similar for all
other axioms, logics and conditions in the aforementioned result.
Secondly, the result shows that if we restrict the whole hierarchy of meta-
theories to just one theory, we could reconstruct Solovay’s results for GL
and GLS. Therefore, it shows that our provability interpretation is a gener-
alization of Solovay’s interpretation and our main result is a generalization
of Solovay’s results.

If we combine this provability interpretations with Gödel translation, we
will have different BHK interpretations with respect to different powers of
meta-theories. We have:

Theorem 1.3. (i) The logic BPC is sound and complete with respect to
the BHK interpretation in all provability models.

(ii) The logic EBPC is sound and complete with respect to the BHK inter-
pretation in all consistent provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn is consistent and Tn+1 ` Cons(Tn).
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(iii) The logic MPC is sound and complete with respect to the weak BHK in-
terpretation in all reflexive provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn is sound and Tn+1 ` Rfn(Tn).

(iv) The logic IPC is sound and complete with respect to the BHK interpre-
tation in all reflexive provability models, i.e. (M, {Tn}∞n=0) where for
any n, M thinks that Tn is sound and Tn+1 ` Rfn(Tn).

(v) The logic FPL is sound and complete with respect to the BHK inter-
pretation in all constant provability models, i.e. (M, {Tn}∞n=0) where
for any n, M thinks that Tn = Tm.

(vi) The logic CPC does not admit any BHK interpretations.

If you are not familiar with these propositional logics, we will define them
in the Preliminaries section. But for now, just assume that the propositional
logics BPC, EBPC, IPC and FPL are the propositional counterparts of the
modal systems K4, KD4, S4 and GL, respectively. Moreover, by weak BHK
interpretation, we informally mean the usual BHK interpretation without the
consistency condition. This is the last condition in the BHK interpretation
which assumes that there is no proof for ⊥. And finally, MPC, roughly is
IPC without the Ex Falso rule. The rule which makes possible to prove
anything from the contradiction.

Some remarks about this result are in order. First of all, it shows that
there are different BHK interpretations instead of just one. This observation
somehow contradicts the folklore belief and it is surprising. The reason is
that the BHK interpretation just defines the meaning of a connective in terms
of the provability in different levels of meta-languages. But, it is silent about
what kinds of commitments we impose on our meta-theories.

Therefore, we can impose different philosophically motivated conditions
on the behavior of meta-theories to capture different propositional logics, all
of them valid under the BHK interpretation. For instance, we can choose the
minimal possible commitment which means that there is no non-trivial con-
dition on the hierarchy of meta-theories. Then the BHK interpretation leads
to the logic BPC. On the other hand, if we suppose that our meta-theories
are strong enough to prove the reflection principle for lower theories and all
the theories are sound, then the BHK interpretation leads to the logic IPC.
This observation shows a key fact: There is a web of different intuitionistic
logics according to the BHK interpretation; the logics IPC and BPC are
just two examples of these intuitionistic logics and both of them are philo-
sophically valid. In sum, we have to talk about intuitionistic logics instead
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of the intuitionistic logic.
Secondly, the result shows that our framework of provability interpretations
can capture different propositional logics and just like the case of modal log-
ics, we are able to say that propositional logics are logics to describe the
behavior of the real world and the hierarchy of meta-theories. This formal-
izes the intuitionist claim that intuitionistic mathematics is a way to talk
about proofs and proofs only.
Thirdly, it is possible to define different kinds of Gödel’s translation. Hence,
it is possible to capture different propositional logics via these different trans-
lations. But it is important to consider that the translation we used in the
above result is the valid translation to formalize the BHK interpretation and
those different kinds of translations may not be rooted in the usual BHK
interpretation. However, they are still provability interpretations and could
be useful.

2 Preliminaries

In this section we will introduce some of the preliminaries that we need in the
following sections. First of all, we will introduce the sequent calculi for the
modal logics K4, KD4 and S4. Then we will introduce some propositional
logics such as BPC, MPC and IPC as the propositional counterparts of
some of the modal logics and finally we will state the Solovay’s completeness
results.

2.1 Sequent Calculi for Modal Logics

Consider the following set of rules:

Axioms:

A⇒ A ⊥ ⇒

Structural Rules:

Γ⇒ ∆
(wL)

Γ, A⇒ ∆
Γ⇒ ∆

(wR)

Γ⇒ ∆, A

Γ, A,A⇒ ∆
(cL)

Γ, A⇒ ∆
Γ⇒ ∆, A,A

(cR)

Γ⇒ ∆, A

Γ0 ⇒ ∆0, A Γ1, A⇒ ∆1
(cut)

Γ0,Γ1 ⇒ ∆0,∆1
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Propositional Rules:

Γ0, A⇒ ∆0 Γ1, B ⇒ ∆1
∨L

Γ0,Γ1, A ∨B ⇒ ∆0,∆1

Γ⇒ ∆, Ai
∨R (i = 0, 1)

Γ⇒ ∆, A0 ∨ A1

Γ, Ai ⇒ ∆
∧L (i = 0, 1)

Γ, A0 ∧ A1 ⇒ ∆
Γ0 ⇒ ∆0, A Γ1 ⇒ ∆1, B

∧R
Γ0,Γ1 ⇒ ∆0,∆1, A ∧B

Γ0 ⇒ A,∆0 Γ1, B ⇒ ∆1
→ L

Γ0,Γ1, A→ B ⇒ ∆0,∆1

Γ, A⇒ B,∆
→ R

Γ⇒ ∆, A→ B

Γ⇒ ∆, A
¬L

Γ,¬A⇒ ∆
Γ, A⇒ ∆

¬R
Γ⇒ ∆,¬A

Modal Rules:

Γ,�Γ⇒ A
�4R

�Γ⇒ �A
Γ,�Γ⇒

�DR

�Γ⇒

�Γ⇒ A
�SR

�Γ⇒ �A
Γ, A⇒ ∆

�L

Γ,�A⇒ ∆

The system G(K4) is the system that consists of the axioms, structural rules,
propositional rules and the modal rule �4R. G(KD4) is G(K4) plus the rule
�DR and finally, G(S4) is the system G(K4) when we replace the rule �4R
by �SR and add the rule �L. All of these systems have the cut elimination
property. (See [8]).

2.2 Propositional Logics

The next ingredient is the propositional counterparts of the usual modal
logics. The intuitionistic logic IPC and the minimal logic MPC are the well-
known logics in this area, but there are also some weaker systems which are
very interesting in terms of the provability interpretation. For instance, we
can mention the basic propositional logic BPC and the formal propositional
logic FPL defined by A. Visser in [12] or the extended basic propositional
logic EBPC defined by M. Ardeshir and B. Hesaam in [2]. To define these
logics, consider the following set of rules:

Propositional Rules:
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A B
∧I

A ∧B
A ∧B

∧E
A

A ∧B
∧E

B

A
∨I

A ∨B
B

∨I
A ∨B A ∨B

[A]

D
C

[B]

D′
C

∨E
C

[A]

D
B

→ I

A→ B

⊥
⊥
A

Formalized Rules:

A→ B A→ C
(∧I)f

A→ B ∧ C
A→ C B → C

(∨E)f

A ∨B → C

A→ B B → Ctrf

A→ C

Moreover, consider the following set of rules:

A ¬A
C

⊥
A A→ B

R

B

D

A ∨ ¬A
(A ∧ (A→ B))→ B

L

A→ B

The logic BPC is defined as the system which consists of the propositional
rules and the formalized rules. Then logic EBPC defined as BPC+C, logic
FPL is defined as BPC +L, IPC is defined as BPC +R, MPC is defined
as IPC without ⊥ rule, and finally CPC is defined as IPC +D.

Remark 2.1. Consider the following rules:

> → ⊥
C′

⊥
> → A

R′

A
(> → A)→ A

L′

> → A

It is possible to define EBPC as BPC + D′; IPC as BPC + R′ and
FPL as BPC + L′. It is obvious that D′, R′ and L′ are special cases of D,
R and L, respectively. Therefore it remains to show that D′, R′ and L′ can
simulate D, R and L, respectively. The following proofs show that it is the
case:
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A
> → A A→ ⊥

> → ⊥
C′

⊥

A
> → A A→ B

> → B
R′

B

A→ >

[> → (A→ B)]2
[A]1

> → A

> → (A ∧ (A→ B)) [(A ∧ (A→ B))→ B]3

> → B
A→ B→ I2

(> → (A→ B))→ (A→ B)

> → (A→ B)
(∗)

A→ B→ I1

A→ ((A→ B))

A→ (A ∧ (A→ B)) [(A ∧ (A→ B))→ B]3

(A→ B)

Notice that the double lines mean simple sub-proofs that we omit and (∗) is
the sub-proof which proves

A, (> → (A→ B)), ((A ∧ (A→ B))→ B) ` A→ B

2.3 Solovay’s Theorems

In this subsection we will mention the Solovay’s seminal arithmetical com-
pleteness theorems. (See [10] and [3].) They will be needed to prove some
of our completeness theorems in the next sections. Note that in the case of
GL we will state the uniform version of the completeness theorem which will
have a crucial role in our proofs.

Definition 2.2. Assume that IΣ1 ⊆ T is a Σ1-sound arithmetical theory. By
an arithmetical substitution σ we mean a function from the atomic formulas
in the modal language to the set of arithmetical sentences. And if A ∈ L�

is a modal formula, by Aσ we mean an arithmetical sentence resulted by
substituting atoms by σ, and interpreting boxes as the provability predicate
of T .

Theorem 2.3. (i) (First Theorem) If GL ` A then for all arithmetical
substitutions σ, IΣ1 ` Aσ. Moreover, there is an arithmetical substitu-
tion ∗ such that for all modal formulas A, if T ` A∗, then GL ` A.

(ii) (Second Theorem) GLS ` A iff for all arithmetical substitutions σ,
N � Aσ.
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3 Provability models

In this section we will introduce a provability model as a formalization of
the intuitive combination of a model and a hierarchy of theories. Then, we
will define the satisfaction relation between modal formulas and provabil-
ity models. And as a conclusion, we will justify our notion of provability
interpretation.

3.1 Definitions and Examples

Suppose that we have a modal formula A, and we want to interpret any
box in the formula as a provability predicate. Note that when you have
two boxes in A such that one box is in the scope of the other box, our
intuition forces us to accept that the outer box talks about the provability
in the meta-theory while the inner box is just capturing the provability in
the lower theories. Therefore, we can claim that the natural model for the
provability interpretation of modal logics is a pair of one first order structure
to interpret the atoms of the language, and a hierarchy of theories to play
the role of a hierarchy of meta-theories. Moreover, we choose our structure
and our theories as a model and theories for arithmetic, respectively, because
in these theories we have a natural way of coding the language, the meta-
language, the meta-meta-language and so on. Furthermore, we suppose that
all of our theories include IΣ1 to have enough power to formalize the basic
meta-mathematics of the theories. And, for the same reason we assume
M � IΣ1, because we want to have the true meta-mathematical properties
obviously.

Definition 3.1. A provability model is a pair (M, {Tn}∞n=0) where M is a
model of IΣ1 and {Tn}∞n=0 is a hierarchy of arithmetical r.e. theories such
that for any n, IΣ1 ⊆ Tn ⊆ Tn+1 provably in IΣ1.

We define expansions of a modal formula.

Definition 3.2. E(A), the set of all expansions of A, is inductively defined
as follows:

• If A is an atom, E(A) = {A}.

• If A = B ◦ C, then E(A) = {D ◦ E | D ∈ E(B) and E ∈ E(C)} for
◦ ∈ {∧,∨,→}.

• If A = ¬B, then E(A) = {¬D | D ∈ E(B)}.

• If A = �B, then E(A) = {�
∨k
i=1 Di | ∀1 ≤ i ≤ k, Di ∈ E(B)}.
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Moreover, if Γ is a sequence of modal formulas, by a sequence of expansions
of Γ, we mean a sequence such that for any formula in Γ, it has at least one
of its expansions and at most finitely many of them. We will denote these
sets by Γ̄.

Informally speaking, an expansion of a formula A is a formula resulted
by replacing any formula after a box with disjunctions of the expansions of
the formula.

Example 3.3. For instance, the formula �(¬�(�p ∨�p) ∨ ¬��(p ∨ p)) is
an expansion of the formula �¬��p

So far, we have justified the Definition 3.1. Let us investigate the intuitive
meaning of the witnesses, as well. We claim that a natural interpretation is
based on the interpretion of the outer boxes as meta-theories of the inner
boxes. For simplicity, we call this kind of interpretation ordered interpreta-
tion. Therefore, to have an ordered interpretation we need to interpret all
of the boxes in A as the provability predicates of the theories in an ordered
way. And, since for any theory we have a number which shows its layer in
the hierarchy, it is enough to assign a natural number to a box. Consider
that if we assign n to a box, the intended meaning is that the interpretation
of that box is the provability predicate for the theory Tn. This role is played
by the concept of witness. In fact, a witness is just an assignment for the
boxes in an ordered way.

Notation 3.4. If wis are sequences of natural numbers, by (w1, w2, . . . , wn)
we mean the concatenation of wis.

Definition 3.5. Let w be a sequence of natural numbers and A be a modal
formula. Then the relation w  A, which means w is a witness for A, is
inductively defined as follows:

• If A is an atom, ()  A.

• If A = B◦C, then (w1, w2)  A if w1  B and w2  C for ◦ ∈ {∧,∨,→}

• If A = ¬B, then w  A if w  B.

• If A = �B, then (n,w)  A if w  B and n > m for all m which
appear in w.

Moreover, if Γ is a sequence of modal formulas, by a witness for Γ, we mean
a sequence of witnesses such that any witness wi in the sequence is a witness
for Ai in Γ.
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Informally, a witness for a formula A is a sequence of numbers which we
assign to occurrences of the boxes in A such that the number for outer box is
greater than all numbers of inner boxes. This condition formalizes the idea
that any outer box refers to the meta-theories in the hierarchy.

Example 3.6. For instance, w = (n,m, k, r) is a witness for �(p → q) ∨
�(¬�p→ �q) if m > k, r.

The next definition is about evaluating a modal formula by an arithmeti-
cal substitution for atoms and a witness for the boxes in the formula.

Definition 3.7. Let w be a witness for A and σ an arithmetical substitution
which assigns an arithmetical sentence to a propositional variable. And also
let (M, {Tn}∞n=0) be a provability model. By Aσ(w) we mean an arithmetical
sentence which results by substituting the variables by the values of σ and
interpreting any box as the provability predicate of Tn if the corresponding
number in the witness for this box was n. The interpretation of boolean
connectives are themselves. Moreover, if Γ is a sequence of modal formulas
Ai, and w = (wi)i is its witness, by Γσ(w) we mean the sequence of Aσi (wi).

Example 3.8. For the witness and the formula A of the last example, Aσ(w)
would be PrTn(pσ → qσ) ∨ PrTm(¬PrTk(pσ)→ PrTr(q

σ)).

We are ready to introduce the concept of the satisfiability of a formula in
a provability model.

Definition 3.9. A sequent Γ ⇒ ∆ is true in (M, {Tn}∞n=0) when there are
sequences of expansions Γ̄ and ∆̄ of Γ and ∆, respectively, and witnesses u
and v for Γ̄ and ∆̄ respectively such that for any arithmetical substitution
σ, M |= Γ̄σ(u) ⇒ ∆̄σ(v). Moreover, we say that a sequent Γ ⇒ ∆ is true
in a class of models C, when there are uniform sequences of expansions and
witnesses for all models. In a more precise way, we write C � Γ ⇒ ∆, if
there are sequences of expansion Γ̄ and ∆̄ and witnesses u and v such that
for all arithmetical substitutions σ and all provability models (M, {Tn}∞n=0)
in C, M |= Γ̄σ(u)⇒ ∆̄σ(v).

Informally speaking, truth means the existence of expansions and wit-
nesses such that the interpretation of a formula (or sequent) becomes true
for all arithmetical substitutions.

Remark 3.10. Note that our definition of satisfiability allows us to use a
disjunction of finitely many expansions of the formula instead of the original
formula itself. In other words, if we want to show that (M, {Tn}∞n=0) � A, we
could use finitely many expansions B1, B2, . . . , Bk for A and find a witness
for

∨k
i=1Bi. The same is true for the sequents.
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Let us illuminate the Definition 3.9 with some examples.

Example 3.11. Let (N, {Tn}∞n=0) be a pair where T0 = PA and for any
n, Tn+1 = Tn + Rfn(Tn). Based on the definition, this pair is obviously a
provability model. We want to show that the sentence �(�A→ A) is true in
the model. To do this, we need some expansions of the formula and a witness
for them. For the expansions, just use the formula itself, and for a witness,
first find a witness for A and call it w; if n is a number greater than all the
numbers in w, then the sequence (n+1, n, w, w) is a witness for �(�A→ A).
For any arithmetical substitution σ, we have N � PrTn+1(PrTn(Aσ(w)) →
Aσ(w)) since the theory Tn+1 can prove reflection for Tn. As you can see,
the idea of introducing a hierarchy to witness the boxes in modal sentences
could kill the effect of Gödel’s second incompleteness theorem.
Let us illuminate the importance of expansions with an example. Consider
the sentence ¬�(¬�A ∧ A). We want to show that this sentence is true in
the above mentioned provability model. (Note that this formula is provable
in S4.) Pick a witness w for the sentence A, a number n greater than
all numbers in w and the formula itself as its expansion. In this case we
need two copies of the sentence, therefore we have to find a witness for
B = ¬�(¬�A ∧ A) ∨ ¬�(¬�A ∧ A). It is easy to verify that the sequence
(n + 2, n + 1, w, w, n + 1, n, w, w) is a witness for B. For any arithmetical
substitution σ, we have

N � ¬Prn+2(¬Prn+1(Aσ(w)) ∧ Aσ(w)) ∨ ¬Prn+1(¬Prn(Aσ(w)) ∧ Aσ(w))

Because if we have both

Prn+2(¬Prn+1(Aσ(w)) ∧ Aσ(w))

and
Prn+1(¬Prn(Aσ(w)) ∧ Aσ(w))

then from the first part and the soundness of Tn+2 we have ¬Prn+1(Aσ(w))
and from the second part and the fact that the provability predicate com-
mutes with ∧, we have Prn+1(Aσ(w)), which is a contradiction. Therefore,
the sentence is true in N. It is easy to see that if we want to show the truth
of the sentence �(¬�(¬�A ∧ A)), we should use the expansion �B of the
formula. This observation shows the importance of the expansions, but is it
possible to avoid them?

Example 3.12. In this example we want to argue that some sentences do not
have a witness in some provability models. Finding these kinds of examples
is not hard. It is enough to think of formulas such as p or �p. However,
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what we want to show here is finding an example to show the importance of
the expansions in the definition. Think of the provability model of the last
example and consider the formula ¬�(¬�p∧p). We showed that if we use two
different copies of the formula, then the disjunction of those different copies
have a witness in the provability model. We want to show that if we just use
one copy, it is impossible to witness the formula. Assume that w = (n,m) is
a witness for ¬�(¬�p ∧ p) in the above mentioned provability model. Then
since w is a witness, we have n > m. On the other hand, we know that
for any arithmetical substitution, we should have N � ¬Prn(¬Prm(pσ)∧ pσ).
Use the arithmetical substitution which sends p to Cons(Tm). Therefore, we
have

N � ¬Prn(¬Prm(Cons(Tm)) ∧ Cons(Tm))

Based on the formalized Gödel’s second incompleteness theorem

IΣ1 ` Cons(Tm)→ ¬Prm(Cons(Tm))

since IΣ1 ⊆ Tm+1 and Tm+1 ` Cons(Tm) we have

Tm+1 ` ¬Prm(Cons(Tm))

hence N � Prm+1(¬Prm(Cons(Tm))) and since Tm+1 has the reflection prin-
ciple for Tm, N � Prm+1(Cons(Tm)). Since n > m we have

N � Prn(¬Prm(Cons(Tm))) ∧ Prn(Cons(Tm))

which contradicts our assumption. As you can see, our provability interpre-
tation is sensitive to the use of expansions and also to the numbers of copies
of expansions. In the following discussion, we will argue that this property
is an inherent property of the informal intuition behind modal formulas.

3.2 Discussion

One of the complexities of our provability interpretation is the use of expan-
sions and in this discussion, we want to justify its role. But before that, we
need some observations. First of all, it seems that if we use the intuitive
interpretation of the boxes as the provability predicates of different theories
in the hierarchy of theories, meta-theories, meta-meta-theories and so on, the
natural provability interpretation will be the following:

A sentence A is true in a provability model (M, {Tn}∞n=0), if there is a
witness w for A such that for all σ, M |= Aσ(w).
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Which informally says that if you could witness the boxes in the formula A
in the provability model, then it is true. Note that this definition is simpler
than ours and does not use any kind of expansions. Let us concentrate on
S4 as the theory for our intuitive provability, and temporarily use the above
definition as the definition of the truth. To interpret all axioms of the system
S4 it is easy to see that we need two natural conditions on our model. First
of all, Tn+1 should be powerful enough to prove the reflection of the theory
Tn and secondly, all Tns should be sound with respect to our model M (This
is what the nature of provability in S4 assumes; think of �(�A → A) and
�A→ A, respectively.) The sentence ¬�(¬�A∧A) is a theorem of S4 and
we expect that it should be true in any model with those two conditions.
But in Example 3.12 we showed that there is no witness for the sentence and
hence, with the definition above, the sentence is not true. The reason is the
different roles of an occurrence of a box in a modal formula. To elucidate
this point, let us investigate the intuitive proof of the sentence ¬�(¬�A∧A)
in S4. The proof is a proof by contradiction. Assume �(¬�A ∧ A), then
because all theorems are true (axiom T), we have ¬�A∧A and hence ¬�A.
On the other hand, since the provability commutes with the conjunction (a
consequence of the axiom K), we have �A, which is a contradiction. Consider
the fact that the box in ¬�A is inherited from the inner box in ¬�A∧A and
the box in �A is inherited from the outer box in �(¬�A ∧ A). Therefore,
to reach the contradiction, we need these two boxes refer to one layer in the
hierarchy of theories which is impossible because the inner one is the theory
and the other is the meta-theory and it is impossible to have Tn+1 = Tn,
because Tn+1 should prove the reflection for Tn.
What these considerations show, is actually the fact that one box in S4
could have different roles. (In the above sentence, the outer box has two
different roles, one as the meta-theory of the inner box and the other, as
the theory itself.) Therefore, the natural way to interpret these boxes is an
approach which captures the different roles of a box at the same time, and this
is not possible with the above simplified semantics, because it is obviously
based on the assumption that any box has just one role which needs just one
witness. Here is where we need expansions. In fact, the intended purpose of
the expansions is using different copies of the formula, first to allow several
attempts at witnessing a single formula and then to capture different roles of
one box at once. (See Example 3.11 to find out how this technique works.)
There is another question to ask. Why do we need this kind of iterative
expansion method and why is just the simple disjunction of the formula not
enough? The answer is that for any fixed role available for one box, it is also
possible to have different roles for inner boxes. Therefore, after any box you
need a new disjunction. (Think of the sentence �(¬�(¬�A ∧ A)).) This is
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just what we call expansions.
As a conclusion for this discussion, let us compare our situation here in
modal logic with first order logic. In first order logic, if we have a theorem
of the form ∀x∃yA(x, y) where A(x, y) is quantifier-free and if we want to
witness y, Herbrand’s theorem gives the answer; we can witness y by terms
in our language. However, we know that one term is not enough. The
reason is simple. The existentially quantified y could have different values
(roles) and these different values (roles) can be captured by a disjunction of
sentences A(x, t(x)) for some finite possible set of terms t(x). The situation
in modal logic is the same. We read boxes as existence of theories and we
want to witness them. Since there are different roles for any box, we need a
disjunction to capture these different roles. In other words, we could interpret
the expansions as a kind of Herbrandization of the modal formulas.

4 The Logic K4

Intuitively, the logic K4 is sound with respect to all kinds of provability
interpretations. The reason is very simple. K4 has two important modal
axioms; the axiom K which means that the provability predicate is closed
under modus ponens, and the axioms 4 which means that the provability of
a sentence is also provable. The first axiom is a very easy fact and all strong
enough meta-theories can prove it. On the other hand, if our meta-theory is
sufficiently strong (Σ1-complete), the axiom 4 would be also easily proved.
Consider the fact that these axioms are not only true but also provable and it
justifies the use of the necessitation rule. Hence, K4 is valid in all provability
interpretations. In this section we want to formalize this intuitive argument
and show that the logic K4 is sound and also strongly complete with respect
to the class of all provability models.

4.1 Soundness

If we denote the class of all provability models by PrM, we have:

Theorem 4.1. (Soundness) If Γ `K4 A then PrM � Γ⇒ A.

Proof. To prove the soundness theorem for K4, we will use the cut-free se-
quent calculus for K4 i.e. G(K4). To simplify the proof, we use the following
conventions: Firstly, if Φ and Ψ are sequences of arithmetical sentences and
T is an arithmetical theory, by T ` Φ ⇒ Ψ, we mean T `

∧
Φ →

∨
Ψ.

Secondly, without loss of generality, we assume that the main formulas in all
of the rules, except the exchange rule, are just the rightmost formulas in the
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sequent. We just use this assumption for the sake of brevity and clarity of
the proof.
We want to prove the following claim by induction on the length of the proof
in G(K4).

Claim. If Γ ⇒ ∆ is provable in G(K4), then there are sequences of
expansions Γ̄ and ∆̄ and witnesses w1 and w2 for Γ̄ and ∆̄ respectively such
that for any provability model (M, {Tn}∞n=0) and any arithmetical substitu-
tion σ, IΣ1 ` Γ̄σ(w1)⇒ ∆̄σ(w2).

1. The case of axioms and structural rules. For the axiom A ⇒ A, it is
enough to use A as its expansion in both sides and just an arbitrary witness
for A in both sides, again.

For the exchange rule, just use the same expansions and witnesses after
the application of the corresponding exchange.

For the weakening rule, if we prove Γ, A ⇒ ∆ from Γ ⇒ ∆, by IH, we
could find expansions Γ̄, ∆̄ and witnesses w1 and w2. Pick an arbitrary
witness w for A. For Γ, A ⇒ ∆, use the sequences Γ̄, A and ∆̄, and for the
witnesses use (w1, w) and w2. It is easy to show that IΣ1 ` Γ̄σ(w1), Aσ(w)⇒
∆̄σ(w2). The case for the right weakening is the same.

For the contraction rule, if we prove Γ, A ⇒ ∆ from Γ, A,A ⇒ ∆, then
by IH, there are sequences of expansions {Γ̄, {Āi1}ri=0, {Āj2}sj=0} and ∆ and
also witnesses w1 = (u, (vi1)ri=0, (vj2)sj=0) and w2. For the sequent Γ, A⇒ ∆,
use the sequences of expansions {Γ̄, {Āi1}ri=0, {Āj2}sj=0} and ∆̄ and for the
witnesses just use the same witnesses. In this case, because of the use of a
finite set of different expansions instead of just one expansion, we can say
that the semantics absorbs the contraction rule. The case for the right con-
traction is the same.

2. The case of propositional rules. In this case we just prove the case that
the last rule is R∧; the other rules are similar and the argument is the same.
If Γ1,Γ2 ⇒ ∆1,∆2, A∧B, is proved from Γ1 ⇒ ∆1, A and Γ2 ⇒ ∆2, B then by
IH we have the sequences of expansions Γ̄1, {∆̄1, {Āi}ri=0}, Γ̄2, {∆̄2, {B̄j}sj=0}
and witnesses w1 and w2 = (u, (xi)

r
i=0) and w′1, w′2 = (u′, (yj)

s
j=0). For the

sequent Γ1,Γ2 ⇒ ∆1,∆2, A ∧ B use the sequences of expansions {Γ̄1, Γ̄2},
{∆̄1, ∆̄2, {Āi ∧ B̄j}i=r,j=si=0,j=0} and witnesses (w1, w

′
1), (u, u′, ((xi, yj))

i=r,j=s
i=0,j=0).

3. The case of modal rules. If �Γ ⇒ �A is proved from Γ,�Γ ⇒ A,
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then by IH, we have the sequences of expansions {Γ̄1,�Γ2} and {Ai}ri=0 and
witnesses w1 = ((uj)

s
j=0, (vk)

t
k=0) and w2 = (xi)

r
i=0 where uj is a witness

for the jth formula in Γ̄1 and vk is a witness for the kth formula in �Γ2.
Pick number n greater than all the numbers in w1 and w2. For the sequent
�Γ ⇒ �A use the sequences of expansions {�Γ1,�Γ2} and �

∨r
i=0 Ai and

for the witnesses use ((n, uj)
s
j=0, (vk)

t
k=0) and (n, (xi)

r
i=0). By IH, we know

that for any arithmetical substitution σ,

IΣ1 `
s∧
j=0

Γ̄σ1 (uj) ∧
t∧

k=0

�Γ
σ

2 (vk)→
r∨
i=0

Aσi (xi).

Since IΣ1 ⊆ Tn, we have

Tn `
s∧
j=0

Γ̄σ1 (uj) ∧
t∧

k=0

�Γ
σ

2 (vk)→
r∨
i=0

Aσi (xi).

Therefore, by Σ1-completeness in IΣ1 we have

IΣ1 ` Prn(
s∧
j=0

(Γ̄σ1 (uj) ∧
t∧

k=0

(�Γ
σ

2 (vk)))→
r∨
i=0

Aσi (xi)),

hence

IΣ1 ` Prn(
s∧
j=0

Γ̄σ1 (uj)) ∧ Prn(
t∧

k=0

�Γ
σ

2 (vk))→ Prn(
r∨
i=0

Aσi (xi)).

By formalized Σ1-completeness of Tn in IΣ1 we have

IΣ1 `
t∧

k=0

�Γ
σ

2 (vk)→ Prn(
t∧

k=0

�Γ
σ

2 (vk))

and hence

IΣ1 `
s∧
j=0

Prn(Γ̄σ1 (uj)) ∧
t∧

k=0

�Γ
σ

2 (vk)→ Prn(
r∨
i=0

Aσi (xi)),

which is what we wanted to prove and this completes the proof of the
claim.

For the proof of the soundness theorem, if Γ `K4 A then there exists a
finite set ∆ ⊆ Γ such that ∆ `K4 A. Therefore, G(K4) ` ∆ ⇒ A. By the
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Claim there are some expansions ∆̄ and {Ai}ri=0 for ∆ and A, respectively
and witnesses u and {wi}ri=0 such that for any arithmetical substitution σ,
we have IΣ1 ` ∆̄σ(u) ⇒

∨r
i=0 A

σ
i (wi). Since M � IΣ1, we have M �

∆̄σ(u) ⇒
∨r
i=0A

σ
i (wi). Pick Γ̄ the same as Γ after replacing the part of ∆

by ∆̄. Moreover, choose the witness v for Γ̄ as an arbitrary expansion of u
to Γ̄. Hence, M � Γ̄σ(v) ⇒

∨r
i=0A

σ
i (wi) which completes the proof of the

soundness.

4.2 Completeness

For the completeness theorem, the idea is to reduce the completeness of
K4 to the completeness of GL which is the well-known Solovay’s theorem.
(See Preliminaries and [10].) To do that, we need a translation from K4 to
GL which could transfer the provability behavior of K4 to the provability
behavior of GL.

Definition 4.2. Let A be a modal formula with k occurrences of � and
let Q = {qi}∞i=0 be a sequence of atoms which are not used in A. Then, a
translation t based on Q for the modal sentence A, is a sequence of k numbers
which assigns natural numbers to boxes in A such that the number assigned
to the outer box is greater than all the numbers for the inner boxes. And At

is defined as follows:

(i) If A is an atom, At = A.

(ii) (B ◦ C)t = Bt ◦ Ct for all ◦ ∈ {∧,∨,→}

(iii) (¬B)t = ¬Bt.

(iv) (�B)t = �(
∧n
i=0 qi → Bt) where n is the number assigned to the box

in t.

Informally, if we interpret a box as the provability predicate for the theory
S, then the translation t is just changing the provability predicate of the
theory S to the provability predicate of the theory S + {q0, . . . , qn} where n
is the number that t assigns to that box. For instance, if t = (1, 2, 1) and
A = �p→ ��p, then At will be the following modal formula:

�(q0 ∧ q1 → p)→ �(q0 ∧ q1 ∧ q2 → �(q0 ∧ q1 → p)).

We want to show that this translation is complete, i.e.

Theorem 4.3. If GL ` At for some translation t, then K4 ` A.
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The natural proof should be based on a technique of the transformation of
transitive Kripke models to conversely well-founded transitive Kripke models,
which is implemented by the following lemma.

Lemma 4.4. Let (K,R, V ) be a finite transitive Kripke tree with clusters,
A a modal formula and t a translation. Then there is a finite transitive
irreflexive Kripke model (K ′, R′, V ′) such that for any node k ∈ K, there is
a node k′ ∈ K ′ such that if k � A then k′ � At.

Proof. First of all, for all subformulas B of A, define the complexity of B,
C(B), as follows: If B is box-free, define C(B) = −1. Otherwise, define
C(B) as the maximum number assigned by t in B. Moreover, suppose that
C(A) = n. To simplify the proof, let us make some conventions. We will use
I for clusters and for any k ∈ K, by I(k) we mean the cluster of k. By a
path p = (kα)Mα=0, we mean a sequence of nodes in K such that for any α,
(kα, kα+1) ∈ R and if all the nodes of the path p belong to the cluster I, we
write p ⊂ I. Moreover, we write p ≺ p′, when p is a proper initial segment of
p′. Finally, by e(p) we mean the rightmost element of p, or in other words,
the end point of p.

For any cluster I define X(I) as follows: If I consists of one irreflexive
node k, X(I) = {k} and if I consists of reflexive nodes, define X(I) as the
subset of all paths p ⊂ I with length less than or equal to n+ 2. The idea is
simple. We want to transform a transitive model to a nonreflexive transitive
model. To accomplish this, we will unwind the reflexive clusters by some
paths of nodes in that cluster and we will use variables in Q to refer to a
copy of the node instead of itself, when we check the truth of the modal
formulas.

Define K ′ =
⋃
I X(I) and R′ = R1 ∪R2 where

R1 =
⋃

(k,l)∈R,I(k)6=I(l)

{(a, b) | a ∈ X(I(k)) and b ∈ X(I(l))}

and
R2 =

⋃
I

{(p, p′) | p ≺ p′; p, p′ ⊂ I}.

And finally, define

V ′(r) = {p ∈ K ′ | e(p) ∈ V (r)} ∪ {k | k ∈ V (r) and k is irreflexive}

for all atoms r in A, and

V (qi) = {k | k is irreflexive} ∪ {p | |p| ≤ n+ 2− i}.
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Informally speaking, K ′ is just the set K where you replace each reflexive
cluster I with all paths of length less that or equal to n+ 2 of nodes in I; R′

and V ′ are the natural relation and valuation induced by R and V , respec-
tively and qi is true in all irreflexive nodes and also in all paths of nodes in
reflexive clusters with length bounded by n + 2 − i. We want to prove the
following two claims.

Claim.1. The model (K ′, R′, V ′) is a finite transitive irreflexive Kripke
model.

The finiteness follows from the definition. For the transitivity, suppose
that a, b, c ∈ K ′ and (a, b) ∈ R′ and (b, c) ∈ R′. Then, there are two cases.
The first case is when a and b come from the same cluster. Hence, by defini-
tion, this cluster should be a reflexive cluster. Therefore, a and b are paths
in this cluster and a ≺ b. If c comes also from this cluster, we will have b ≺ c
and since ≺ is transitive, we have a ≺ c and hence (a, c) ∈ R′. But, if c
comes from another cluster, then the cluster of c should be above the cluster
of b and hence it is also above the cluster of a which is the same as b’s and
then by definition we have (a, c) ∈ R′.
The proof of the second case, which is when a and b come from different
clusters, is similar to the proof of the first case.

For the irreflexivity, suppose (a, a) ∈ R′. If a is an irreflexive node in K,
then it is impossible, by the definition of R′, to have (a, a) ∈ R′. If a comes
from a reflexive cluster, then again by the definition of R′, the path a should
be a proper segment of itself which is impossible.

Claim.2. For all subformulas B of A, if k � B, then{
∀p, |p| ≤ n+ 1− C(B) ∧ e(p) = k, p � Bt if k is reflexive.

k � Bt if k is irreflexive.

and if k 2 B then{
∀p, |p| ≤ n+ 1− C(B) ∧ e(p) = k, p 2 Bt if k is reflexive.

k 2 Bt if k is irreflexive.

To prove the claim, we use induction on B.

1. Atomic case. If B is an atom, the claim easily follows from the defini-
tion of V ′.
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2. If B = C ∧D and k � C ∧D then k � C and k � D. If k is irreflex-
ive, then by IH, the claim holds. If k is reflexive, then by IH, for all p such
that |p| ≤ n + 1 − C(C) and e(p) = k, we have p � Ct. And also for all
p such that |p| ≤ n + 1 − C(D) and e(p) = k, we have p � Dt, and since
C(C∧D) = max{C(C), C(D)}, then for all p such that |p| ≤ n+1−C(C∧D)
and e(p) = k, we have p � Ct ∧Dt.
If k 2 C ∧D, then k 2 C or k 2 D. W.l.o.g. assume k 2 C. If k is irreflex-
ive, the claim is obvious. If k is reflexive, then by IH, for all p such that
|p| ≤ n+1−C(B) and e(p) = k we have p 2 Ct, and again since C(C∧D) =
max{C(C), C(D)} we have ∀p, |p| ≤ n+1−C(B∧D)∧e(p) = k, p 2 (C∧D)t.

3. If B = ¬C, then for irreflexive k, the claim is obvious from IH. If k is
reflexive and k � ¬C, then k 2 C, and by IH, ∀p, |p| ≤ n+ 1−C(C) p 2 Ct.
Therefore, ∀p, |p| ≤ n+ 1−C(C) p � ¬Ct and since C(C) = C(¬C) we have
what we wanted. The other case is the dual of the first case.

4. The case for disjunction and implication is the same as the cases for
conjunction and negation and we omit them here.

5. The modal case. This is the most important and the most complex
part of the proof.

5.1. If B = �C and k � �C then for all l which (k, l) ∈ R, l � C. Define
m = C(B).
5.1.1. If k is irreflexive, we know that the nodes above k in K ′ are of two
forms. The l’s which are irreflexive and (k, l) ∈ R or the p’s where p comes
from a cluster I above k and e(p) = l. For the first kind of nodes, by
IH we know that l � Ct, therefore l �

∧m
i=0 qi → Ct. If we were in the

second case, we know that l � C and again by IH, for all p such that
|p| ≤ n + 1 − C(C) and e(p) = l, we have p � Ct. Therefore, for all
p, |p| ≤ n + 1 − C(C) we have p � Ct and hence p �

∧k
i=0 qi → Ct. If

|p| > n + 1 − C(C), since C(C) < C(B) = m, we have |p| > n + 2 − m,
and then by the definition of the valuation we know that p 2 qm and hence
p 2

∧m
i=0 qi and thus p �

∧m
i=0 qi → Ct. Therefore, for all p above k, we have

p �
∧m
i=0 qi → Ct. Since for all nodes above k,

∧m
i=0 qi → Ct is true, we have

k � �(
∧m
i=0 qi → Ct) which means k � (�C)t.

5.1.2. If k is reflexive from the cluster I, pick p such that |p| ≤ n+ 1−m.
We want to show that p � �(

∧m
i=0 qi → Ct). We know that all nodes above

p are of the form irreflexive l’s or p′ ⊂ J where J is a cluster above I or
p′ ⊂ I where p ≺ p′. For the first and second kinds, by a proof similar to
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that of 5.1.1, we can show that l �
∧m
i=0 qi → Ct and p′ �

∧m
i=0 qi → Ct.

For the third case, if |p′| > n + 2 −m, then p′ 2 qm and hence p′ 2
∧m
i=0 qi

and thus p′ �
∧m
i=0 qi → Ct. If |p′| ≤ n + 2 −m then since C(C) ≤ m − 1

we have |p′| ≤ n + 1 − C(C). On the other hand, k � �C, hence all nodes
in I satisfy C, and specially we have e(p′) � C, by IH, and by the fact
that |p′| ≤ n + 1 − C(C), we have p′ � Ct and therefore

∧m
i=0 qi → Ct.

We proved that at all nodes above p ∈ K ′, we have
∧m
i=0 qi → Ct hence

p � �(
∧m
i=0 qi → Ct) which is what we wanted.

5.2. If B = �C and k 2 �C, then there is a node l such that l 2 C.
Define C(B) = m.
5.2.1. If k is irreflexive, we want to show that k 2 �(

∧m
i=0 qi → Ct). Note

that since (k, l) ∈ R, and k is irreflexive, then l 6= k and it belongs to a
cluster above k. If l is irrefelexive then by IH, l 2 Ct and also since it is
irreflexive, for all i, l � qi; hence l 2

∧m
i=0 qi → Ct since l 6= k and (k, l) ∈ R,

(k, l) ∈ R′. Therefore, k 2 �(
∧m
i=0 qi → Ct). If l is a reflexive node of the

cluster I, then define p ⊂ I as a path such that |p| = n+ 2−m and e(p) = l.
Since C(C) ≤ m − 1 then |p| ≤ n + 1 − C(C). By IH, p 2 Ct. (Consider
that m is the complexity of a boxed formula and therefore m ≥ 0, hence
n + 2 −m ≤ n + 2 and it means such a p exists.). Moreover, we know that
p �

∧m
i=0 qi since |p| ≤ n + 2 − i for all i ≤ m, therefore, p 2

∧m
i=0 qi → Ct.

Since the cluster of k and the cluster of l are different and (k, l) ∈ R, then
(k, p) ∈ R′ and it means that k 2 �(

∧m
i=0 qi → Ct).

5.2.2. Consider the case that k is reflexive. In this case, if l belongs to a
cluster above k, then the proof is the same as 5.2.1. If the cluster of l and k
are the same (say I), we have the following construction: Pick p such that
e(p) = k and |p| ≤ n + 1−m. We want to show that p 1 �(

∧m
i=0 qi → Ct).

Pick p′ ⊂ I such that e(p′) = l, p ≺ p′ and |p′| = n + 2 − m. (It is
enough to extend p to a path of length n + 2 − m ending at l. Note that
n+ 2−m > n+ 1−m, which guarantee the existence of an expansion with
endpoint l possibly different from k. Moreover, this length is less that n+ 2
and therefore p′ exists in our model as a path). We know that C(C) ≤ m−1,
hence |p′| ≤ n + 1 − C(C). By IH, p′ 2 Ct. On the other hand, p �

∧m
i=0 qi

since |p| ≤ n+ 2− i for all i ≤ m, therefore, p 2
∧m
i=0 qi → Ct. Since p ≺ p′,

we can conclude that p 2 �(
∧m
i=0 qi → Ct).

The lemmas are obvious by the claim 2. For B in the claim, choose A
itself, then if k � A and k is irreflexive , then k � At. But if k is reflexive,
pick p = k as a path with length one. Hence |p| = 1 ≤ n + 1 − C(A), since
C(A) = n and therefore, p � At. Therefore, for any k � A there is a node
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k′ ∈ K ′ such that k′ � At.

For the proof of Theorem 4.3 we have:

Proof. If K4 0 A, then there is a finite transitive Kripke tree with clusters
(K,R, V ) and a node k such that k � ¬A. If we apply Lemma 4.4 for ¬A, we
can construct a finite transitive irreflexive Kripke model (K ′, R′, V ′) and a
node k′ such that k′ 2 ¬At. But (K ′, R′, V ′) is a model of GL and GL ` At.
A contradiction. Hence K4 ` A.

Based on the completeness of the translations, which we have introduced,
we are able to prove the completeness theorem. But, since we want to estab-
lish a more powerful completeness result, i.e. the strong completeness, we
need one more lemma.

Lemma 4.5. There is a hierarchy of theories {Tn}∞n=0 such that for any n,
IΣ1 ⊆ Tn and Tn ⊆ Tn+1 provably in IΣ1 and also an arithmetical substitu-
tion ∗ such that for any modal formula A, if there exists a witness w for A
such that (M, {Tn}∞n=0) � A∗(w) for all M � IΣ1, then K4 ` A.

Proof. Add infinitely many new atoms Q = {qn}∞n=0 to the language of modal
logics, and apply all axioms and rules of the logic K4 to the new language
to construct a new system K4(Q) and do the same thing for the logic GL
to construct GL(Q). Pick the substitution ∗ as the uniform substitution of
Solovay’s theorem (see Preliminaries and [3]). It simply says that for any A,
IΣ1 ` A∗ iff GL(Q) ` A, where A∗ means the combination of substituting
any atom p with p∗ and interpreting all boxes as the provability predicate
of IΣ1. For any n, define Tn = IΣ1 + {q∗i }ni=0. We claim that this ∗ and
this hierarchy {Tn}∞n=0 works for the claim of the lemma. First of all, it is
easy to show that the hierarchy satisfied the conditions claimed. Secondly,
we have M � A∗(w) for all M � IΣ1. Therefore, IΣ1 ` A∗(w). Use qi’s
in the translations from K4 to GL. Since the interpretation of a box in
any formula �D with witness m is PrTm(D), and it is provably equivalent
to PrIΣ1(

∧m
i=0 qi → D), it is easy to see that there is a translation t, such

that IΣ1 ` A∗(w) ↔ (At)∗. (In fact t equals to the witness w.) Therefore,
IΣ1 ` (At)∗, by the uniform version of Solovay’s theorem, GL(Q) ` At, and
by Theorem 4.3, K4(Q) ` A. It means that there exists a proof for A in
K4(Q). Since A does not have any qi ∈ Q, it is enough to put qi = >
everywhere in the proof to find a proof for A in K4.

We want to prove the strong completeness theorem.

Theorem 4.6. (Strong Completeness) If PrM � Γ⇒ A, then Γ `K4 A.
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Proof. We know that there are the sequence of expansions Γ̄, and expansions
B1, . . . , Bk of A and witnesses u for Γ̄, and w1, . . . , wk for B1, . . . , Bk such
that for all provability models and all arithmetical substitutions σ,

M � Γ̄σ(u)⇒ {Bσ
i (wi)}ki=0.

Pick the hierarchy of theories and ∗ from Lemma 4.5. Then for all M � IΣ1,

M � Γ̄∗(u)⇒ {B∗i (wi)}ki=0.

Hence

IΣ1 + Γ̄∗(u) `
k∨
i=0

B∗i (wi).

Therefore there is a finite ∆ ⊆ Γ̄ and a subset of witnesses v from u, such
that

IΣ1 + ∆∗(v) `
k∨
i=0

B∗i (wi).

Hence, for all M � IΣ1, we have

M �
∧

∆∗(v)→
k∨
i=0

B∗i (wi).

By Lemma 4.5, K4 `
∧

∆ →
∨k
i=0Bi, which means Γ̄ `K4

∨k
i=0Bi. Fi-

nally, since in the presence of the axiom K, all expansions of a formula are
equivalent to itself, Γ `K4 A.

5 The Logic KD4

The logic KD4 is a modal logic resulting from adding the axiom D : �A→
¬�¬A or equivalently ¬�⊥ to K4. Therefore, intuitively, if, in M , all
the theories from the hierarchy are consistent and each theory proves the
consistency of preceding theories, then the axioms of KD4 should be valid.
(Since we have the neccesitation rule, the sentence �¬�⊥ is also provable
and this is why we need the consistency statements to be provable, as well.)
The formalization of these models is exactly what we will call consistent
provability models and we will show that the logic KD4 is sound and strongly
complete with respect to these models.

Definition 5.1. A provability model (M, {Tn}∞n=0) is called consistent if for
all n, M thinks that Tn is consistent and Tn+1 ` Cons(Tn), i.e. M � Cons(Tn)
and M � PrTn+1(Cons(Tn)). Moreover, the class of all consistent provability
models will be denoted by Cons.
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Let us prove the soundness theorem.

Theorem 5.2. (Soundness) If Γ `KD4 A, then Cons � Γ⇒ A.

Proof. We use the soundness theorem for K4. If Γ `KD4 A, then

Γ + �¬�⊥ ∧ ¬�⊥ `K4 A.

Based on the soundness of K4, there are sequences Γ̄ + {�(
∨si
j=0 ¬�⊥) ∧

¬�⊥}i∈I and {Ak}tk=0 as the expansions of Γ+�¬�⊥∧¬�⊥ and A, respec-
tively and witnesses u, (ni, (mij)

si
j=0, ki) and wk such that for any provability

model like (M, {Tn}∞n=0) and any arithmetical substitution σ,

M � Γ̄σ(u) + {Prni
(

si∨
j=0

¬Prmij
(⊥)) ∧ ¬Prki(⊥)}i∈I ⇒

t∨
k=0

Aσk(wk))

If we apply this fact to the consistent provability models, since ni > mij and
for any n, M � Prn+1(¬Prn(⊥)), we have M � Prni

(¬Prmij
(⊥)) for all i ≤ r

and j ≤ si. Moreover, since for any n, M � ¬Prn(⊥), we have M � ¬Prki(⊥).
Therefore, for any consistent provability model (M, {Tn}∞n=0) we have

M � Γ̄σ(u)⇒
t∨

k=0

Aσk(wk)

which completes the proof of the soundness for KD4.

For the completeness theorem, the idea is reducing the completeness of
KD4 to the completeness of K4 which was proved in the previous section.

Theorem 5.3. (Strong Completeness) If Cons � Γ⇒ A, then Γ `KD4 A.

Proof. We know that there are a multiset Γ̄, and expansions B1, . . . , Bk of
A and witnesses u for Γ̄, and w1, . . . , wk for B1, . . . , Bk such that for any
consistent provability model and any arithmetical substitution σ,

(M, {Tn}∞n=0) � Γ̄σ(u)⇒ {Bσ
i (wi)}ki=0.

Define ∆ as a sequence which consists of an infinite number of the formula
�¬�⊥ and also an infinite number of the formula ¬�⊥. We claim that
Γ,∆ ⇒ A is true in the class PrM. For the expansions, use the same
expansions for Γ and A, and also use ∆ itself, as its sequence of expansions.
For witnesses, use u, wi’s and for ∆, for any number n, use (n+ 1, n) for one
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of the formulas �¬�⊥ and n for one of the formulas ¬�⊥. Call this witness
v. Let (M, {Tn}∞n=0) be an arbitrary provability model. We claim that

M � Γ̄σ(u),∆σ(v)⇒ {Bσ
i (wi)}ki=0.

Because when M � Γ̄σ(u),∆σ(v) then M � ∆σ(v) which means for any n,

M � Prn+1(¬Prn(⊥)),

and
M � ¬Prn(⊥).

Therefore, (M, {Tn}∞n=0) is a consistent provability model and since M �
Γ̄σ(u) we have,

(M, {Tn}∞n=0) �
k∨
i=0

Bσ
i (wi).

Therefore, for all provability models and all σ, we have

M � Γ̄σ(u),∆σ(v)⇒ {Bσ
i (wi)}ki=0.

Hence, by the strong completeness of K4, we have Γ,∆ `K4 A and since all
formulas in ∆ are provable in KD4, we have Γ `KD4 A.

Remark 5.4. Note that the truth of a formula in a class of provability models
means the existence of a uniform sequence of expansions and also a uniform
witness for it. In other words, we have a fixed sequence of natural numbers
which works for all provability models in the class. Therefore, we could claim
that sentences just describe the behavior of the natural numbers instead of
some actual theories. What does it mean? It means that sentences do not
describe the behavior of a concrete specific provability model, but instead,
they talk about the roles of these ingredients in the structure (provability
model) which are encoded by the natural numbers. Informally speaking,
sentences just transcend the actual theories to their abstract roles in the
structure of a provability model. (As an example, think of how the cardinal
numbers transcend the concept of cardinality from the actual sets.) For
instance, in the case of the logic KD4, it describes the relation between a
meta-theory Tn+1 and its theory Tn which is the condition that the meta-
theory is powerful enough to show the consistency of the theory. This is
not about some actual theories which we use; it is about the power of the
meta-theory in comparison to its theory. In other words, KD4 describes the
abstract condition of consistency and provability of consistency. This fact is
true in all soundness-completeness results we propose in this chapter.
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6 The Logic S4

Intuitively, if we have the property that all theories are sound and the sound-
ness of theories are also provable in their meta-theories, all axioms of S4,
would be valid. The formalization of these models is exactly what we will
call the reflexive provability models. In fact, we will show that the logic S4
is sound and also strongly complete with respect to the class of all reflexive
provability models.

6.1 Soundness

First of all we need a definition:

Definition 6.1. A provability model (M, {Tn}∞n=0) is reflexive if for any n,
M thinks that Tn is sound and Tn+1 ` Rfn(Tn), i.e. M � PrTn(A) → A and
M � PrTn+1(PrTn(A) → A) for each sentence A. Moreover, the class of all
reflexive provability models will be denoted by Ref .

Let us prove the soundness theorem.

Theorem 6.2. (Soundness) If Γ `S4 A, then Ref � Γ⇒ A.

Proof. To prove the soundness theorem, we will use the cut-free sequent cal-
culus for S4, i.e. G(S4). And, we will use the conventions of Theorem 4.1.
We want to prove the following claim:

Claim. If Γ ⇒ ∆ is provable in G(S4), then there are sequences of ex-
pansions Γ̄ and ∆̄ and also witnesses w1 and w2 for Γ̄ and ∆̄, respectively
and a number n greater than all the numbers in w1 and w2, such that for any
reflexive provability model (M, {Tn}∞n=0) and any arithmetical substitution
σ, Tn ` Γ̄σ(w1) ⇒ ∆̄σ(w2) is true in M . We will call the number n the
context number.

The proof of the claim is by induction on the length of the proof of Γ⇒ ∆
and the proof for the non-modal cases are similar to the proof of Theorem
4.1. But the difference is just the presence of the context number n here. To
find this number in all non-modal cases, if the case is the axiom case, any
number works; for contraction and exchange, just use the same number in
the induction hypothesis. For weakening, use the successor of the maximum
of the context number of the induction hypothesis and the arbitrary chosen
witness for the weakening formula. For the other cases, it is enough to use
the maximum numbers of the induction hypothesis. We want to prove the
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case of the modal rules.

1. If Γ,�A ⇒ ∆ is proved by Γ, A ⇒ ∆, then by IH, we can find
sequences of expansions {Γ̄, {Ai}ri=0}, ∆̄ and witnesses w1 = (u, (xi)

r
i=0) and

w2 and the context number n. For the sequent Γ,�A⇒ ∆, use the sequences
of expansions {Γ̄, {�Ai}ri=0}, ∆̄ and for the witnesses use (u, ((n, xi))

r
i=0), w2

and for the context number use n+ 1. By IH, we know that for all reflexive
provability models and all arithmetical substitution σ, M thinks

Tn ` Γ̄σ(w1), {Aσi (xi)}ri=0 ⇒ ∆̄σ(w2).

We claim that there is a proof, formalizable in IΣ1, for the following state-
ment: If Tn ⊆ Tn+1, Tn+1 ` Prn(Aσi (xi))→ Aσi (xi) for all i ≤ r and

Tn ` Γ̄σ(w1), {Aσi (xi)}ri=0 ⇒ ∆̄σ(w2)

then
Tn+1 ` Γ̄σ(w1), {Prn(Aσi (xi))}ri=0 ⇒ ∆̄σ(w2).

The proof is simple. We have Tn ⊆ Tn+1 and Tn+1 ` Prn(Aσi (xi))→ Aσi (xi).
Therefore,

Tn+1 ` Γ̄σ(w1), {Prn(Aσi (xi))}ri=0 ⇒ ∆̄σ(w2).

The proof just uses the fact that all first order tautologies are provable and
Pr is closed under modus ponens and all of these properties are provable in
IΣ1. Since M � IΣ1, M thinks that this implication is true. On the other
hand both of premises are true in M , because of IH and the condition of
being a reflexive provability model. Therefore, M thinks

Tn+1 ` Γ̄σ(w1), {Prn(Aσi (xi))}ri=0 ⇒ ∆̄σ(w2),

which completes the proof.

2. If �Γ ⇒ �A is proved by �Γ ⇒ A, then by IH we have sequences
of expansions �Γ and some expansions {Ai}ri=0 and witnesses w1 and (xi)

r
i=0

and a context number n such that for all arithmetical substitutions σ, M
thinks

Tn ` �Γσ(w1)⇒ {Aσi (xi)}ri=0.

For the sequent �Γ ⇒ �A, use the expansion �Γ and �(
∨r
i=0Ai), and the

witnesses w1 and (n, (xi)
r
i=0) and the context number n+ 1.

Based on the Σ1-completeness available in M , M thinks

IΣ1 ` Prn(
∧

�Γσ(w1)→
r∨
i=0

(Aσi (xi))).
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Because the provability predicate commutes with the implications provably
in IΣ1, we have this property in M , hence

IΣ1 ` Prn(
∧

�Γσ(w1))→ Prn(
r∨
i=0

(Aσi (xi)))

is true in M . Again by Σ1-completeness, we have

IΣ1 `
∧

(�Γσ(w1))→ Prn(
r∨
i=0

(Aσi (xi)))

true in M . And finally since Tn+1 is an expansion of IΣ1 provably in IΣ1,
we have the inclusion in M , hence

Tn+1 `
∧

(�Γσ(w1))→ Prn(
r∨
i=0

(Aσi (xi)))

is true in M which completes the proof of the claim.
For the proof of the soundness theorem, if Γ `S4 A then there exists a fi-
nite subset ∆ of Γ such that ∆ `S4 A. Then G(S4) ` ∆ ⇒ A, then by
the claim, there are sequences of expansions ∆̄ and {Ai}ri=0 and the wit-
nesses u and (xi)

r
i=0 and a context number n such that for all reflexive prov-

ability models (M, {Tn}∞n=0) and all arithmetical substitution σ, we have
Tn ` ∆̄σ(u) ⇒

∨r
i=0A

σ
i (xi) in M . Therefore, by soundness of Tn in M , we

have M � ∆̄σ(u) ⇒
∨r
i=0 A

σ
i (xi). Define Γ̄ as the sequence of expansions of

Γ by using Γ and replacing the subset ∆ by ∆̄ and also use any arbitrary
witnesses to extend u to a witness for Γ̄. Call this new witness v. We have

M � Γ̄σ(v)⇒
r∨
i=0

Aσi (xi)

which is what we wanted to prove.

6.2 Completeness

For the completeness theorem, the idea is the same as the idea of the original
proof of Solovay’s theorem. We will modify the technique of encoding Kripke
models in arithmetic. In this case, we need to encode transitive reflexive trees
with clusters. Therefore we have two tasks. Firstly, finding a method to
encode the clusters and secondly, modifying Solovay’s construction to work
with reflexive trees instead of irreflexive ones.
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Lemma 6.3. Let m be a natural number and {Tn}Nn=0 be an increasing hi-
erarchy of theories such that IΣ1 ⊆ T0, and for any n, Tn+1 ` Rfn(Tn).
Therefore, there are arithmetical sentences A1, A2, . . ., Am such that:

(i) For any i and j, if i 6= j then IΣ1 ` Ai ∧ Aj → ⊥

(ii) IΣ1 `
∨m
i=1Ai

(iii) For any n ≤ N , and any i ≤ m, Tn+1 ` ¬PrTn(¬Ai)

(iv) If we also assume that all theories in the hierarchy are consistent, then
for any n ≤ N and any i ≤ m, N � ¬PrTn(¬Ai) and N � Am.

Proof. First of all, we want to prove the following claim:

Claim. For any increasing reflexive hierarchy {Tn}Nn=0 and any natural
number p ≥ 1, there is another increasing hierarchy {T ′n}

Np
n=0 such that for

any n ≤ N , T ′np = Tn and for any i ≤ Np− 1, T ′i+1 ` Cons(T ′i ). Moreover, if
all of the theories in the T hierarchy are consistent, all of the theories in the
T ′ hierarchy will be consistent, as well.

To prove the claim, define T ′i as follows: For i = np, define T ′i = Tn,
then for the any np ≤ i < (n+ 1)p− 1 define T ′i+1 inductively as the theory
T ′i +Cons(T ′i ). First of all, we want to show that for any np ≤ i < (n+1)p−1,
T ′i+1 ⊆ T ′(n+1)p and also T ′(n+1)p proves the reflection principle for T ′i+1. The
proof is based on the induction on i. If i = np, we know that T ′(n+1)p

proves the consistency for T ′np, hence T ′np+1 ⊆ T ′(n+1)p. Moreover, since

T ′(n+1)p ` Cons(T ′np), it is easy to check that T ′(n+1)p can prove the reflection

principle for T ′np+1 = T ′np + Cons(T ′np). Suppose that we have the claim for i,
and we want to prove it for i + 1. By IH, T ′(n+1)p proves the reflection prin-
ciple for T ′i , hence it proves the consistency of T ′i and hence T ′i+1 ⊆ T ′(n+1)p.

Again, it is easy to show that since T ′(n+1)p ` Cons(T ′i ), T
′
(n+1)p also proves

the reflection principle for T ′i+1 = T ′i + Cons(T ′i ).

We claim that for any i, T ′i ⊆ T ′i+1 and T ′i+1 proves the consistency of
T ′i . The proof is based on two different cases of the definition of T ′i+1. If
we are in the first case, then i + 1 = (n + 1)p for some n. Then by what
we proved so far, the claim is obvious. If we are in the second case, then
T ′i+1 = T ′i + Cons(T ′i ), and hence the claim is again obvious from the defini-
tion.
Moreover, if the first hierarchy is consistent, then since all T ′i ’s are subtheo-
ries of T ′Np = TN , the second hierarchy is consistent, as well.
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It is time to prove the lemma. If m = 1, pick A1 = (0 = 0); then it is easy
to verify that this sentence satisfies the conditions of the lemma. The reason
is that Tn+1 proves the consistency of Tn and hence Tn+1 ` ¬Prn(0 6= 0).
Moreover, if all theories are consistent, then ¬A1 is not provable in Tn.
Assume that m > 1 and use the hierarchy T from the assumption of the
lemma, and also use the aforementioned construction to construct the hier-
archy T ′, for p = 2m. We want to define the sentences Ai based on this new
hierarchy. Define

Br =
N∨
k=1

(Cons(T ′2km−2r) ∧ ¬Cons(T ′2km−2r+1))

for 1 ≤ r ≤ m−1. Define A1 = B1 and Ar =
∧r−1
i=1 ¬Bi∧Br for 2 ≤ r ≤ m−1

and Am =
∧m−1
i=1 ¬Bi. We claim that these Ai’s have the properties in the

lemma. First of all, because of the form of Ai’s, it is obvious that any two
different Ai and Aj are contradictory and also

∨m
r=1Ar. In fact, these claims

are first order tautologies and hence they are provable in IΣ1. We want to
show that

T ′2(n+1)m ` ¬PrT ′2nm
(¬Ar)

We will prove the cases r 6= 1,m, r = 1 and r = m separately. Assume
r 6= 1,m. Let us argue in IΣ1. If ¬Ar is provable in T ′2nm, then by definition∨r−1
i=1 Bi ∨ ¬Br is provable in T ′2nm. From Bt, t ≤ r − 1, we could conclude∨

I

(Cons(T ′2km−2t)) ∨
∨
J

(¬Cons(T ′2km−2t+1))

where I = {k | 2km−2t+ 1 ≥ 2nm+ 1} and J = {k | 2km−2t+ 1 < 2nm}.
First of all, we know that T ′2nm proves Cons(T ′2km−2t+1) if k ∈ J . The reason
is that if k ∈ J , then 2km − 2t + 1 < 2nm and since the consistency of
any theory is provable in the higher theory in T ′ hierarchy, we can prove
the consistency of T ′2km−2t+1 in T ′2nm. Therefore, we can conclude that the
following is provable in T ′2nm.∨

I

(Cons(T ′2km−2t)).

On the other hand, we know that if k ∈ I, then k ≥ n+1 because 2km−2t+
1 ≥ 2nm+1 is impossible when k ≤ n. Therefore, 2km−2t ≥ 2(n+1)m−2t.
Moreover, 2(n+1)m−2t ≥ 2(n+1)m−2(r−1) since t ≤ r−1, and since the
hierarchy is increasing, Cons(T ′2km−2t) implies Cons(T ′2(n+1)m−2(r−1)). Hence,

Bt implies Cons(T ′2(n+1)m−2(r−1)). Furthermore, from

¬Br =
N∧
k=1

(Cons(T ′2km−2r)→ Cons(T ′2km−2r+1))
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we conclude
Cons(T ′2(n+1)m−2r)→ Cons(T ′2(n+1)m−2r+1).

Therefore, we have

T ′2nm ` (Cons(T ′2(n+1)m−2r)→ Cons(T ′2(n+1)m−2r+1)) ∨ Cons(T ′2(n+1)m−2(r−1)).

Hence

T ′2nm + Cons(T ′2(n+1)m−2r) ` Cons(T ′2(n+1)m−2r+1) ∨ Cons(T ′2(n+1)m−2(r−1)).

But we have 2(n+ 1)m− 2r + 1 ≤ 2(n+ 1)m− 2(r − 1); therefore

T ′2nm ` Cons(T ′2(n+1)m−2(r−1))→ Cons(T ′2(n+1)m−2r+1).

And hence

T ′2nm + Cons(T ′2(n+1)m−2r) ` Cons(T ′2(n+1)m−2r+1).

Since r ≤ m, we have 2(n+ 1)m− 2r + 1 ≥ 2nm, therefore we have

T ′2(n+1)m−2r+1 ` Cons(T ′2(n+1)m−2r+1).

Note that all the parts of this argument is formalizable in IΣ1. For the first
time we want to use T ′2(n+1)m to reach the contradiction. Since 1 ≤ r, then

2(n + 1)m − 2r + 1 < 2(n + 1)m, hence the consistency of T ′2(n+1)m−2r+1 is
provable in T ′2(n+1)m. Therefore, since we are arguing in T ′2(n+1)m, we have
the consistency of T ′2(n+1)m−2r+1. On the other hand, we showed

PrT ′
2(n+1)m−2r+1

(Cons(T ′2(n+1)m−2r+1)).

By the formalized version of the second incompleteness theorem in IΣ1, we
know that if a theory proves its own consistency it is inconsistent; hence
T ′2(n+1)m−2r+1 is inconsistent. A contradiction. Therefore, T ′2(n+1)m shows
that ¬Ar is not provable in T ′2nm.

Note that the proof uses the form of ¬Ar which has some positive Bt’s
and one negative Br. But Now if we are in the cases r = 1 or r = m, then
¬Ar has just positive Bt’s or just negative Bt’s. In these cases it is enough
to use the part of the proof which investigates the corresponding Bt’s. Again
argue in IΣ1. For the case, r = 1, if T ′2nm proves ¬A1, then T ′2nm proves ¬B1.
Therefore,

T ′2nm `
N∧
k=1

(Cons(T ′2km−2)→ Cons(T ′2km−1)).
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Hence
T ′2nm ` (Cons(T ′2(n+1)m−2)→ Cons(T ′2(n+1)m−1)).

Since m ≥ 1, we have 2(n+ 1)m− 1 ≥ 2nm and hence

T ′2(n+1)m−1 ` (Cons(T ′2(n+1)m−2)→ Cons(T ′2(n+1)m−1))

and then since 2(n+ 1)m− 1 > 2(n+ 1)m− 2, we have

T ′2(n+1)m−1 ` Cons(T ′2(n+1)m−1).

Argue in T ′2(n+1)m. We have the consistency of T ′2(n+1)m−1. On the other
hand, T ′2(n+1)m−1 proves its own consistency, hence by the formalized second
incompleteness theorem, it should be inconsistent. A Contradiction. There-
fore, T ′2(n+1)m proves that ¬A1 is not provable in T ′2nm.

For the proof of the case r = m, use the idea of I and J for positive
Bt’s. It is enough to use I and J , to show that if ¬Am is provable in T ′2nm,
then Cons(T ′2(n+1)m−2(m−1)) will be provable in T ′2(n+1)m−2(m−1). After that,
reaching a contradiction is the same as for the other cases.

Since T ′2nm = Tn, we have a proof for the part (iii). For (iv), if the
hierarchy T is consistent, then the hierarchy T ′ is also consistent and hence
if ¬Ar is provable in T ′2nm then we have

T ′2(n+1)m−2r+1 ` Cons(T ′2(n+1)m−2r+1)

for cases 1 < r < m, and

T ′2(n+1)m−1 ` Cons(T ′2(n+1)m−1)

for r = 1, and

T ′2(n+1)m−2(m−1) ` Cons(T ′2(n+1)m−2(m−1))

for r = m. Consider that the arguments for these statements are formalizable
in IΣ1 and hence they are true. For 1 < r < m, by the second incompleteness
theorem, T ′2(n+1)m−2r+1 should be inconsistent. A contradiction. Therefore,
T ′2nm can not prove ¬Ar and hence Tn 0 ¬Ar. The cases r = 1,m are similar.
For the second part of (iv), note that we know Am =

∧m
r=1 ¬Br. We want to

show that all Br’s are false. We have

Br =
N∨
k=1

(Cons(T ′2km−2r) ∧ ¬Cons(T ′2km−2r+1))

and since the whole T ′ hierarchy is consistent, all statements (Cons(T ′2km−2r)∧
¬Cons(T ′2km−2r+1)) are false and hence Br is false. Then ¬Br is true and
hence Am is true.
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Lemma 6.4. Let (K,R) be a finite reflexive transitive tree with clusters and
let k be one of the nodes in the root cluster. Moreover, let (N, {Tn}Nn=0) be a
reflexive provability model. Then there exists a set of arithmetical sentences
{Si}i∈K such that

(i) If i 6= j, T0 ` Si → ¬Sj.

(ii) Tn+1 ` Si → Prn(
∨

(i,j)∈R Sj).

(iii) If (i, j) ∈ R then Tn+1 ` Si → ¬Prn(¬Sj).

(iv) N � Sk.

Proof. Define a primitive recursive function h : N → K similar to the h
function in the Solovay’s proof of the completeness of GL.

h(0) = k and h(x+ 1) =

{
j if (i, j) ∈ R and PrfN(x,¬Sj)
h(x) otherwise

where Sj = PI(j) ∧ Aj ∧ j = j and PI(j) = ∃y∀x ≥ y h(x) ∈ I(j) in which
I(j) means the cluster of j. Moreover, Aj’s are the sentences constructed
in Lemma 6.3 for m = Card(I(j)) and the hierarchy {Tn + PI(j)}Nn=0. In
addition, we choose Ak as the sentence Am from Lemma 6.3. By these sen-
tences, we mean the sentences from the proof of Lemma 6.3, and not what
the lemma claims. The reason is that we have to be sure that these sentences
are definable from the code of the function h which has not been defined yet.
The reason is the following:

The function h is going to be defined based on the classical circular argu-
ment based on the fixed point lemma in IΣ1. The important part is that the
Aj’s constructed in Lemma 6.3 are arithmetical formulas based on the code
of PI(j), which makes the whole circular argument possible. It is provably
in IΣ1 that h is a function. (Note that we put j = j in the definition of
Sj to make sure that there is at most one j such that x would be a proof
for ¬Sj and this makes the definition of h unambiguous.) It is also prov-
able that h eventually stops in some cluster and since h is a function, this
cluster is unique. The existence of such cluster is an obvious application of
the fact that h is an increasing function and the tree is finite. Note that
all of these facts are provable in IΣ1. To prove (i), consider two cases. If
i and j belong to different clusters, then PI(i) and PI(j) are contradictory
based on what we claimed about the uniqueness of the limit cluster. This
contradiction is also provable in IΣ1 and hence in T0. If i and j belong to
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the same cluster, then by Lemma 6.3, we know that Ai and Aj are contra-
dictory, provable in IΣ1, and hence we reach a contradiction for Si ∧ Sj in
T0. For (ii), we argue in Tn+1. If we have Si, then we have PI(i) and there
exists x such that h(x) ∈ I(i). Since this formula is Σ1, by Σ1-completeness
we have Prn(h(x) ∈ I(i)). Moreover, h is provably increasing in IΣ1 and
hence in Tn, and also provably in IΣ1 we know that h eventually stops in
some cluster, i.e. Prn(

∨
J PJ). But we have Prn(h(x) ∈ I(i)). Therefore,

the limit should be above i which means Prn(
∨

(i,j)∈R PI(j)). On the other

hand, by Lemma 6.3 we know that IΣ1 `
∨
i∈I Ai, and we can conclude that

Prn(
∨

(i,j)∈R PI(j) ∧ Aj), hence
∨

(i,j)∈R Sj.

For (iii), we will argue in Tn+1 and the proof is by contradiction. If
we have Si and Prn(¬Sj) for some j which (i, j) ∈ R, then there are two
possibilities. First, when the clusters of i and j are different. We have
Si = PI(i) ∧ Ai, hence we have PI(i) which means that there is some number
z, such that for all y ≥ z, h(y) ∈ I(i). Moreover, we know that Prn(¬Sj)
and since Tn ⊆ TN , we have PrN(¬Sj). Therefore, there exists some x such
that PrfN(x,¬Sj). It is easy to see that we can pick x ≥ z. Hence, we can
conclude that h(x + 1) ∈ I(i). Since (i, j) ∈ R, j is above all nodes in I(i)
and PrfN(x,¬Sj), hence h(x + 1) = j. But h(x + 1) should belong to I(i)
and j /∈ I(i); a contradiction. Therefore, ¬Prn(¬Sj).
Assume that the cluster of i and j is I. Then the statement Si → Prn(¬Sj)
is equivalent to

PI ∧ Ai → Prn(PI → ¬Aj).

Since {Tn}Nn=0 is a reflexive hierarchy, the hierarchy {Tn + PI}Nn=0 is also
reflexive. Moreover, At’s are constructed for this hierarchy, hence by Lemma
6.3, we know that

Tn+1 + PI ` ¬PrTn+PI
(¬Aj)

which proves what we wanted.

For (iv), since h eventually stops in some cluster, there is a cluster I, such
that N � PI . If I 6= I(k), since h(0) = k, there should be some first element
x, such that h(x) ∈ I. Assume h(x) = i. Since x 6= 0, and h(x) 6= h(x− 1),
we have PrfN(x − 1,¬Si) and hence, PrN(PI → ¬Ai). By Lemma 6.3, the
theory TN +PI should be inconsistent, and therefore we have TN ` ¬PI . On
the other hand, the theory TN is sound, hence N � ¬PI which contradicts our
assumption. Hence, I = I(k) and therefore, N � PI(k). On the other hand,
TN + PI(k) is consistent because it is sound, and consequently by Lemma
6.3, Ak which was chosen to be the Am from the lemma, is true; hence
Sk = PI(k) ∧ Ak is true.
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The following lemma uses the previous lemma to transfer the truth from
a Kripke model to a reflexive provability model.

Lemma 6.5. Assume the conditions of Lemma 6.4 and let {Si}i∈K be defined
as in that lemma. Define σ as the arithmetical substitution which sends the
atom p to

∨
i�p Si. For any i ∈ K, any modal formula A and any witness w

for A with elements less than N , we have:{
Tmax(w)+1 ` Si → Aσ(w) if i � A

Tmax(w)+1 ` Si → ¬Aσ(w) if i 2 A

Proof. We prove the lemma by induction on A. If A is an atom and i � A,
then by the definition we have T0 ` Si → Aσ. If i 2 A then all j’s in
Aσ =

∨
j�A Sj are different from i, and by (i) in Lemma 6.4, we conclude

T0 ` Si → ¬Aσ. The proof for the boolean cases is easy. For the modal case,
if i � �B, then for all j which (i, j) ∈ R, we have j � B. Since w is a witness
for �B, it is equal to (n, u) where n is greater than all the numbers in u.
Therefore by IH, Tmax(u)+1 ` Sj → Bσ(u) for all j above i. Hence,

Tmax(u)+1 `
∨

(i,j)∈R

Sj → Bσ(u).

Since n ≥ max(u) + 1, we have

Tn `
∨

(i,j)∈R

Sj → Bσ(u).

Then
IΣ1 ` Prn(

∨
(i,j)∈R

Sj → Bσ(u)),

and consequently,

IΣ1 ` Prn(
∨

(i,j)∈R

Sj)→ Prn(Bσ(u)).

By (ii) in Lemma 6.4, we have

Tn+1 ` Si → Prn(Bσ(u)),

and n = max(w). Thus, the proof for this case is finished.
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If i 2 �B, then there exists j which (i, j) ∈ R and j 2 B. Again we
have w = (n, u), such that n is greater than all the numbers in u. By IH,
Tmax(u)+1 ` Sj → ¬Bσ(u). Since n ≥ max(u) + 1,

Tn ` Sj → ¬Bσ(u)

and
IΣ1 ` Prn(Bσ(u)→ ¬Sj)

and then
IΣ1 ` ¬Prn(¬Sj)→ ¬Prn(Bσ(u))

and by (iii) in Lemma 6.4, we have

Tn+1 ` Si → ¬Prn(Bσ(u))

and again since n = max(w), the proof is complete.

We state and prove the completeness theorem.

Theorem 6.6. (Completeness) Let (N, {Tn}∞n=0) be a reflexive provability
model such that (N, {Tn}∞n=0) � A, then S4 ` A. Therefore, if Ref � A, we
have S4 ` A.

Proof. Since (N, {Tn}∞n=0) � A, there are expansions B1, . . . , Bk of A and
witnesses w1, . . . , wk such that for all arithmetical substitutions σ, we have
N �

∨k
i=0B

σ
i (wi). Define C =

∨k
i=0 Bi and w = (wi)

k
i=0. Therefore, we know

that w is a witness for C in (N, {Tn}∞n=0). We claim that S4 ` C. Pick
N greater than all the numbers in w. If S4 0 C then there exists a finite
reflexive transitive tree with clusters (K,R, V ), such that in one of the nodes
in the root cluster (say k), C is false. Then by Lemmas 6.4 and 6.5, we can
construct an arithmetical substitution, such that Tmax(w)+1 ` Sk → ¬Cσ(w).
Since the model is a reflexive provability model, all Tm’s are sound and
hence N � Sk → ¬Cσ(w). But by Lemma 6.4 we know that N � Sk, thus
N � ¬Cσ(w), which contradicts with the assumption N � Cσ(w). Therefore,
S4 ` C. And finally, since in the presence of the axiom K, all the expansions
of a formula are equivalent to the formula itself, we have S4 ` A.
For the second part of the theorem, it is easy to verify that if Ref � A, then at
least for one of the provability models (N, {Tn}∞n=0) we have (N, {Tn}∞n=0) � A.
And then the claim follows from the first part.
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6.3 Uniform and Strong Completeness

In this subsection we will strengthen the completeness theorem of the last
subsection to a stronger version of uniform strong completeness theorem.
The proof will be just the uniform version of the previous completeness proof.
Therefore, first of all we need a uniform version of Lemma 6.3.

Definition 6.7. A hierarchy {Tn}∞n=0 of theories is called uniform if there
exists a Σ1 formula Prf(x, y, z) such that for any n, m and A, Prf(n,m, dAe)
iff m is a code of a proof for A in Tn. The hierarchy is called uniformly
increasing if it is a uniform hierarchy and also we have IΣ1 ⊆ T0 provably in
IΣ1 and IΣ1 ` ∀x∀z(∃y Prf(x, y, z)→ ∃w Prf(x+ 1, w, z)). And finally it is
called uniformly reflexive hierarchy if it is a uniformly increasing hierarchy
such that for any formula A, IΣ1 ` ∀x∃y Prf(x+ 1, y,∃w Prf(x,w,A)→ A).

Lemma 6.8. Let {Tn}∞n=0 be a uniformly reflexive hierarchy of theories.
Then, there is an arithmetical sentence A(x, y) such that:

(i) IΣ1 ` ∀x, z ≤ y (x 6= z ∧ A(x, y) ∧ A(z, y)→ ⊥)

(ii) For all m, IΣ1 `
∨m
i=1A(i,m)

(iii) For any n, and any i ≤ m, Tn+1 ` ¬PrTn(¬A(i,m))

(iv) If we also assume that all theories in the hierarchy are consistent, then
for any n, and any i ≤ m, N � ¬PrTn(¬A(i,m)) and N � A(m,m).

Proof. The proof is basically the same as the proof of Lemma 6.3. The only
difference is that, here we have to define everything uniformly. First of all we
need to define the hierarchy T ′. Since T is a uniformly reflexive hierarchy, it
is easy to prove that the hierarchy T ′ is a uniform hierarchy. Note that the
definition of this new hierarchy is also uniform in p, i.e. there exists a proof
predicate Prf(x, y, z, t) which means that y is a proof for z in T ′x when we
choose t as our p. Define, B(x, y) as the following:

B(x, y) = ∃z ≥ 1 (Cons(T ′2zy−2x) ∧ ¬Cons(T ′2zy−2x+1)),

and
A(x, y) = ∀1 ≤ z ≤ x− 1 ¬B(z, y) ∧B(x, y).

Note that A(x, y) and B(x, y) are the uniform versions of Ar and Br in which
x stands for the index r and y for the number m. The proof of the properties
we claimed is exactly same as the proof of Lemma 6.3. The reason is that
all properties are based on the standard numbers n, i and m. The only
exception is (i), which is easily proved from the definition.
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Theorem 6.9. (Uniform Completeness) Let {Tn}∞n=0 be a uniform reflexive
hierarchy of sound theories. Then there exists an arithmetical substitution ∗,
such that for any modal formula A, if there exists a witness w such that for
all M �

⋃
n Tn, (M, {Tn}∞n=0) � A∗(w) then S4 ` A.

Proof. First, note that according to the filtration method (see [5]), there
exists a primitive recursive algorithm which reads A as an input and con-
structs a counter model (finite transitive reflexive tree with clusters) for A
if S4 0 A, and outputs zero, otherwise. Call this primitive recursive func-
tion, f . Therefore, if we use Aa to emphasize that the code for A is a, we
have f(a) = (Wa, Ra, Va, wa) in which wa is a node in the root cluster such
that wa 2 Aa. The reason why such an f exists is that the size of a counter
model is elementary bounded by the size of the code of the formula. (See [5].)
Assume that the function 〈·, ·〉 is some canonical pairing function which is
primitive recursive. Define g(a) as the following primitive recursive function:
Compute f(a), change the name of all nodes w in Wa to 〈w, a〉 and code the
whole model again.
Pick all g(a)’s and put all of them over one new reflexive root, k; and for
valuation, use the induced valuation of the model plus the fact that the node
k does not accept any atom. Then, use the technique of Lemma 6.4 and
define the function h on the whole new model:

h(0) = k and h(x+ 1) =

{
j if R(h(x), z) and PrfT (x,¬S(z))

h(x) otherwise

Where firstly, T =
⋃∞
n=0 Tn. It is easy to check that since the hierarchy

is uniform, its union is also a recursively enumerable theory which has the
following property: IΣ1 ` Prn(A)→ PrT (A). Secondly, R(y, z) is a primitive
recursive relation (∆1 formula in IΣ1) which reads nodes y and z and if
y 6= k, it decides whether they belong to the same model g(pr0(z)), and if
yes, whether (y, z) belongs to the relation of g(pr0(z)), i.e. Rg(pr0(z)). And
if y = k, then the relation R(y, z) decides whether z is in the g(pr0(z)) or
not (where pr0(z) is the index of the model which z belongs to). This R is
a formalization of the accessibility relation of the new model. Note that we
have to choose R in a way that the following holds:

(i) IΣ1 ` ∀x, y, z (R(x, y) ∧R(y, z)→ R(x, z))

(ii) For any node i 6= k, IΣ1 ` ∀x(R(i, x)→
∨
Rg(pr0(i))

(i,j) x = j)

It is easy to find such an R. The idea is, first using g to define a primi-
tive recursive function H(z) which reads z and outputs the whole set above
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z. Then define R(x, y) as the existence of a sequence w from x to y such
that for any r, wr+1 belongs to H(wr). The proof for these two properties
are starightforward. (i) holds because of our transitive definition of R. (ii)
needs the claim that if w is a sequence from i to x, then x ∈ H(i). Use
induction on the length of w to prove the claim.

And finally, the formula

S(z) = ∃y∀x ≥ yh(x) ∈ I(z) ∧ A(z, Card(I(z))) ∧ z = z

where I(z) is a primitive recursive function, which reads z and computes
the whole cluster of z. Note that here we use a uniform version of Si’s, and
consequently we need the uniform version of Ar’s. For any i 6= k, the model
above wi is a finite reflexive transitive tree with clusters, and hence with the
same arguments, we have the following:

(i) T0 ` ∀x, y (x 6= y → (S(x)→ ¬S(y))).

(ii) Tn+1 ` S(i)→ Prn(
∨

(i,j)∈R S(j)) for all i 6= k.

(iii) If (i, j) ∈ R then Tn+1 ` Si → ¬Prn(¬Sj) for all i.

(iv) N � Sk.

Since the model above any node i 6= k is a finite model, the proof is the
same as the proof of Lemma 6.4, with only some minor changes. Firstly, for
(i), we need the uniform version of the proof of Lemma 6.4. It is implied by
the facts that h is a provably total function in IΣ1 and also the part (i) in
Lemma 6.8.
Secondly, for (ii), we need to prove that if the function reaches i, then the
limit cluster exists and it is above the cluster I(i). It is provable in IΣ1.
The idea is based on the fact that h is increasing and also the fact that if h
reaches i, we can find the elements above i. These simple facts are provable
by two properties of R which are mentioned before.

Define the arithmetical substitution as follows: p∗ = ∃z S(z) ∧ V (z, p)
where V (z, p) is a primitive recursive predicate (i.e. a ∆1 formula in IΣ1)
which reads z and p and if z 6= k decides whether p is true in the node z in
the model g(a), where a = pr0(z) is the index of the model which z belongs
to. And if z = k, then rejects for all p. Since g is primitive recursive, this
primitive recursive predicate exists. Note that V is a formalization of the

46



valuation of the new model.
By a similar proof of Lemma 6.5 we know that for all i 6= k, we have{

Tmax(w)+1 ` Si → Aσ(w) if i � A

Tmax(w)+1 ` Si → ¬Aσ(w) if i 2 A

If S4 0 A, then i = wa 2 A, where a is the code of A. We have

Tmax(w)+1 ` Si → ¬A∗(w).

Hence for all n ≥ max(w) + 1,

Tn ` Si → ¬A∗(w).

Then by
Tn+1 ` Sk → ¬Prn(¬Si),

we have
Tn+1 ` Sk → ¬Prn(A∗(w)).

Since Tn+1 is sound, N � ¬Prn(A∗(w)) which means Tn 0 A∗(w), and since n
could be any sufficiently large number, T 0 A∗(w), therefore, there is M , a
model of T =

⋃
n Tn, such that M 2 A∗(w), which is a contradiction. Hence,

S4 ` A.

Using the previous lemma, we are able to prove the strong completeness
theorem.

Theorem 6.10. (Uniform Strong Completeness) Let {Tn}∞n=0 be a uniformly
reflexive hierarchy of sound theories. Then there exists an arithmetical sub-
stitution ∗, such that for any modal sequent Γ ⇒ A, if there exist witnesses
u and v such that for all M �

⋃
n Tn, (M, {Tn}∞n=0) � Γ∗(u) ⇒ A∗(v), then

S4 ` Γ⇒ A. Moreover, if Ref � Γ⇒ A, then Γ `S4 A.

Proof. Use the arithmetical substitution from the uniform completeness.
Since

(M, {Tn}∞n=0) � Γ∗(u)⇒ A∗(v)

for all M �
⋃
n Tn, then

⋃
n Tn + Γ∗(u) ` A∗(v). Therefore, there is a finite

subset ∆ ⊆ Γ and a witness w, a subset of u, such that
⋃
n Tn + ∆∗(w) `

A∗(v). Thus, for all M �
⋃
n Tn, we have

(M, {Tn}∞n=0) � ∆∗(u)⇒ A∗(v).

By uniform completeness, we have S4 ` ∆⇒ A and hence, S4 ` Γ⇒ A.
The second part of the theorem, is obvious from the first part; because if
Ref � Γ⇒ A, then the assumption of the first part is true for some sequence
of expansions Γ̄ and B1, B2, . . . , Br. Hence Γ̄ `S4

∨r
i=0Bi. Since in the

presence of the axiom K, the expansions of a formula are equivalent to the
formula itself, we have Γ `S4 A.
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7 The Logics GL and GLS

As Solovay showed in his pioneering work, [10], the logic GL is sound and
complete for the interpretation that interprets all boxes as provability predi-
cates in some appropriate theory. Moreover, he showed that if we change the
definition slightly, we can also capture the logic GLS. We translate his results
into our framework and after defining constant and sound-constant provabil-
ity models, we will show the soundness and completeness of GL and GLS
for the classes of all constant provability models and all sound-constant prov-
ability models, respectively. In fact, the soundness-completeness theorems of
these logics are just a new representation of Solovay’s results. Consequently,
we can claim that our provability interpretation is actually a generalization
of Solovay’s provability interpretation.

7.1 The Case GL

First of all the definition of the constant and sound-constant provability
models:

Definition 7.1. A provability model, (M, {Tn}∞n=0) is constant if for any n
and m, (M, {Tn}∞n=0) thinks that Tn = Tm, i.e. M � PrTm(A) ↔ PrTn(A)
and M � PrT0(PrTm(A) ↔ PrTn(A)) for all sentences A; and it is called a
sound-constant model when it is constant and for any n, M thinks that Tn is
sound, i.e. M � PrTn(A) → A for any sentence A. The class of all constant
provability models and the class of all sound-constant provability models will
be denoted by Cst and sCst, respectively.

Remark 7.2. In the previous definition we used a notion for the equality
of theories which seems ad-hoc and artificial. Here in this remark, we will
justify that definition. Intuitively, M thinks that two theories are equal,
when their provability properties are the same. In a more precise way, we
say that M thinks Tn and Tm are equal, when for any modal sentence φ(p),
any witness w and any arithmetical substitution σ for all atoms except p,
M � φσ(Prm(A))(w)↔ φσ(Prn(A))(w). We will show that this definition of
equality is equivalent to the original one. First of all, if we use φ(p) = p, we
will have M � PrTm(A) ↔ PrTn(A). Moreover, if we use φ(p) = �(p ↔ q),
w = (0) and σ where qσ = Prn(A), we have M � PrT0(PrTm(A)↔ PrTn(A)).
For the converse, we use induction on φ to show the following claim.

Claim. For any formula φ(p), any witness w and any arithmetical sub-
stitution σ for all atoms except p, M thinks that both of the following state-
ments are true: φσ(Prm(A))(w)↔ φσ(Prn(A))(w) and T0 ` φσ(Prm(A))(w)↔
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φσ(Prn(A))(w).

The atomic case and the boolean case are obvious. For the modal case,
it is an easy consequence of the fact that Σ1-completeness and some basic
facts about the provability predicate are true in M .

We are ready to prove the soundness-completeness result for GL. First
of all, a technical lemma.

Lemma 7.3. Let (M, {Tn}∞n=0) be a constant provability model. Then for
any modal formula A, any witness w and any arithmetical substitution σ, if
0 assigns zero to all the boxes of A, then M thinks that both of the following
statements are true: Aσ(w)↔ Aσ(0) and T0 ` Aσ(w)↔ Aσ(0).

Proof. Use induction on A. The case for the atoms and the boolean connec-
tives are easy. For the modal case, if A = �B, and w = (n, u), then by IH,
M thinks T0 ` Bσ(u) ↔ Bσ(0). Hence Tn ` Bσ(u) ↔ Bσ(0) and by Σ1-
completeness, M � Prn(Bσ(u) ↔ Bσ(0)). Thus Prn(Bσ(u)) ↔ Prn(Bσ(0))
is true in M . Since Prn(Bσ(0)) and Pr0(Bσ(0)) are equivalent in M , we have

M � Prn(Bσ(u))↔ Pr0(Bσ(0)).

For the other part of the claim, for �B, we have M � Prn(Bσ(u)↔ Bσ(0)).
Therefore by Σ1-completeness, M thinks T0 ` Prn(Bσ(u) ↔ Bσ(0)). Hence
T0 ` Prn(Bσ(u)) ↔ Prn(Bσ(0)) is true in M . But we know that M thinks
that

T0 ` Prn(Bσ(0))↔ Pr0(Bσ(0)),

therefore, M thinks that

T0 ` Prn(Bσ(u))↔ Pr0(Bσ(0)).

Theorem 7.4. (Soundness) If Γ `GL A, then Cst � Γ⇒ A.

Proof. If Γ `GL A then there exists a finite ∆ ⊆ Γ such that GL `
∧

∆→ A.
Then by Theorem 2.3, we have IΣ1 ` ∆σ(0) → Aσ(0). Thus for any model
M , M � Γσ(0) ⇒ Aσ(0). Pick any arbitrary witnesses for Γ and A say wΓ

and wA. By using the Lemma 7.3 we will have M � Γσ(wΓ)⇒ Aσ(wA).

For the completeness of GL we have:
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Theorem 7.5. (Uniform Strong Completeness) Let IΣ1 ⊆ T be an r.e. Σ1-
sound theory and {Tn}∞n=0 be a hierarchy of theories such that for any n,
Tn = T , then there is an arithmetical substitution ∗ such that for any modal
sequent Γ ⇒ A, if for all M � T , we have (M, {Tn}∞n=0) � Γ ⇒ A, then
Γ `GL A. In particular, if Cst � Γ⇒ A then Γ `GL A.

Proof. Pick ∗ as the uniform arithmetical substitution in Solovay’s complete-
ness theorem for T (see Preliminaries and [3]). Pick M � T , arbitrarily. We
have (M, {Tn}∞n=0) � Γ⇒ A, hence there are a sequence of expansions Γ̄ and
expansions {Ai}ri=0 of A and witnesses u and wi such that

M � Γ̄∗(u)⇒
r∨
i=0

A∗i (wi).

Since all the theories are equal, we can easily verify that for any formula B
and any witness v, B∗(v) is equivalent to B∗, where B∗ means a combination
of substituting all the atoms by ∗ and interpreting any box as the provability
predicate for T . Then we have

M � Γ̄∗ ⇒
r∨
i=0

A∗i .

Moreover, it is easy to prove that if B is an expansion of C, then B∗ is
equivalent to C∗ in IΣ1 and hence M � Γ∗ ⇒ A∗. Since M is arbitrary, we
have T + Γ∗ ` A∗, therefore, there is a finite subsequence ∆ ⊆ Γ such that
T + ∆∗ ` A∗. Then by Solovay’s uniform completeness theorem, we have
∆ `GL A, thus Γ `GL A. For the second part of the theorem, it is easy to
show that if Cst � Γ⇒ A, then the assumption of the first part for T = IΣ1

is met, and hence Γ `GL A.

7.2 The Case GLS

For the case of GLS we have:

Theorem 7.6. (Soundness) If Γ `GLS A, then sCst � Γ⇒ A.

Proof. If Γ `GLS A, then there are formulas B1, B2, . . . , Bk such that Γ `GL∧k
i=1(�Bi → Bi) → A. By the proof of the soundness of GL, we know

that for any constant provability model and any arithmetical substitution σ,
M � Γσ(0) +

∧k
i=1(Pr0(Bσ

i (0)) → Bσ
i (0)) ⇒ Aσ(0). Since M � Pr0(φ) → φ

for any arithmetical φ, we have M � Γσ(0) ⇒ Aσ(0). Use Lemma 7.3 to
change the index of the theories from zero to any arbitrary witness.
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Moreover, we have the completeness theorem.

Theorem 7.7. (Completeness) Let IΣ1 ⊆ T be a sound r.e. theory and
{Tn}∞n=0 be a hierarchy of theories such that for any n, Tn = T . If (N, {Tn}∞n=0) �
A, then GLS ` A; and especially, if sCst � A, then GLS ` A.

Proof. By the assumption, we have (N, {Tn}∞n=0) � A. Hence, there are
expansions {Ai}ri=0 of A and witnesses wi such that for all arithmetical sub-
stitutions σ, N �

∨r
i=0 A

σ
i (wi). Since all the theories are equivalent, it is easy

to show that for any formula B and any witness v, Bσ(v) is equivalent to
Bσ, where Bσ means a combination of substituting any atom by σ and inter-
preting any box as the provability predicate for T . Therefore, N �

∨r
i=0 A

σ
i .

Moreover, it is easy to prove that if B is an expansion of C, then Bσ is equiv-
alent to Cσ in IΣ1, hence N � Aσ. Since σ is arbitrary, based on Solovay’s
second completeness theorem, GLS ` A.
For the second part of the theorem, it is easy to verify that if sCst � A then
the assumption of the first part for T = IΣ1 is met and hence GLS ` A.

8 The Extensions of KD45

Intuitively, the logic S5 does not admit any provability interpretation. The
informal reason is as follows: The axiom 5 : ¬�A → �¬�A simply states
that if A is not provable in a theory Tn, then this fact will be provable in
Tn+1, i.e.

Tn 0 A⇒ Tn+1 ` ¬Prn(A).

Moreover, the axiom T asserts that all theories are sound, hence

Tn 0 A⇔ Tn+1 ` ¬Prn(A).

We can use the last equivalence and the fact that the theory Tn+1 is re-
cursively enumerable to find a decision procedure for the provability in the
theory IΣ1 ⊆ Tn, which is impossible.
The above argument is based on the axiom 5 and the fact that all theories
are sound. But it is possible to weaken the soundness part to a certain con-
sistency assumption which generalizes the above argument to all extensions
of the logic KD45.

Theorem 8.1. There is no provability model (M, {Tn}∞n=0) such that

(M, {Tn}∞n=0) � KD45.

Hence, there are no provability models for any extension of the logic KD45.
In particular, S5 does not have any provability interpretation.
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Proof. The proof we present here is more complex than the natural proof of
this theorem, because we use weaker assumptions than what is available in
KD45. The reason of our interest in this more complex proof is that we will
use the same proof for the case of the classical propositional logic, and in
that case we just have access to these weaker assumptions.
We prove the claim by contradiction. Suppose that there is a provability
model (M, {Tn}∞n=0) such that (M, {Tn}∞n=0) � KD45. First, we show that
the following three statements are true in M , then we will use these state-
ments to reach the contradiction.

(i) For any n, M thinks that Tn+1 0 Prn(⊥). (Weak version of the consis-
tency assumption.)

(ii) For any n, there exist N > n and s < N such that M thinks that
TN ` Prn+1(Prn(⊥)) → Prs(⊥). (Weak version of the provability of
the consistency assumption.)

(iii) There are m, n and k such that M thinks that for any arithmetical
statement φ,

¬Prn(φ)→ Prm+1(Prk(φ)→ Prm(⊥)).

(Weak version of the axiom 5).

To prove (i), for any number n, define �n> as follows: �0> = > and
�n+1> = ��n>. Consider the formula ¬��(⊥ ∧ �n>), which is a theo-
rem of KD45. Therefore, we have expansions of this formula, of the form
¬�

∨si
j=0 �

∨tij
k=0(⊥∧Bijk) for 0 ≤ i ≤ r, where Bijk is an expansion of �n>.

Moreover, there are witnesses wi = (ni, (mij, (uijk)
tij
k=0)sij=0) for any of these

expansions such that for any arithmetical substitution σ, we have

M �
r∨
i=0

¬�
si∨
j=0

�(

tij∨
k=0

(⊥ ∧Bijk))
σ(wi).

Since the number of the boxes in �n> is n, and witnesses for these boxes
should be increasing, we have mij ≥ n and hence ni ≥ n + 1. Define
M = minij(mij) and N = mini(ni). Since Bijk is an expansion of the
theorem �n>, we can easily show that Bijk(uijk) is provable in IΣ1. Hence,
it is easy to see that M � ¬PrN(PrM(⊥)) for some N > M ≥ n. Therefore,
if M � Prn+1(Prn(⊥)), and since N > M ≥ n, we have PrN(PrM(⊥)), which
is a contradiction.
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For (ii), apply the same method to the formula �(��(�⊥ ∧ �n>) →
�⊥) which is again a theorem of KD45. Then there are expansions of the

form �
∨qj
j=0(�(

∨pij
k=0 �

∨tijk
l=0 Bijkl) → �⊥) where Bijkl is an expansion of

�⊥∧�n> and there are witnesses wi = (ni, (mij, (rijk, (uijkl)
tijk
l=0)

pij
k=0, sij)

qi
j=0)

such that

M �
r∨
i=0

(�(

qj∨
j=0

(�(

pij∨
k=0

�

tijk∨
l=0

Bijkl)→ �⊥))σ(wi).

Once more, with the same reasoning as in the case (i), n ≤ rijk < mij < ni.
Define N = maxi(ni), r = minijk(rijk), m = minij(mij) and s = maxi(si).
Hence N > m, r, s and m > r ≥ n. Since the theories in the hierarchy
{Tn}∞n=0 are provably increasing, it is easy to prove

M � PrN(Prm(Prr(⊥))→ Prs(⊥)).

Because m > r ≥ n, we have

M � PrN(Prn+1(Prn(⊥))→ Prs(⊥)).

Since n is arbitrary, we have proved that for any n, there exists N > n,
s < N such that

M � PrN(Prn+1(Prn(⊥))→ Prs(⊥)),

and this is what we wanted.

For (iii) we know that ¬�p → �(�p → �⊥) is provable in KD45
and consequently it is true in the model. Therefore, there are some ex-
pansions of the formula ¬�p → �

∨si
j=0(�p → �⊥), and some witnesses

(ni,mi, (kij, lij)
si
j=0) for them, such that for any arithmetical substitution σ,

M �
r∨
i=0

(¬�p→ �
si∨
j=0

(�p→ �⊥))σ(ni,mi, (kij, lij)
si
j=0).

Define n = maxi(ni), k = minij(kij), m = maxi(ki) and l = maxij(lij). It is
easy to show that

M � ¬Prn(pσ)→ Prm(Prk(p
σ)→ Prl(⊥)).

It is easily verified that we can increase m and l; therefore, w.l.o.g. we can
assume that m = l + 1. Send p to φ to prove the claim, and this completes
the proof of the statement (iii).
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For the proof of Theorem 8.1, we want to use these three statements to
reach a contradiction. First of all, to simplify the proof, use the following
notation. For any a and b, define the theory Tba = Tb + Cons(Ta). Thus, by
Prba(A), we mean PrTba . Now, (iii) would be equivalent to

M � ¬Prn(pσ)→ Prml
(¬Prk(p

σ)).

Put φ = Prml
(⊥); therefore,

M � ¬Prn(Prml
(⊥))→ Prml

(¬Prk(Prml
(⊥))).

On other hand by the formalized Σ1-completeness, we have

IΣ1 ` ¬Prk(Prml
(⊥))→ ¬Prml

(⊥),

hence,
Tml
` ¬Prk(Prml

(⊥))→ ¬Prml
(⊥).

Moreover, by Σ1-completeness, we have

IΣ1 ` Prml
(¬Prk(Prml

(⊥))→ ¬Prml
(⊥)).

Therefore,

IΣ1 ` Prml
(¬Prk(Prml

(⊥)))→ Prml
(¬Prml

(⊥)).

And since M � IΣ1, we have

M � ¬Prn(Prml
(⊥))→ Prml

(¬Prml
(⊥)).

Based on Gödel’s second incompleteness theorem formalized in IΣ1, we can
conclude

IΣ1 ` ¬Prml
(⊥)→ ¬Prml

(¬Prml
(⊥)).

However, by (i), we have

M � ¬Prl+1(Prl(⊥)),

hence M � ¬Prml
(⊥). Since M � IΣ1,

M � ¬Prml
(¬Prml

(⊥)).

Therefore,
M � Prn(Prml

(⊥)),

and thus by definition of Tml
we have

M � Prn(Prm(Prl(⊥))).

By (ii), there is some N ≥ l such that M � PrN(Prl+1(Prl(⊥)) → Prs(⊥)).
W.l.o.g. pick this N ≥ n. Since N ≥ n, M � PrN(Prm(Prl(⊥))), and
therefore, M � PrN(Prs(⊥)). Because N > s, we have M � PrN(PrN−1(⊥)),
which contradicts with (i), and the proof follows.
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9 A Remark on the Logic of Proofs

As we mentioned in the Introduction, and as far as we know, the only suc-
cessful attempt to find a natural provability interpretation for S4 and hence,
a formalization of the BHK interpretation is done by Artemov [1] and is
called the logic of proofs. In this section, we will look into this approach and
investigate some of its advantages and disadvantages.

The main idea of the logic of proofs, LP, is using explicit proofs to
avoid the non-standard proofs and hence to eliminate the incompleteness
phenomenon. Let us give a more detailed account of this result. The lan-
guage of LP is two sorted; one sort is for the explicit proofs and the other
for the propositions. The first sort consists of proof terms constructed by the
proof variables, proof constants and the proof connectives +, · and !, while
the second sort contains terms constructed by the propositional variables,
propositional connectives and the formulas of the form t : A in which t is a
proof term and A is a proposition. Let us explain the intuitive meaning of
these operations:

First of all we have to emphasize that in this interpretation, unlike the
usual case in mathematics, proofs can be multi-conclusion. To find a natu-
ral candidate for these multi-conclusion proofs, it is enough to consider any
usual proof as a proof for all intermediate statements it uses to prove the
conclusion. For instance, the usual proof A1, A2, . . . , An of An will be inter-
preted as a proof for all Ai’s.

1. The operation “!”. If t is a proof for A, then !t is a proof for the fact that
“t is a proof for A”. Therefore, the operator ! is the proof checker and could
be interpreted as a self-awareness operator.
2. The operation “·”. If t is a proof for A→ B, and s is a proof for A, then
t · s is a proof for B. Intuitively, · means the application of Modus Ponens
on the proofs.
3. The operation “+”. t + s means the union of the proofs t and s. Recall
that our proofs are multi-conclusion and t+ s can be served as a proof for all
conclusions of t and s. Therefore if t is a proof for A and s is a proof for B,
then t+ s is a proof for both A and B. To gain a better understanding, if we
use the canonical way of changing usual proofs to multi-conclusion proofs,
i.e. reading a usual proof as a proof for all intermediate statements in the
proof, then t + s just means putting t and s together. This is exactly what
the symbol + suggests.
4. The predicate “ : ”. The intuitive meaning of t : A is that t is a proof for A.
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The formal system LP is a theory in this language to capture the in-
tended meaning of the symbols defined above. The axioms are the following:

1. A finite complete set of axioms for the classical propositional logic for
the language of LP,
2. t : A→ A,
3. t : A→ B → (s : A→ t · s : B),
4. t : A→!t : t : A,
5. t : A→ s+ t : A,
6. s : A→ s+ t : A.

The rules are the modus ponens and the neccesitation rule. The latter
means that for any axiom A, we have ` cA : A, where cA is an appropriate
constant exclusively used for A.

The natural interpretation for LP would be based on the usual proofs
in Peano arithmetic. To formalize this idea, first of all we need a proof
predicate: A proof predicate is a provably ∆1 formula (in PA) Prf(x, y) with
some natural basic properties (which we skip here. See [1]), and the following
fundamental property:

PA ` A ⇔ ∃xPrf(x, dAe).

We want to interpret the language of LP with this natural provability in-
terpretation. Define an arithmetical substitution ∗ as the following: Firstly,
it interprets ·, !, + and constants as the recursive functions on proofs in PA in
the intended way. For instance, the function for · i.e., ·∗, will be the recursive
function which reads the codes of the proofs for A and A → B and replies
the code of a proof for B. Why can we define such recursive functions? To
show the fact that these functions exist, we need a proof; but here we just
want to explain the main idea instead of a formal proof. For this reason, let
us limit ourselves to the canonical proof predicate of PA. In this case, it can
be easily shown that we can define these functions in a recursive way. For
instance, if x and y are proofs for A→ B and A respectively, for ·∗(x, y) it is
enough to put y after x and add the formula B at the end. This is obviously
a proof for B and this process is clearly a recursive function. Moreover, note
that for any cA, c∗A is one of the proofs for the axiom A∗. The existence of
such a c∗A also needs a proof, which we skip here. (See [1].)

Up to this point, we have interpreted all the proof connectives as recursive
functions. Use these interpretations to interpret all proof terms t. Note that
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for interpreting proof variables we use arbitrary natural numbers as codes of
proofs. Extend the interpretation ∗ to formulas. The idea is just interpret-
ing all atoms as arithmetical sentences, reading t : A as the proof predicate
Prf(t∗, dA∗e) and commute ∗ with all boolean connectives. For instance, the
interpretation of !x : p→ p would be Prf(!∗(n), dφe)→ φ where the interpre-
tations of x and p are n and φ, respectively.

These arithmetical interpretations are the natural and concrete inter-
pretations of the proofs, and in [1] Artemov proved that LP is sound and
complete with respect to the class of these arithmetical interpretations.

Theorem 9.1. LP ` A iff A∗ is true for all arithmetical interpretations ∗.

So far, we have found a natural proof interpretation for the system LP.
Finding a natural interpretation for S4 into LP would be the next step. Sub-
sequently, we can use the composition of these interpretations to find a proof
interpretation for S4 and hence for IPC. We do not go into detail about
the interpretation of the modal language into the system LP, but the basic
idea is the following: Interpret any box as the existence of a proof; thus, any
modal sentence will be equivalent to a first order formula in the language of
LP. Therefore, we have quantifiers everywhere and specially in the scope
of the predicate “:”. We know that there is no way to exchange the quan-
tifiers with the proof predicate (which is the reason why the incompleteness
phenomenon and non-standard proofs appear), but since we require all the
codes of the proofs to be standard numbers, we extract all the quantifiers
and convert the translated formula into the prenex form. Use the Skolem-
ization technique to witness the existential quantifiers by the universal ones.
These witnesses are called realizations. (This is where we essentially need
“+”. It is important to note that by using Skolemization, we usually find
a finite set of different witnesses and then we can roughly use + to merge
these finite witnesses into one.) Note that this is not how Artemov argues in
[1]; however, we explained the realizations in the way that we think is more
accessible and to show why it is natural to have such a concept at the heart
of the interpretation of the modal sentences. Let us illuminate the above
interpretation by an example.

Example 9.2. Consider the modal formula (�(p → p) ∧ ¬�p) → �¬�p.
First, we have to interpret all of the boxes as the existence of the proofs.
Hence, we have

(∃w : (p→ p) ∧ ¬∃x : p→ ∃y : (¬∃z : p).
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Then, by extracting the quantifiers, we have

(∃w : (p→ p) ∧ ∀x¬x : p)→ ∃y∀z y : ¬z : p,

which is equivalent to

∀w∃x∃y∀z((w : (p→ p) ∧ ¬x : p)→ y : ¬z : p)).

And finally by witnessing y and x by some terms t(w, z) and s(w, z), we have

(w : (p→ p) ∧ ¬s(w, z) : p)→ t(w, z) : ¬z : p.

This new formula is a realization for the modal formula (�(p→ p)∧¬�p)→
�¬�p. Note that this realization is just one possible realization of the
formula and if we change the witnessing terms t(w, z) and s(w, z), we can
find different realizations for the same formula.

After introducing the realizations, Artemov proved the following: (See
[1].)

Theorem 9.3. S4 ` A iff there exists some realization r such that LP ` Ar.

In sum, we can say that Artemov used two ingredients to find a prov-
ability interpretation for S4. The first one is the interpretation of modal
sentences via realizations into the system LP. (Here the main idea is the
interpretation of the boxes as the existence of the standard proofs.) And the
second ingredient is the interpretation of the system LP via natural arith-
metical proof interpretations. Therefore, the main idea of what Artemov did,
is to use the system LP as a bridge to interpret S4 via arithmetical proof
interpretations.

Let us explain the advantages of this approach. First of all, it uses the
explicit proofs and by the method of using realizations, it makes sure that
everything is a standard proof in this context. Therefore, this approach actu-
ally kills the effect of Gödel’s incompleteness theorems and makes the proof
interpretation more intuitive. Note that naturally, we do not count infinite
non-standard proofs as proofs. Moreover, regardless of the relation between
modal logics and explicit proofs, the system LP has its own applications. In
fact, since it is a formal system for explicit proofs, it can be used as a theory
to investigate the concept of proof and its natural calculus. Consequently,
these formal systems are appropriate to investigate the formal verification in
computer science or the behavior of justifications in formal epistemology.
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However, this utopia of explicit proofs comes at a price. The price is a
combination of two unintended properties: The first one is related to the
fundamental change in the interpretation of the concept of provability and
the second one is about the role of LP as an unbiased bridge. The problem is
that the bridge is not neutral and somehow reflects its own behavior, which
is not what we wanted.

Let us explain the first property by a simple example: Consider the modal
sentence �¬�p. The intended meaning of this sentence is the existence of a
proof that shows p is not provable. In other words, it states that there exists
a proof which shows that for any possible proof x for p, x is not a proof
for p. Let us use the logic of proofs interpretation of the sentence. Since
the occurrences of the inner and the outer box are negative and positive re-
spectively, the meaning of the sentence is the existence of a term t(x) such
that t(x) : ¬x : p. Forgetting the condition that the term t(x) should be a
term in the language, it means that for all x, there exists a proof y = t(x)
which proves ¬x : p. In other words, it says that for any possible proof x
for p, there exists a proof which shows that x is not a proof for p. It is easy
to check that while the first interpretation is an ∃∀ statement, the second
one is a ∀∃ statement, and it is obviously weaker than the first one. In fact,
when we claim that we have a proof for unprovability of p, we mean a fixed
uniform proof of the fact and we do not mean a machine (term) to transform
a possible proof of x to a proof y that shows x is not a proof for p.
What we showed above is just the difference for one statement. Nevertheless,
the argument actually works for different kinds of sentences. The reason is
simple: Logic of proofs needs to kill the presence of non-standard numbers.
For this matter, it pushes out all the quantifiers. (It also changes the order
of quantifiers to find a functional interpretation of proofs.) Since quantifiers
do not commute with proof predicates, the content of the sentence before
pushing out the quantifiers is different from that of the transformed sen-
tence. The first sentence is the intended interpretation of provability and
the latter is what the logic of proofs interprets as the meaning of provability.
While this new interpretation is interesting and useful, it is not the intended
interpretation of informal provability and hence not the interpretation of S4.

In the following, we accept the functional interpretation of provability
as what the logic of proofs proposed and we want to investigate the role
of terms which we ignored in the previous argument. Let us explain the
second property by a thought experiment: Think of the situation that you
have another binary connective “?” in the language of LP with the following
intuitive meaning: If s is a proof for A→ A and t is not a proof for A, then
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?(s, t) is a proof of the proposition that “t is not a proof for A”. Add the
axiom

(s : (A→ A) ∧ ¬t : A)→?(s, t) : ¬t : A

to the system LP and call it LP?. It is clear that the connective ? and the
above sentence are the negative versions of the connective ! and its corre-
sponding axiom, respectively. What is not clear is the use of the seemingly
useless part s : A → A. We can explain this issue as the following: Assume
that we have a non-proof t for A and we want to construct a proof of the
sentence ¬t : A. We call this proof r. The important fact is that the sole
access to t is not enough to construct r because the code of A is also needed
and this is actually where s plays its role: s is a proof for A→ A, hence we
can use s to compute the code of A and now we have enough information to
construct r.
Our method here seems ad-hoc and is certainly ugly, but remember that
our goal is to perform an experiment about LP and fortunately this ad-hoc
example is good enough to make our point. Now, let us be more formal
about the natural arithmetical interpretation of this connective and this new
system. Since we used explicit standard proofs, we know that there exists a
recursive function which reads t and the code of A and if t is not a proof for
A, finds a proof of this fact. The reason is as follows: We know that Prf(x, y)
is provably ∆1, hence if ¬Prf(t, dAe), we have

PA ` ¬Prf(t, dAe).

Therefore, by the definition of a proof predicate we have

∃rPrf(r, d¬Prf(t, dAe)e).

Use unbounded search to find this r. Since it exists, our program halts and
finds it. Now interpret ?(s, t) as the recursive function which reads s, finds
the code of A and then by the above-mentioned method finds the intended
proof r. Thus, based on this new natural arithmetical interpretation, we can
interpret the new axiom (s : (A→ A) ∧ ¬t : A)→?(s, t) : ¬t : A. Hence, we
have a natural arithmetical interpretation for the system LP?. On the other
hand, one of the instances of the new axiom, i.e. (w : (A→ A) ∧ ¬z : A)→
?(w, z) : ¬z : A, where z and w are proof variables, is the realization of the
modal statement 5′ : (�(A → A) ∧ ¬�A) → �¬�A in this new language.
(Put t(w, z) =?(w, z) and s(w, z) = z in Example 9.2.) The above discussion
means that we can find a very natural provability interpretation of a variant
of the axiom 5. Recall that this axiom is not provable in S4 and it seems
contradictory with Artemov’s completeness result. However, there is no con-
tradiction. The reason is that “?” is not in the original language of LP, and
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hence you can not use it as a witness in the realization.
This observation shows that the arithmetical interpretation actually vali-
dates a variant of the axiom 5, but the lack of the appropriate symbol in
LP interferes with this fact. Therefore, the system LP does not reflect the
whole power of explicit proofs; it just chooses the appropriate part to wit-
ness all the theorems of S4 and nothing more than that. In other words,
the formalization of the provability interpretation via the explicit proofs is
very sensitive to the language we use. If we change the language, then with
the same arithmetical interpretation, we will capture different modal log-
ics. Therefore, we can conclude that the soundness-completeness result for
S4 with respect to this kind of arithmetical interpretations is a soundness-
completeness result for the language we use and not the natural arithmetical
interpretation we choose. Now, a natural question would be the following: If
we eliminate this language barrier and make the relation between modal log-
ics and arithmetical interpretations as “direct” as possible, then which modal
logic corresponds to the whole power of the arithmetical interpretations of
the proofs? By the direct connection, we roughly mean the following: For
any modal sentence A, write it in the prenex form in a way that we defined
before. Then, instead of witnessing the existential quantifiers by some terms
in some language, witness them by some natural recursive functions on the
proofs in Peano arithmetic. Define the logic E as the logic of all statements
which are valid for this kind of arithmetical interpretations. Clearly, the
question mentioned above is informal, but it is easy to verify that the answer
is not S4. The reason is that we can find an appropriate way to interpret
a variant of 5 as we have shown above. It is appropriate because there is
no a priori reason to accept the recursive function ! and reject ?. The first
one finds a proof for Prf(m,n) if Prf(m,n) is true and the second function
finds a proof for ¬Prf(m,n) if Prf(m,n) is false. Both of them are recursive
and hence accessible for us as human beings. Note that Prf is a provably
recursive predicate, and hence finding a proof for Prf(m,n) or a proof for its
negation are similar computational tasks. (In the modal setting, the axioms
4 and 5 are intuitively different because we read �A as ∃xPrf(x,A). This
interpretation makes the sentence Σ1 which is different from its negation.)

To sum up, the explicit proofs approach first kills all the quantifiers and
puts some explicit witnesses for them. Therefore, it ignores the order of
quantifiers and changes the canonical meaning of sentences and then as a
consequence, it eliminates the computability based difference between prov-
ability and unprovability (Σ1 vs Π1) and maps both predicates to the boolean
combinations of the explicit proof predicate Prf, which belongs to the class
∆1. Consequently, the axioms 4 and 5 become similar and hence arithmeti-
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cal interpretations can interpret a variant of 5 in a very natural way. Finally,
to avoid this fact, the logic of proofs uses the language of LP to regain the
difference between 4 and 5 by choosing what we need for S4 and ignoring
the other natural functions as exemplified by the function ?. This argument
shows that the approach of explicit proofs does not distinguish 4 from 5 in
a natural and essential way and hence, it can not be considered as a formal-
ization of the provability interpretation of S4.

As the final part of this section, let us compare what we do in this chapter
with the approach of the explicit proofs. First of all, we use the canonical
meaning of provability instead of the logic of proofs’ functional interpretation.
Moreover, we do not use any language as a bridge. Therefore, our soundness-
completeness results represent the provability behavior of our arithmetical
interpretations in a direct way. Secondly, to capture different modal logics,
we impose different natural conditions on our provability models, specifically
on the hierarchy of theories. Therefore, we can claim that our approach
can characterize different modal logics based on their different provability
natures. Thirdly, our interpretation is based on the implicit proofs approach
and hence it is a natural generalization of Solovay’s work on GL. But since
the Löb axiom is based on the incompleteness phenomenon, the explicit
approach does not capture it and thus does not accept Solovay’s provability
interpretation as a special case. Hence, the explicit approach can not serve
as the general framework for provability interpretations.

10 BHK Interpretations

Briefly, what we are going to do in this section, is to introduce a formaliza-
tion of the BHK interpretation. Indeed, we will generalize this goal to make
a framework to formalize different kinds of provability interpretations which
includes the BHK interpretation as a special case. Note that the usual BHK
interpretation is not the unique provability interpretation of the propositional
language; in fact, there are many of them. Some of them can be character-
ized as variants of the original BHK interpretation, and some can’t. The
reason is that those provability interpretations do not satisfy the intended
philosophical conditions which we want to have, but they are still provability
interpretations and they need an exact formalization if we want to use them.
Let us illuminate the idea by two examples. The first one is a controversial
variant of the BHK interpretation; it is obtained from the original BHK in-
terpretation after relaxing the condition which says that there does not exist
a proof for ⊥. This interpretation informally corresponds to the minimal
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propositional logic, MPC. The second example of provability interpretation
is also obtained from the original BHK interpretation, but now we read ⊥ as
the inconsistency, instead of the provability of the inconsistency. More pre-
cisely, and using the notation of Gödel’s translation, we have ⊥g = ⊥, where
g stands for this new translation (which is different from what we used in
the Introduction). This provability interpretation cannot be characterized as
a variant of the BHK interpretation because of some philosophical reasons,
which we do not get into here.

In this section, we try to justify the claim that our provability interpre-
tation can offer an appropriate framework to formalize these different prov-
ability interpretations of the propositional logics. To implement this idea,
we need two steps. First, we have to interpret all the connectives as the
provability interpretation demands; this step is done by Gödel’s translation.
The second step is interpreting the provability predicates (i.e. boxes in the
modal translation) as the classical provability of the classical theories. For
that reason, we need a hierarchy of theories to formalize the hierarchy of the
intuitive provabilities in the definition of the provability interpretation and
also a model to evaluate the truth value of our statements. This second step
is done by the provability models.

What we discussed above is the general framework. Let us come back
to the specific case, which is the original BHK interpretation. Is there a
right formalization of this interpretation? As we will show later, for differ-
ent kinds of provability models, we have different BHK interpretations and
these interpretations could show inherently different provability behaviors.
Consequently, there are different formalizations for the BHK interpretation,
instead of just a canonical one. The reason is that the BHK interpretation
just interprets propositional connectives in a discourse of provability, but it
does not say anything about the internal structure of the concept of prov-
ability. For instance, it does not say anything related to the power of the
meta-theories compared to the lower theories. Since the BHK interpretation
is the intended semantics for the intuitionistic logic, we have to accept that
there could be different intuitionistic logics in terms of different interpreta-
tions of the power of our model and our theories. All of them are equally
intuitionistic if we have just the BHK interpretation as the criterion.

The natural question is that what these intuitionistic logics are if we im-
pose some natural conditions on the behavior of our model and our theories.
In the following, we will show that for some natural classes of provability
models such as the class of all models or the class of all reflexive models, we
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can characterize some propositional logics such as BPC and IPC, respec-
tively. For instance, in the case of reflexive models, the result shows that
if we use the BHK interpretation with the philosophical commitment which
states that all of the theories, meta-theories, meta-meta-theories and so on
are sound and also, any meta-theory is powerful enough to prove the sound-
ness of the lower theories, then the logic of the formulas which are valid under
this kind of BHK interpretation, is the usual propositional intuitionistic logic.
But, if we choose the minimal power, which does not assume any non-trivial
condition on the hierarchy of the meta-theories, then the logic will change to
BPC. However, what is important here is that all of these logics could be
characterized as intuitionistic logics. This fact can explain the reason behind
the disputes about finding the correct formalization of the intuitionistic logic.
For instance, in [9], Ruitenburg argues that the truly intuitionistic logic is
not IPC and he proposed BPC as the right one. Our approach here has a
plural nature, and it tries to explain why with the same informal semantics
(the BHK interpretation) there are different proposed logics.

Finally, a remark about classical logic. Since we have the axiom of the
excluded middle in classical logic, we should have the following condition on
provability models: Either the “provability of p” is provable or it is provable
that the provability of p implies the provability of ⊥. This means that the
meta-theory should be powerful enough to prove the unprovability of almost
all unprovable formulas. As we saw in the case of the logic S5, it contradicts
with the natural condition that all the theories should be recursively enumer-
able. Therefore, intuitively speaking, we have to say that classical logic is
beyond the scope of the BHK interpretation. In the following, we will prove
this fact in a precise way.

Definition 10.1. A provability interpretation for the propositional language
is a translation from the propositional language to the language of modal
logics.

To illuminate the Definition 10.1, let us introduce three provability inter-
pretations as examples.

Definition 10.2. The BHK interpretation b is the following translation:

(i) pb = �p and ⊥b = �⊥

(ii) (A ∧B)b = Ab ∧Bb

(iii) (A ∨B)b = Ab ∨Bb

(iv) (A→ B)b = �(Ab → Bb)
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(v) (¬A)b = �(Ab → �⊥)

Our translation is the same as the usual one, except for the case of ⊥,
which is translated to ⊥ in the usual translation. (The negation of a formula
A is considered as A → ⊥ and it inherits this change in the translation
from ⊥. ) The reason for slightly changing the definition of the translation
is because the usual translation can not capture the intended intuition of
the BHK interpretation. Actually, the intended intuitionistic meaning of ⊥,
similar to the other atomic formulas, is its provability. Therefore, the natural
interpretation of ⊥ is �⊥. On the other hand, we know that the BHK
interpretation claims that there is not any proof of ⊥, which means ¬�⊥.
Based on these two observations, we can justify the usual translation of ⊥
as �⊥ ∧ ¬�⊥, which is the same as ⊥. Nevertheless, we have to emphasize
that the condition of the unprovability of inconsistency is not related to
the meaning of the connectives, and hence it should not interfere in the BHK
interpretation; it is actually a commitment we impose on the discourse of the
provability. In our terms, the unprovability of the inconsistency asserts that
the theories and meta-theories are consistent and it is obviously a property
of the provability model and not a property of the connectives which we
want to define. Hence, to formalize the original BHK interpretation, we need
two ingredients; one is the b translation which is the formalization of the
implicit BHK interpretation, and the second is the consistency condition on
the provability models. The following definition formally states the second
condition.

Definition 10.3. A provability model (M, {Tn}∞n=0) is called a BHK model
if for any n, M � ¬Prn+1(Prn(⊥)).

Remark 10.4. It seems that the natural consistency condition would be
the consistency of all the theories. Yet, it is not enough. For instance, it is
possible that all the theories in the hierarchy are consistent, but some meta-
theory thinks that the lower theory is inconsistent, which contradicts with
what an intuitionist assumes. For the intuitionist, the hierarchy of theories
are just different layers of the story of the mind, and obviously these stories
must be consistent in accordance with the BHK interpretation. However, this
condition should be mentioned in the story itself. One way is assuming that
any meta-theory actually proves the consistency of the lower theories. This
is a natural condition, but it imposes a strong commitment on our theories.
To keep the commitments as minimal as possible, we believe that the right
condition to impose on the theories is the weaker condition which states that
any meta-theory does not think that the lower theory is inconsistent. As we
will see, this weaker condition widens the horizon of the BHK interpretation
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to capture the basic propositional logic on the one hand, and avoid artificial
and degenerate models in which we could capture classical logic, on the other.

Based on the aforementioned considerations, when we talk about the
formalization of the BHK interpretation, we always refer to the BHK models.
Let us formalize what we will call the weak BHK interpretation.

Definition 10.5. Let q be a new atom which does not belong to the propo-
sitional language. The weak BHK interpretation, w, is the following trans-
lation:

(i) pw = �p and ⊥w = �q

(ii) (A ∧B)w = Aw ∧Bw

(iii) (A ∨B)w = Aw ∨Bw

(iv) (A→ B)w = �(Aw → Bw)

(v) (¬A)w = �(Aw → �q)

The translation is based on the idea that in this variant of the BHK in-
terpretation, we eliminate the consistency condition from the discourse of
provability. As a result, with this interpretation the intuitionist can not dis-
tinguish the inconsistency statement from any other statements. Therefore,
in her viewpoint, ⊥ is just a new atomic sentence which could be provable.

And finally, we will define Gödel’s translation to show that there could
be different provability models apart from the BHK interpretations.

Definition 10.6. Gödel’s provability interpretation, g, is the following trans-
lation:

(i) pg = �p and ⊥g = ⊥

(ii) (A ∧B)g = Ag ∧Bg

(iii) (A ∨B)g = Ag ∨Bg

(iv) (A→ B)g = �(Ag → Bg)

(v) (¬A)g = �(¬Ag)

It is time to define the satisfaction of a propositional formula in a prov-
ability model with respect to some provability interpretation i.
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Definition 10.7. Let i be a provability interpretation. Then, by an expan-
sion of a propositional formula A, and a witness forA under the interpretation
i, we mean an expansion and a witness for Ai. And by (M, {T}∞n=0, i) � Γ⇒
A we mean (M, {T}∞n=0) � Γi ⇒ Ai. Moreover, if C is a class of provabil-
ity models, by (C, i) we mean {(M, {T}∞n=0, i) | (M, {T}∞n=0) ∈ C} and by
(C, i) � Γ⇒ A we mean C � Γi ⇒ Ai.

The next step is establishing the soundness-completeness theorem for the
provability interpretations we defined. But first, we need a technical lemma.

Lemma 10.8. If Γb `KD4 A
b, then EBPC ` Γ⇒ A.

Proof. If Γb `KD4 A
b then there is a cut-free proof for Γb ⇒ Ab in G(KD4).

Call it π. It is clear that all formulas occurring in π are sub-formulas of Ab or
sub-formulas of formulas in Γb. We know that all of these sub-formulas have
the following forms: Bb; Bb → Cb and atoms p. (> and ⊥ are considered
atomic formulas in this proof.) Therefore, every sequent in π has the following
form:

Γb, {Bb
i → Cb

i }i∈I , {pj}j∈J ⇒ ∆b, {Db
r → Eb

r}r∈R, {qs}s∈S
Now we will prove the following claim:

Claim. If

G(KD4) ` Γb, {Bb
i → Cb

i }i∈I , {pj}j∈J ⇒ ∆b, {Db
r → Eb

r}r∈R, {qs}s∈S

where {pj}j∈J ∩ {qs}s∈S = ∅ and ⊥ /∈ {pj}j∈J then for any X ⊆ I

Γ, {Dr}r∈R, {Ci}i∈X `EBPC

∨
{∆, {Er}r∈R, {Bi}i/∈X}

The proof is by induction on the length of the cut-free proof in G(KD4).
To simplify the proof, we will call a sequent satisfying the conditions {pj}j∈J∩
{qs}s∈S = ∅ and ⊥ /∈ {pj}j∈J , a good sequent.

The case for axioms and structural rules are easy to check. If the last rule
is a conjunction or disjunction rule, then the main formula has the first form.
Then since it is possible to simulate all conjunction and disjunction rules in
EBPC, the case of conjunction and disjunction rules are also easy to check.
If the last rule is an implication rule, since we define our claim up to using
implicational rules, there is nothing to prove in this case. Moreover, notice
that if the conclusion sequent is good then the premises are so. Therefore, it
is possible to use the induction hypothesis for them. Finally, if the last rule
is a modal rule, then we have the following two cases:
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1. If the last rule is a modal rule �4R, based on the form of formulas
and the fact that in those three forms a boxed formula should be of the first
kind, we have two cases. The first case is when the boxed formula in the
right side has the form �(Db → Eb). The second case is when the formula
has the form �p. For the first case, the last rule has the following form:

{pj,�pj}j∈J , {Bb
i → Cb

i ,�(Bb
i → Cb

i )}i∈I ⇒ Db → Eb

{�pj}j∈J , {�(Bb
i → Cb

i )}i∈I ⇒ �(Db → Eb)

and we want to prove

{pj}j∈J , {Bi → Ci}i∈I `EBPC D → E

Since every formula in the consequent sequent is boxed, it is a good sequent.
Moreover, the only way for the premise sequent to not be good is that for
some j, pj = ⊥. Therefore the claim is obvious from the ⊥ rule in EBPC.
Hence, we can also assume that the premise sequent is a good one. Then, by
IH we know that for any X ⊆ I we have

{pj}j∈J , {Bi → Ci}i∈I , {Ci}i∈X , D `EBPC {Bi}i/∈X , E

By the rule → I the following is provable by Σ = {pj}j∈J ∪ {Bi → Ci}i∈I∧
{Ci}i∈X ∧D →

∨
{Bi}i/∈X ∨ E

Fix i ∈ I and also fix some Z ⊆ I − {i}. Both of the following statements
are theorems of Σ:∧

{Ci}i∈Z ∧D →
∨
{Bi}i/∈Z ∨Bi ∨ E

and ∧
{Ci}i∈Z ∧Ci ∧D →

∨
{Bi}i/∈Z ∨ E

Since Σ ` Bi → Ci. Then by using appropriate formalized rules we will have∧
{Ci}i∈Z ∧D →

∨
{Bi}i/∈Z ∨ E

provable by Σ in EBPC. By iterating this method we can eliminate all
elements in I. Therefore we will have

Σ `EBPC D → E

which is what we wanted to prove.

If the boxed formula in the right side of the rule is �p, then the last rule
has the form
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{pj,�pj}j∈J , {Bb
i → Cb

i ,�(Bb
i → Cb

i )}i∈I ⇒ p

{�pj}j∈J , {�(Bb
i → Cb

i )}i∈I ⇒ �p

and we want to prove

{pj}j∈J , {Bi → Ci}i∈I `EBPC p

There are two different cases. The first case is when p ∈ {pj}j∈J or ⊥ ∈
{pj}j∈J . In this case the claim is an obvious consequence of an axiom in
EBPC. The second case is when p /∈ {pj}j∈J and ⊥ /∈ {pj}j∈J . Therefore,
the premise sequent is a good one. Hence by IH and for any X ⊆ I we have

{pj}j∈J , {Bi → Ci}i∈I , {Ci}i∈X `EBPC {Bi}i/∈X

with the same method as above we can deduce

{pj}j∈J , {Bi → Ci}i∈I `EBPC > → ⊥

Then by the rule C, we will have

{pj}j∈J , {Bi → Ci}i∈I `EBPC ⊥

which is what we wanted.

2. If the last rule is �DR, then everything in the proof is the same as the
proof for the case 1 when we put D = > and E = ⊥. Therefore, we will have

{pj}j∈J , {Bi → Ci}i∈I `EBPC > → ⊥

Then by the rule C, we will have

{pj}j∈J , {Bi → Ci}i∈I `EBPC ⊥

which is what we wanted.
After proving the claim, the theorem is an easy consequences of the claim.
Since there is a proof of Γb ⇒ Ab in G(KD4) then the sequent is obviously
a good one and hence by the claim we will have Γ `EBPC A.

Theorem 10.9. (i) Γ `BPC A iff Γb `K4 A
b

(ii) Γ `EBPC A iff Γb `KD4 A
b

(iii) Γ `IPC A iff Γb `S4 Ab

(iv) Γ `FPL A iff Γb `GL A
b
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(v) Γ `MPC A iff Γw `S4 Aw

Proof. The proof of the soundness part is easy and routine. For the com-
pleteness part, the case (iv) is proved by Visser in [12]. The same proof also
works for (i). (iii) is a well-known result. (See [?] for instance.) (ii) is proved
by Lemma 10.8. For the case (v), we know that MPC and S4 are sound
and strongly complete with respect to the class of reflexive transitive Kripke
models. (For MPC the model should also be persistent.) However, in the
case of MPC, the nodes can also satisfy ⊥. Soundness is again easy. For
the completeness part, if we have a counter MPC-Kripke model for Γ⇒ A,
we can construct a counter S4-model for Γw ⇒ Aw in the following way:
Use the same Kripke model, with the same values, but assume that q is true
in a node, if ⊥ is true in that node. Then, it is easy to show that for any
propositional formula B, B is true in the node l iff Bw is so. Therefore, if the
first model is a counter example for Γ ⇒ A, then the new one is a counter
example for Γw ⇒ Aw. This construction proves the completeness part.

We can use the soundness and completeness of these translations to trans-
fer our results from the modal setting to the propositional one.

Definition 10.10. The class BHK is the class of all BHK models and the
class cBHK is the class of all BHK models which are constant.

Theorem 10.11. (i) Γ `BPC A iff (PrM, b) � Γ ⇒ A. And BPC ` A
iff (BHK, b) � A.

(ii) Γ `EBPC A iff (Cons, b) � Γ⇒ A.

(iii) Γ `IPC A iff (Ref , b) � Γ⇒ A.

(iv) Γ `FPL A iff (Cst, b) � Γ⇒ A. And FPL ` A iff (cBHK, b) � A.

(v) Let (M, {Tn}∞n=0) be a provability model. Then (M, {Tn}∞n=0, b) � CPC
iff there exists n such that M � Prn+1(Prn(⊥)). Therefore, no BHK
interpretation for classical logic exists.

Proof. Based on Theorem 10.9, the strong soundness-completeness parts
are just easy consequences of the soundness-completeness results for the
corresponding modal logics. For the BHK completeness part for (i), if
(BHK, b) � A, then there are expansions Bi’s for Aw and a witness for∨
Bi, such that for all arithmetical substitutions σ, and all BHK models

(M, {Tn}∞n=0), we have M � (
∨r
i=0 Bi)

σ(w). Let Γ be a sequence of infinitely
many copies of ¬��⊥ and u a witness, which witnesses each of these for-
mulas by (n + 1, n). We claim that for any provability model (M, {Tn}∞n=0)
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and any arithmetical substitution σ, we have M � Γσ(u) ⇒ (
∨r
i=0Bi)

σ(w).
If M � Γσ(u), then for any n, we have M � ¬Prn+1(Prn(⊥)). Hence,
(M, {Tn}∞n=0) is a BHK model and therefore, M � (

∨r
i=0Bi)

σ(w). We know
PrM � Γ⇒ Ab; therefore, by strong completeness for K4, we have Γ `K4 A

b.
Thus, K4 ` ¬��⊥ → Ab and then, K4 ` ((> → ⊥) ∨ A)b. By Theorem
10.9, BPC ` (> → ⊥) ∨ A, and therefore by the disjunction property of
BPC, we know that BPC ` A or BPC ` > → ⊥. The latter is impossible
by simple facts about BPC, therefore BPC ` A.
The case (iv) also needs an argument exactly similar to the case (i). More-
over, since the consistent and reflexive models satisfy the consistency condi-
tion of the BHK interpretation, the cases (ii) and (iii) are just a combination
of Theorem 10.9 and the completeness results for the corresponding theories.

For (v) we need some justification. First of all we want to show that
if for any n, M � ¬Prn+1(Prn(⊥)), then (M, {Tn}∞n=0) is not a model for
CPC. We prove this claim by contradiction. Assume that for any n, M �
¬Prn+1(Prn(⊥)) and (M, {Tn}∞n=0, b) � CPC. We want to show that all three
statements of the proof of Theorem 8.1 are also true in our case. Firstly,
(i) is true by assumption. Secondly, consider the formula �n> which is a
translation of the propositional classical theorem >n with the definition >0 =
> and >n+1 = > → >n. Therefore, the formula �(��(�⊥ ∧�n>)→ �⊥)
is the translation of the tautology ((> → (> → (⊥ ∧>n)))→ ⊥). Thus,

(M, {Tn}∞n=0) � �(��(�⊥ ∧�n>)→ �⊥).

Since we used this formula to show (ii), we can claim that we also have
(ii) here. Thirdly, we know that p ∨ ¬p is a theorem of CPC. Hence,
(M, {Tn}∞n=0) � (p∨¬p)b, which means (M, {Tn}∞n=0) � (�p∨�(�p→ �⊥).
Therefore, (iii) is also true in M . Thus, we have a contradiction and it proves
the claim.

For the converse, assume that there is some n such thatM � Prn+1(Prn(⊥));
we will show that (M, {Tn}∞n=0, w) � CPC. First of all, to simplify the proof,
define the complexity of any box as the maximum depth of the nested boxes in
front of that box. For instance, the complexity of the inner box in �(�p∧ q)
is zero, and the complexity of the outer box is one. Define the canonical
witness starting from n, as follows: Witness any box by its complexity plus
n. It is easy to show that this witness is an ordered one, because the witness
for any outer box is bigger than the witness for the inner boxes. Define Aσ

as the formula resulted by substituting all the atoms by σ and witnessing all
the boxes by the canonical witness starting from n. It is easy to verify that
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for any propositional formula A → B, M � ((A → B)w)σ. To show this,
firstly, note that the following claim holds: For any propositional formula B,

IΣ1 ` Prn(⊥)→ (Bw)σ.

The proof of the claim is based on induction on B and easily follows. Assume
that the complexity of the outmost box in �(Aw → Bw) is k ≥ n+ 1. (Since
witnesses begin with n and there is at least one box in Aw, k is at least n+1.)
By Σ1-completeness we have

IΣ1 ` Prk(Prn(⊥)→ (Bw)σ),

and hence,
IΣ1 ` Prk(Prn(⊥))→ Prk((B

w)σ).

Then since M � IΣ1, then

M � Prk(Prn(⊥))→ Prk((B
w)σ).

We know that M � Prn+1(Prn(⊥)) and k ≥ n + 1; hence M � Prk(Prn(⊥)).
Therefore,

M � Prk((B
w)σ),

and thus,
M � Prk((A

w)σ → (Bw)σ),

and the proof follows.

It is easy to check that for any formula B, there exists another formula
C such that C is in the CNF form, in which all the literals are implicational
formulas, positive atoms and ⊥ and classically equivalent to B. Note that
the process of constructing this C just uses the classical rules for conjunction
and disjunction. Since w and the canonical witness respect the conjunction
and disjunction and their basic rules, (Bw)σ and (Cw)σ are equivalent in M .
Suppose that CPC ` B; we want to show that M � (Bw)σ. It is enough
to show that M � (Cw)σ. Considering that all the literals in C are implica-
tional formulas, positive atoms and ⊥, the literals of Cb are translations of
implications, boxed atoms or �⊥. If M 2 (Cw)σ, there must be some clause
in which all the literals are false. Since the translations of the implications
are true in M , there has to be a clause in C consisting of atoms and ⊥.
Therefore, C can not be a classical tautology and hence B will not be, as
well. But CPC ` B; a contradiction. Thus, M � (Bw)σ.
So far, we have shown that if CPC ` B, then M � (Bw)σ. If we send q in
the definition of ⊥w = �q, to ⊥, then we have M � (Bb)σ, which proves the
theorem.

72



There is another type of the BHK interpretation in which there is not
any kind of assumption on the non-existence of a proof of the contradiction.

Theorem 10.12. (i) Γ `MPC A iff (Ref , w) � Γ⇒ A.

(ii) Let (M, {Tn}∞n=0) be a provability model. Then (M, {Tn}∞n=0, w) � IPC
iff (M, {Tn}∞n=0, w) � CPC iff there exists n such that M � Prn+1(Prn(⊥)).

Proof. For (i), use Theorem 10.9 and the soundness-completeness results for
S4. For (ii), if there exists n such that M � Prn+1(Prn(⊥)), then by the
proof of Theorem 10.11 part (v), we know that (M, {Tn}∞n=0, w) � CPC.
Moreover, if (M, {Tn}∞n=0, w) � CPC, then we can easily verify that we have
(M, {Tn}∞n=0, w) � IPC. It remains to show that if (M, {Tn}∞n=0, w) � IPC,
then there exists n such that M � Prn+1(Prn(⊥)).
Assume that (M, {Tn}∞n=0, w) � IPC and for any n, M � ¬Prn+1(Prn(⊥)).
We want to reach a contradiction. We know that IPC ` ⊥ → p. Hence,
(M, {Tn}∞n=0) � (⊥ → p)w. Thus, (M, {Tn}∞n=0) � �(�q → �p). Conse-
quently, there are expansions of the form, �(

∨si
j=0(�q → �p)) for 0 ≤ i ≤ r

and witnesses wi = (ni, (mij, kij)
si
j=0) such that for any arithmetical substi-

tution σ,

M �
r∨
i=0

�(

si∨
j=0

(�q → �p))σ(wi).

Define k = maxij(kij), m = minij(mij) and n = maxi(ni). It is easy to see
that

M � Prn((Prm(qσ)→ Prk(p
σ))).

And if we choose a substitution σ such that qσ = (0 = 0) and pσ = (0 = 1),
then we have

M � Prn((Prm(0 = 0)→ Prk(0 = 1)),

and hence M � Prn(Prk(⊥)). Thus, for some number N > n, k, we have
M � PrN+1(PrN(⊥)) which is a contradiction.
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