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Abstract

In this paper, a proof-theoretic method to prove uniform Lyndon interpo-
lation for non-normal modal logics is introduced and applied to show that the
logics E, M, MC, EN, MN have that property. In particular, these logics have
uniform interpolation. Although for some of them the latter is known, the fact
that they have uniform Lyndon interpolation is new. Also, the proof-theoretic
proofs of these facts are new, as well as the constructive way to explicitly com-
pute the interpolants that they provide. It is also shown that the non-normal
modal logics EC and ECN do not have Craig interpolation, and whence no uni-
form (Lyndon) interpolation.

Keywords: non-normal modal logics, uniform interpolation, uniform Lyndon
interpolation, Craig interpolation.

1 Introduction

Uniform interpolation, a strengthening of interpolation in which the interpolant only
depends on the premise or the conclusion of an implication, is an intriguing logical
property. One of the reasons is that it is hard to predict which logic does have the
property and which does not. Well-behaved logics like K and KD have it, but then,
other well-known modal logics, such as K4, do not. Early results on the subject were
by Shavrukov [14], who proved uniform interpolation for the modal logic GL, and by
Ghilardi [3] and Visser [16], who independently proved the same for K, followed later
by B́ılková, who showed that KT has the property as well [2]. Surprisingly, K4 and
S4 do not have uniform interpolation, although they do have interpolation [2, 3].
Pitts provided the first proof-theoretic proof of uniform interpolation, for intuition-
istic propositional logic, IPC, the smallest intermediate logic [11]. Results from [4, 8]
imply that there are exactly seven intermediate logics with interpolation and that
they are exactly the intermediate logics with uniform interpolation. Pitts’ result is
especially important to us, as also in our paper the approach is proof-theoretic.

The study of uniform interpolation in the context of non-normal modal logics
has a more recent history. The area is less explored than its normal counterpart,
but for several well-known non-normal logics uniform interpolation has been estab-
lished, for example, for the monotone logic M [12], a result later extended in [10, 13]
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to other non-normal modal and conditional logics, such as E and basic conditional
logic CK.

Our interest in the property of uniform interpolation lies in the fact that it can
be used as a tool in what we would like to call universal proof theory, the area where
one is concerned with the general behavior of proof systems, investigating problems
such as the existence problem (when does a theory have a certain type of proof
system?) and the equivalence problem (when are two proof systems equivalent?).
The value of uniform interpolation for the existence problem has been addressed in
a series of recent papers in which a method is developed to prove uniform interpo-
lation that applies to many intermediate, (intuitionistic) modal, and substructural
(modal) logics [1, 5, 6]. The proof-theoretic method makes use of proof systems for
these logics, which in this case are sequent calculi, and shows that general condi-
tions on the calculi imply uniform interpolation for the corresponding logic. Thus
implying that any logic without uniform interpolation cannot have a sequent cal-
culus satisfying these conditions. The generality of the conditions, such as closure
under weakening, makes this into a powerful tool, especially for those classes of log-
ics in which uniform interpolation is rare, such as intermediate logics. Note that in
principle other regular properties than uniform interpolation could be used in this
method, as long as the property is sufficiently rare to be of use.

In this paper we do not focus on the connection with the existence problem as
just described, but rather aim to show the flexibility and utility of our method to
prove uniform interpolation by showing that it can be extended to (yet) another
class of logics, namely the class of non-normal modal logics, that it is constructive
and can be easily adapted to prove not only uniform interpolation but even uniform
Lyndon interpolation. Uniform Lyndon interpolation is a strengthening of uniform
interpolation in which the interpolant respects the polarity of propositional vari-
ables (a definition follows in the next section). It first occurred in [7], where it was
shown that several normal modal logics, including K and KD, have that property.
In this paper we show that the non-normal modal logics E, M, MC, EN, MN have
uniform Lyndon interpolation and the interpolant can be constructed explicitly from
the proof. In the last part of this paper we show that the non-normal modal logics
EC and ECN do not have interpolation, and whence no uniform (Lyndon) interpo-
lation either. This surprising fact makes EC and ECN potential candidates for our
approach to the existence problem discussed above, but that we have to leave for
another paper.

That the logics E and M have uniform interpolation has already been established
in [10, 12], but that they have uniform Lyndon interpolation is, as far as we know,
a new insight. However, we consider the proof-theoretic method to prove uniform
interpolation for non-normal modal logics the main contribution of this paper, as
until now such proofs have always been semantical in nature. In [13] the search
for proof-theoretic techniques to prove uniform interpolation in the setting of non-
normal modal logics is explicitly mentioned in the conclusion of that paper.
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2 Preliminaries

Set L “ t^,_,Ñ,K,lu as the language of modal logics. We use J and  A as
abbreviations for K Ñ K and AÑ K, respectively, and write ϕ P L to indicate that
ϕ is a formula in the language L. The weight of a formula is defined inductively
by: wpKq “ wppq “ 0, for any atomic p and wpA ˝ Bq “ wpAq ` wpBq ` 1, for any
˝ P t^,_,Ñu, and wplAq “ wpAq ` 1.

Definition 2.1. The sets of positive and negative variables of a formula ϕ P L,
denoted by V `pϕq and V ´pϕq, respectively, are defined recursively by:

‚ V `ppq “ tpu, V ´ppq “ V `pJq “ V ´pJq “ V `pKq “ V ´pKq “ H, for atom p,

‚ V `pϕ˝ψq “ V `pϕqYV `pψq and V ´pϕ˝ψq “ V ´pϕqYV ´pψq, for ˝ P t^,_u,

‚ V `pϕÑ ψq “ V ´pϕq Y V `pψq and V ´pϕÑ ψq “ V `pϕq Y V ´pψq,

‚ V `plϕq “ V `pϕq and V ´plϕq “ V ´pϕq.

Define V pϕq as V `pϕq Y V ´pϕq. For an atomic formula p, a formula ϕ is called
p`-free (p´-free), if p R V `pϕq (p R V ´pϕq). It is called p-free if p R V pϕq. Note
that a formula is p-free iff p occurs nowhere in it.

For the sake of brevity, when we want to refer to both V `pϕq and V ´pϕq, we
use the notation V :pϕq with the condition “for any : P t`,´u”. If we want to refer
to one of V `pϕq and V ´pϕq and its dual, we write V ˚pϕq for one and V ‹pϕq for
the other. For instance, if we state that for any atomic formula p, any ˚ P t`,´u
and any p˚-free formula ϕ, there is a p‹-free formula ψ such that ϕ_ ψ P L, we are
actually stating that if ϕ is p`-free, there is a p´-free ψ such that ϕ_ ψ P L and if
ϕ is p´-free, there is a p`-free ψ such that ϕ_ ψ P L.

Definition 2.2. A logic L is a set of formulas in L extending the set of classical
tautologies, CPC, and closed under substitution and modus ponens ϕ,ϕÑ ψ $ ψ.

Definition 2.3. A logic L has Lyndon interpolation property if for any formulas
ϕ,ψ P L, there is a formula θ P L such that V :pθq Ď V :pϕq X V :pψq, for any
: P t`,´u and L $ ϕÑ θ and L $ θ Ñ ψ. A logic has Craig interpolation if it has
the above properties, omitting all the superscripts : P t`,´u, everywhere.

Definition 2.4. A logic L has uniform Lyndon interpolation property if for any
formula ϕ P L, any atomic formula p, and any ˚ P t`,´u, there exist two p˚-free
formulas, denoted by @˚pϕ and D˚pϕ, such that V :pD˚pϕq Ď V :pϕq and V :p@˚pϕq Ď
V :pϕq, for any : P t`,´u and

piq L $ @˚pϕÑ ϕ,

piiq for any p˚-free formula ψ if L $ ψ Ñ ϕ then L $ ψ Ñ @˚pϕ,

piiiq L $ ϕÑ D˚pϕ, and

pivq for any p˚-free formula ψ if L $ ϕÑ ψ then L $ D˚pϕÑ ψ.

A logic has uniform interpolation property if it has all the above properties, omitting
the superscripts ˚, : P t`,´u, everywhere.
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Γ, pñ p,∆ Γ,K ñ,∆

Γ, ϕ, ψ ñ ∆
L^

Γ, ϕ^ ψ ñ ∆

Γ ñ ϕ,∆ Γ ñ ψ,∆
R^

Γ ñ ϕ^ ψ,∆

Γ, ϕñ ∆ Γ, ψ ñ ∆
L_

Γ, ϕ_ ψ ñ ∆

Γ ñ ϕ,ψ,∆
R_

Γ ñ ϕ_ ψ,∆

Γ ñ ϕ,∆ Γ, ψ ñ ∆
LÑ

Γ, ϕÑ ψ ñ ∆

Γ, ϕñ ψ,∆
RÑ

Γ ñ ϕÑ ψ,∆

Figure 1: The sequent calculus G3cp. In the axiom, p must be an atomic formula.

Theorem 2.5. If a logic L has uniform Lyndon interpolation property, then it has
both Lyndon and uniform interpolation properties.

Proof. For uniform interpolation, set @pϕ “ @`p@´pϕ and Dpϕ “ D`pD´pϕ. We
only prove the claim for @pϕ, as the case for Dpϕ is similar. For the variable con-
dition, it is clear that V :p@pϕq Ď V :pϕq, for any : P t`,´u. Hence, we have
V p@pϕq Ď V pϕq. Moreover, @pϕ is p-free. Because @´pϕ is p´-free by definition
and as V ´p@pϕq Ď V ´p@´pϕq, the formula @`p@´pϕ is also p´-free. As @`p@´pϕ
is p`-free by definition, we have p R V p@pϕq “ V `p@pϕq Y V ´p@pϕq. For condi-
tion piq in Definition 2.4, as L $ @`p@´pϕ Ñ @´pϕ and L $ @´pϕ Ñ ϕ, we have
L $ @pϕÑ ϕ. For the condition piiq, if L $ ψ Ñ ϕ, for a p-free ψ, then ψ is also p´-
free and hence L $ ψ Ñ @´pϕ. As ψ is also p`-free, we have L $ ψ Ñ @`p@´pϕ.
For Lyndon interpolation, assume L $ ϕ Ñ ψ. For any : P t`,´u, set P : “
V :pϕq ´ rV :pϕq X V :pψqs. Define θ “ D`P`D´P´ϕ, where by D:tp1, . . . , pnu

: we
mean Dp:1 . . . Dp

:
n. For the variable condition, since θ is p:-free for any p P P : and

any : P t`,´u, we have V :pθq Ď V :pϕq ´ P : Ď V :pϕq X V :pψq. For the provability
condition, it is clear that L $ ϕ Ñ θ and as ψ is p:-free for any p P P :, we have
L $ θ Ñ ψ.

2.1 Sequent calculi

We use capital Greek letters and the bar notation in ϕ̄ and C̄ to denote multisets.
A sequent is an expression in the form Γ ñ ∆, where Γ (the antecedent) and ∆ (the
succedent) are multisets of formulas. It is interpreted as

Ź

Γ Ñ
Ž

∆. For sequents
S “ pΓ ñ ∆q and T “ pΠ ñ Λq we denote the sequent Γ,Π ñ ∆,Λ by S ¨T , and the
multisets Γ and ∆ by Sa and Ss, respectively. Define V `pSq “ V ´pSaq Y V `pSsq
and V ´pSq “ V `pSaq Y V ´pSsq and the weight of a sequent as the sum of the
weights of the formulas occurring in that sequent. A sequent S is lower than a
sequent T , if the weight of S is less than the weight of T .

In this paper we are interested in modal extensions of the well-known sequent
calculus G3cp from [15] (Figure 1) for classical logic CPC and its extension by the
following two weakening rules, denoted by G3W:

Γ ñ ∆
Lw

Γ, ϕñ ∆
Γ ñ ∆

Rw
Γ ñ ϕ,∆
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ϕñ ψ ψ ñ ϕ
E

lϕñ lψ

ϕ1, ¨ ¨ ¨ , ϕn ñ ψ ψ ñ ϕ1 ¨ ¨ ¨ ψ ñ ϕn
EC

Σ,lϕ1, ¨ ¨ ¨ ,lϕn ñ lψ,Λ

ϕñ ψ
M

lϕñ lψ

ñ ψ
N

ñ lψ

ñ ψ
NW

Σ ñ lψ,Λ

ϕ1, ¨ ¨ ¨ , ϕn ñ ψ
MC

lϕ1, ¨ ¨ ¨ ,lϕn ñ lψ

Figure 2: The modal rules

In each rule in G3W, the formulas outside ΓY∆ are called the active formulas of the
rule and the only formula in the conclusion outside ΓY∆ is called the main formula.
If S is the conclusion of an instance of a rule R, we say that R is backwards applicable
to S. The modal rules by which we extend G3cp or G3W are given in Figure 2.
For any such rule pXq except pECq, pNq and pNW q, if we add it to G3W we denote
the resulting system by GX, and if we add pNq to that system we get GXN. Note
that GMCN is the usual system for the modal logic K. Moreover, if we add the rule
pECq to G3cp, we get GEC and if we also add the rule pNW q, we get the system
GECN. Note that the systems GEC and GECN have no explicit weakening rules.

The systems GEC and GECN are introduced in [9]. The others are equivalent
to the systems introduced in [9]. The only difference is that in our representation,
the weakening rules are explicitly present, while the extra context in the conclusion
of the modal rules are omitted. We will present the systems as such for convenience
in our later proofs. As the systems GE, GM, GMC, GEN and GMN are equiva-
lent to the systems introduced in [9], they all admit the cut rule and the contraction
rules. Moreover, the logics of these systems, i.e., the sets of formulas ϕ for which
the systems prove pñ ϕq are the well-known basic non-normal modal logics E, M,
MC, EN and MN, respectively. The logics of the systems GEC and GECN are the
logics EC and ECN, respectively [9].

Here are some remarks about the rules introduced above. First, for any rule,
the weight of each of its premises is less than the weight of its conclusion. More
specifically, note that the weight of Γ,Σ ñ ∆,Λ is less than the weight of lΓ,Σ ñ
l∆,Λ, as long as Γ Y ∆ is non-empty. Second, in any rule in G3W, if we add a
multiset, both to the antecedent (succedent) of the premises and to the antecedent
(succedent) of the conclusion, the result remains an instance of the rule. For the
future reference, we call this property the context extension property. Conversely,
if a multiset occurs both in the antecedent (succedent) of the premises and in the
antecedent (succedent) of the conclusion and it does not contain any of the active
formulas of the rule, then if we eliminate this multiset both from the premises
and the conclusion, the result remains an instance of the same rule. We call this
property the context restriction property. Third, for any rule in G3W and any
˚ P t`,´u, if the main formula ϕ is in the antecedent, then for any active formula
α in the antecedent of a premise and any active formula β in the succedent of a
premise, we have V ˚pαq Y V ‹pβq Ď V ˚pϕq, and if ϕ is in the succedent, we have
V ‹pαqYV ˚pβq Ď V ˚pϕq (note the use of ˚ and ‹). We call this property, the variable

preserving property. As a consequence of this property for the rule
S1 . . . Sn

S
in

G3W, we have
Ťn
i“1 V

˚pSiq Ď V ˚pSq.

5



3 Uniform Lyndon Interpolation

In this section, we prove the uniform Lyndon interpolation property for the logics
E, M, MC, EN, and MN. To this end, we need to first extend the notion to the
sequent calculi of these logics. Since all these logics are classical, we only define the
universal quantifier, as the existential quantifier is constructible by by the universal
quantifier and negation.

Definition 3.1. Let G be one of the sequent calculi introduced in Preliminaries.
The system G has uniform Lyndon interpolation property if for any sequent S, any
atom p and any ˚ P t`,´u, there exists a formula I˚p pSq such that:

pvarq I˚p pSq is p˚-free and V :pI˚p pSqq Ď V :pSq, for any : P t`,´u,

piq S ¨ pI˚p pSq ñq is derivable in G,

piiq for any sequent Γ ñ ∆ such that p R V ‹pΓ ñ ∆q, if S ¨ pΓ ñ ∆q is derivable in
G then pΓ ñ I˚p pSq,∆q is derivable in G.

I˚p pSq is called a uniform @˚p-interpolant of S in G. For any set of rules R of G,
a formula I˚p,RpSq is called a uniform @˚p-interpolant of S with respect to R, if it
satisfies the conditions pvarq and piq, when I˚p pSq is replaced by I˚p,RpSq, and:

pii1q for any sequent Γ ñ ∆ such that p R V ‹pΓ ñ ∆q, if there is a derivation of
S ¨ pΓ ñ ∆q in G whose last inference rule is an instance of a rule in R, then
pΓ ñ I˚p,RpSq,∆q is derivable in G.

The following theorem connects uniform Lyndon interpolation property for se-
quent calculi to the original version.

Theorem 3.2. Let G be one of the sequent calculi introduced in Preliminaries and
L be its logic. Then, G has uniform Lyndon interpolation property iff L has uniform
Lyndon interpolation property.

Proof. If G has uniform Lyndon interpolation, then set @˚pA “ I˚p pñ Aq and
D˚pA “  @‹p A. It is easy to see that these two formulas play the role of the
uniform Lyndon interpolants. Conversely, if L has uniform Lyndon interpolation,
then set I˚p pΓ ñ ∆q “ @˚pp

Ź

Γ Ñ
Ž

∆q. It is again easy to see that I˚p pΓ ñ ∆q
has the required properties.

Our strategy to prove uniform Lyndon interpolation for the logics E, M, MC, EN,
and MN is to prove the same property for their sequent calculi. From now on, up to
Subsection 3.1, we assume that G is one of the calculi GE, GM, GMC, GEN, and
GMN. As stated previously, backward applications of the rules decreases the weight
of the sequent. Using this property and recursion on the weight of the sequents, for
any given sequent S “ pΓ ñ ∆q, any atom p and any ˚ P t`,´u, we first define a
p˚-free formula @˚pS and then by induction on the weight of S, we prove that @˚pS
meets the conditions in Definition 3.1. Towards that end, both in the definition of
@˚pS and in the proof of its properties, we must address all the rules of the system
G, one by one. To make the presentation uniform, modular, and more clear, we
divide the rules of G into two families: the rules of G3W and the modal rules
specific for G. The rules in the first class has one of the following forms:
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tΓ, ϕ̄i ñ ψ̄i,∆ui
Γ, ϕñ ∆

tΓ, ϕ̄i ñ ψ̄i,∆ui
Γ ñ ϕ,∆

where Γ and ∆ are free for all multiset substitutions, and ϕ̄i’s and ψ̄i’s are multisets
of formulas (possibly empty). The rules have the variable preserving condition, i.e.,
given ˚ P t`,´u, for the left rule

Ť

i

Ť

θPϕ̄i
V ˚pθq Y

Ť

i

Ť

θPψ̄i
V ‹pθq Ď V ˚pϕq, and

for the right one
Ť

i

Ť

θPϕ̄i
V ‹pθq Y

Ť

i

Ť

θPψ̄i
V ˚pθq Ď V ˚pϕq.

Rather than addressing each rule in G3W, we simply address these two forms that
cover all the rules in G3W.

Lemma 3.3. For any sequent S, any atomic formula p and any ˚ P t`,´u, a
uniform @˚p-interpolant of S with respect to the set of all axioms of G exists.

Proof. Let us define a formula @˚axpS: if S is provable, define it as J, otherwise,
define @˚axpS as the disjunction of all p˚-free formulas in Ss and the negation of
all p‹-free formulas in Sa. We show that @˚axpS is the uniform @˚p-interpolant of
S with respect to the set of axioms of G. It is easy to see that @˚axpS is p˚-free,
V :p@˚axpSq Ď V :pSq, for any : P t`,´u and S ¨ p@˚axpS ñq is provable in G. To
prove the condition pii1q in Definition 3.1, if S is provable, then as @˚axpS “ J, we
have C̄ ñ @˚axpS, D̄. If S is not provable, then let S ¨ pC̄ ñ D̄q be an axiom. There
are two cases to consider. First, if S ¨ pC̄ ñ D̄q is in the form Γ, q ñ q,∆, where q
is an atomic formula. Then, if q R C̄ and q R D̄, we have q P Γ X∆ and hence the
sequent S is provable which contradicts our assumption. Therefore, either q P C̄
or q P D̄. If q P C̄ X D̄, then C̄ ñ @˚axpS, D̄ is provable. Hence, we assume either
q P C̄ and q R D̄ or q R C̄ and q P D̄. In the first case, if q P C̄, it is p˚-free and
since it occurs in ∆, it is a disjunct in @˚axpS. Hence, C̄ ñ @˚axpS, D̄ is provable. In
the second case, if q P D̄, it is p‹-free and as q P Γ, its negation occurs in @˚axpS.
Therefore C̄ ñ @˚axpS, D̄ is provable.
If S ¨ pC̄ ñ D̄q is in the form Γ,K ñ ∆, then K P C̄, because otherwise, K P Γ and
hence S will be provable. Now, since K P C̄, we have C̄ ñ @˚axpS, D̄.

Definition 3.4. Let U˚p pSq be the statement that “all sequents lower than S have
uniform @˚p-interpolants.” A calculus G has MUIP if for any sequent S, any atomic
formula p, and any ˚ P t`,´u, there exists a formula @˚mpS such that if U˚p pSq, then
@˚mpS is a uniform @˚p-interpolant for S with respect to the set of modal rules of G.

Theorem 3.5. If a sequent calculus G has MUIP, then it has uniform Lyndon
interpolation property.

Proof. Define a formula @˚pS by recursion on the weight of S: if S is provable define
it as J, otherwise, define @˚pS as:

ł

R

p
ľ

i

@˚pSiq _ p@
˚
axpSq _ p@

˚
mpSq

where the first disjunction is over all rules R in G3W backward applicable to S,
where S is the consequence and Si’s are the premises. The second disjunct, @˚axpS, is
a uniform @˚p-interpolant of S with respect to the set of axioms of G that Lemma 3.3
provides. The third disjunct, @˚mpS, is the formula that MUIP provides. To prove
that the formula @˚pS is a @˚p-interpolant for S, we use induction on the weight of
S to prove:
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pvarq @˚pS is p˚-free and V :p@˚pSq Ď V :pSq, for any : P t`,´u,

piq S ¨ p@˚pS ñq is provable in G,

piiq for any p‹-free sequent C̄ ñ D̄, if S ¨ pC̄ ñ D̄q is derivable in G then C̄ ñ

@˚pS, D̄ is derivable in G.

By induction hypothesis, pvarq, piq, and piiq hold for all sequents T lower than S.
Now, pvarq also holds for @˚pS, because both @˚axpS and @˚mpS satisfy pvarq and all
rules in G3W have the variable preserving property.
To prove piq, it is enough to show that the following are provable in G:

S ¨ p
ľ

i

@˚pSi ñq p1q , S ¨ p@˚axpS ñq p2q , S ¨ p@˚mpS ñq p3q.

Sequent (3) is provable by induction hypothesis and the assumption that G has
MUIP. Sequent (2) is proved in Lemma 3.3. For the sequent (1), assume that
the rule R of G3W is backward applicable to S, i.e., the premises of R are Si’s
and its conclusion S. As Si’s are lower than S, by induction hypothesis we have
Si ¨ p@

˚pSi ñq. Therefore, by weakening, we have Si ¨ pt@
˚pSiui ñq. Since any rule

in G3W has the context extension property, we can add t@˚pSiui to the antecedent
of both premises and conclusion and by the rule itself, we have S ¨ pt@˚pSiui ñq

and hence S ¨ p
Ź

i @
˚pSi ñq.

For piiq, we use another induction on the length of the proof of S ¨ pC̄ ñ D̄q. Let
S ¨ pC̄ ñ D̄q be derivable in G. If it is an axiom, we have C̄ ñ D̄,@˚axpS by Lemma
3.3, and hence C̄ ñ D̄,@˚pS. If the last rule is a rule in G3W of the form:

tΓ, ϕ̄i ñ ψ̄i,∆ui
Γ, ϕñ ∆

,

then there are two cases to consider, i.e., either ϕ P C̄ or ϕ P Sa. If ϕ P C̄, then set
C̄ 1 “ C̄ ´ tϕu. Since ϕ P C̄, it is p˚-free by the assumption and ϕi’s are all p˚-free
and ψi’s are all p‹-free by the variable preserving property. By induction hypothesis,
as pC̄ 1, ϕ̄i ñ ψ̄i, D̄q is p‹-free and S ¨ pC̄ 1, ϕ̄i ñ ψ̄i, D̄q has a shorter proof, we have
C̄ 1, ϕ̄i ñ @˚pS, ψ̄i, D̄. By using the rule itself, we have

tC̄ 1, ϕ̄i ñ ψ̄i,@
˚pS, D̄ui

C̄ 1, ϕñ @˚pS, D̄

which implies C̄ ñ @˚pS, D̄.
If ϕ R C̄, then both C̄ and D̄ do not contain any active formula of the rule and
hence the last rule is in form:

tC̄,Γ, ϕ̄i ñ ψ̄i, D̄,∆ui

C̄,Γ, ϕñ D̄,∆
.

By context restriction property, if we erase C̄ and D̄ both on the premises and the
consequence of the last rule, the rule remains valid and it changes to:

tΓ, ϕ̄i ñ ψ̄i,∆ui
Γ, ϕñ ∆

.
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Therefore, the rule is backward applicable to the sequent S “ pΓ, ϕ ñ ∆q. Set
Si “ pΓ, ϕ̄i ñ ψ̄i,∆q. As the weight of Si’s are less than the weight of S and
Si ¨ pC̄ ñ D̄q are provable, by induction hypothesis, we have C̄ ñ @˚pSi, D̄. Hence,
C̄ ñ

Ź

i @
˚pSi, D̄ and as

Ź

i @
˚pSi is a disjunct in @˚pS, we have C̄ ñ @˚pS, D̄.

The case where the last rule is in GW3 with its main formula in the antecedent
is similar. For the modal rules, by induction hypothesis U˚p pSq and the assumption
that G has MUIP, we get that @˚mpS is a uniform @˚p-interpolant for S with respect
to the set of all modal rules of G. By pii1q in Definition 3.1, this gives C̄ ñ @˚mpS, D̄
and hence C̄ ñ @˚pS, D̄.

In the upcoming subsections, for the following choices of the system G, we show
that it has MUIP. Therefore, by Theorem 3.5 and Theorem 3.2, we will have:

Theorem 3.6. Logics E, M, MC, EN and MN have uniform Lyndon interpolation
property and hence both uniform interpolation and Lyndon interpolation properties.

3.1 Modal Logics M and MN

We only discuss the cases for M and MN. Let G be either GM or GMN. We
will show that G has MUIP. To define @˚mpS, if  U˚p pSq, define @˚mpS as K. If
U˚p pSq, (i.e., for any sequent T lower than S a uniform @˚p-interpolant, denoted
by @˚pT , exists), define @˚mpS in the following way: if S is provable, define @˚mpS
as J, otherwise, if it is of the form plϕ ñq, define @˚mpS “  l @˚pS1, where
S1 “ pϕñq, if S is of the form pñ lψq, define @˚mpS “ l@˚pS2, where S2 “ pñ ψq,
and otherwise, define @˚mpS “ K. Note that @˚mpS is well-defined as we have U˚p pSq
and S1 in the first case and S2 in the second case are lower than S.
To show that G has MUIP, we assume U˚p pSq to prove the three conditions pvarq,
piq and pii1q in Definition 3.1 for @˚mpS. First, note that using U˚p pSq on pϕ ñq

and pñ ψq that are lower than plϕ ñq and pñ lψq, respectively, the variable
conditions are implied from pvarq for S1 and S2, respectively.
For piq, if S is provable, there is nothing to prove. Otherwise, if S “ plϕ ñq

then @˚mpS “  l @˚pS1, where S1 “ pϕ ñq. As S1 is lower than S, we have
pϕ,@˚pS1 ñq by U˚p pSq, which implies pϕ ñ  @˚pS1q. Using the rule pMq, we get
plϕñ l @˚pS1q, which is equivalent to plϕ, l @˚pS1 ñq. Hence, S ¨p@˚mpS ñq

is provable.
If S is not provable, S “ pñ lψq and S2 “ pñ ψq, we have @˚mpS “ l@˚pS2.
Using U˚p pSq on S2 and the fact that S2 is lower than S, we have p@˚pS2 ñ ψq and
by the rule pMq, we can show that S ¨ pl@˚pS2 ñq is provable in G. If S is not
provable and has none of the mentioned forms, as @˚mpS “ K, there is nothing to
prove.
For pii1q, let S ¨ pC̄ ñ D̄q be derivable in G for a p‹-free sequent C̄ ñ D̄ and the
last rule is a modal rule. We want to show that C̄ ñ @˚mpS, D̄ is derivable in G. If
the last rule used in the proof of S ¨ pC̄ ñ D̄q is pMq, the sequent must have the
form plϕñ lψq and the rule must be in form:

ϕñ ψ
M

lϕñ lψ

If S is provable, as @˚mpS “ J, we clearly have C̄ ñ @˚mpS, D̄. Assume S is not
provable and hence C̄ Y D̄ cannot be empty. Therefore, there are three cases to
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consider, either C̄ is lϕ or D̄ is lψ or both. First, if C̄ “ lϕ and D̄ “ H, then, S
is of the form S “ pñ lψq and ϕ is p˚-free. Set S2 “ pñ ψq. Then @˚mpS “ l@pS2.
As S2 is lower than S, by U˚p pSq we have pϕñ @˚pS2q. Using the modal rule pMq,
we have plϕñ l@˚pS2q and hence pC̄ ñ @˚mpS, D̄q.
In the second case, assume C̄ “ H and D̄ “ lψ. Hence, S “ plϕ ñq and ψ is
p‹-free. Set S1 “ pϕ ñq. Hence, @˚mpS “  l @˚pS1. Since pϕ ñ ψq is provable
in G and S1 is lower than S, by U˚p pSq we have pñ @˚pS1, ψq, or equivalently
p @˚pS1 ñ ψq. Using the modal rule pMq, we get pl @˚pS1 ñ lψq or equivalently
pñ  l @˚pS1,lψq. Therefore, we have pñ @˚mpS,lψq or pC̄ ñ @˚mpS, D̄q.
In the third case, if C̄ “ lϕ and D̄ “ lψ, then S is the empty sequent and C̄ ñ D̄
is provable. Hence, C̄ ñ @˚mpS, D̄ is also provable.
For the case G “ GMN, if S ¨ pC̄ ñ D̄q “ pñ lψq is proved by the rule pNq, it
must have the following form:

ñ ψ
N

ñ lψ

Then C̄ “ H and there are two cases to consider. The first case is when S “ pñ lψq
and D̄ “ H. Then, it means that S is provable which contradicts our assumption.
The second case is when S “ pñq and D̄ “ lψ. Hence, C̄ ñ D̄ is provable and we
have the provability of C̄ ñ @˚mpS, D̄ in G.

3.2 Modal Logic MC

Similar to the argument of the previous subsection, to define @˚mpS, if  U˚p pSq,
define @˚mpS as K. If U˚p pSq, (i.e., for any sequent T lower than S the uniform
@˚p-interpolant, denoted by @˚pT , exists), define @˚mpS as the following: if S is
provable, define @˚mpS “ J. Otherwise, if S is of the form plϕ1, ¨ ¨ ¨ ,lϕi ñq,
for some i ě 1, define @˚mpS “  l @˚pS1, where S1 “ pϕ1, ¨ ¨ ¨ , ϕi ñq. If S is
of the form pñ lψq, define @˚mpS “ l@˚pS2, where S2 “ pñ ψq. If S is of
the form plϕ1, ¨ ¨ ¨ ,lϕi ñ lψq, for some i ě 1, define @˚mpS “ l@˚pS2, where
S2 “ pϕ1, ¨ ¨ ¨ , ϕi ñ ψq. Otherwise, define @˚mpS “ K. Note that @˚mpS is well-
defined as we assumed U˚p pSq and in each case S1 or S2 are lower than S.
To show that GMC has MUIP, we assume U˚p pSq to prove the three conditions
pvarq, piq and pii1q in Definition 3.1 for @˚mpS. The condition pvarq is an immediate
consequence of U˚p pSq and the fact that S1 or S2 are lower than S. For piq, if
S is provable, there is nothing to prove. If S is of the form plϕ1, ¨ ¨ ¨ ,lϕi ñ
q and @˚mpS “  l @˚pS1, where S1 “ pϕ1, ¨ ¨ ¨ , ϕi ñq, as S1 is lower than S,
by U˚p pSq we have pϕ1, ¨ ¨ ¨ , ϕi,@

˚pS1 ñq or equivalently pϕ1, ¨ ¨ ¨ , ϕi ñ  @˚pS1q.
Using the rule pMCq, we get plϕ1, ¨ ¨ ¨ ,lϕi ñ l @˚pS1q, which is equivalent to
plϕ1, ¨ ¨ ¨ ,lϕi, l @˚pS1 ñq and hence S ¨ p@˚mpS ñq.
If S is of the form pñ lψq and S2 “ pñ ψq, or S is of the form plϕ1, ¨ ¨ ¨ ,lϕi ñ
lψq, for some i ě 1 and S2 is of the form pϕ1, ¨ ¨ ¨ , ϕi ñ ψq, we have @˚mpS “
l@˚pS2. In both cases, using U˚p pSq on S2, we have either @˚pS2 ñ ψ or the
sequent ϕ1, ¨ ¨ ¨ , ϕi,@

˚pS2 ñ ψ, respectively. In both cases, using the rule pMCq,
we can show that S ¨ pl@˚pS2 ñq is provable and hence S ¨ p@˚mpS ñq.
For pii1q, let S ¨ pC̄ ñ D̄q be derivable in GMC and the last rule is the modal
rule pMCq, for a p‹-free sequent C̄ ñ D̄. We want to show that C̄ ñ @˚mpS, D̄
is derivable in GMC. If S is provable, as @˚mpS “ J, we have C̄ ñ @˚mpS, D̄.
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Therefore, we assume that S is not provable. As the last rule used in the proof of
S ¨ pC̄ ñ D̄q is pMCq, the sequent must have the form plϕ1, ¨ ¨ ¨ ,lϕn ñ lψq and
the rule is:

ϕ1, ¨ ¨ ¨ , ϕn ñ ψ
MC

lϕ1, ¨ ¨ ¨ ,lϕn ñ lψ

Then, there are two cases to consider, either D̄ “ lψ or D̄ “ H. First, assume
S is of the form plϕ1, ¨ ¨ ¨ ,lϕi ñq, for i ď n, then C̄ “ lϕi`1, ¨ ¨ ¨ ,lϕn and
D̄ “ lψ and hence ϕi`1, ¨ ¨ ¨ , ϕn ñ ψ is p‹-free. Set S1 “ pϕ1, ¨ ¨ ¨ , ϕi ñq. By
the form of S, we have @˚mpS “  l @˚pS1. As S1 is lower than S, by U˚p pSq,
we have pϕi`1, ¨ ¨ ¨ , ϕn ñ @˚pS1, ψq. Hence, by moving @˚pS1 to the left, applying
the rule pMCq and moving back, we have plϕi`1, ¨ ¨ ¨ ,lϕn ñ  l @˚pS1,lψq or
equivalently pC̄ ñ @˚mpS, D̄q.
If S is of the form lϕ1, ¨ ¨ ¨ ,lϕi ñ lψ, for some i ď n, we must have C̄ “

lϕi`1, ¨ ¨ ¨ ,lϕn and D̄ “ H. Hence, ϕi`1, ¨ ¨ ¨ , ϕn are p˚-free. Note that i ă n,
because if i “ n, then S will be provable that contradicts our assumption. Set S2 “
pϕ1, ¨ ¨ ¨ , ϕi ñ ψq. As S2 is lower than S, by U˚p pSq we have ϕi`1, ¨ ¨ ¨ , ϕn ñ @˚pS2.
By the fact that i ă n, we can apply the rule pMCq to prove lϕi`1, ¨ ¨ ¨ ,lϕn ñ
l@˚pS2 and hence pC̄ ñ @˚mpS, D̄q.

3.3 Modal Logics E and EN

Let G be either GE or GEN. Similar to the argument of the previous subsections,
to define @˚mpS, if  U˚p pSq, define @˚mpS as K. If U˚p pSq, (i.e., for any sequent T
lower than S the uniform @˚p-interpolant, denoted by @˚pT , exists), define @˚mpS as
the following: if S is provable in G, define @˚mpS “ J. Otherwise, if it has the form
S “ plϕ ñq and the sequents p @˚pS1 ñ ϕq and pϕ ñ  @˚pS1q are provable in
G, for S1 “ pϕñq, define @˚mpS “  l @˚pS1. If S has the form pñ lψq and the
sequents p@˚pS2 ñ ψq and pψ ñ @˚pS2q are provable in G, for S2 “ pñ ψq, define
@˚mpS “ l@˚pS2. Otherwise, define @˚mpS “ K. Note that @˚pS is well-defined as
in each case S1 and S2 are lower than S and we assumed U˚p pSq.
To show that G has MUIP we assume U˚p pSq to prove the three conditions pvarq, piq
and pii1q in Definition 3.1 for @˚mpS. The condition pvarq is a simple consequence
of U˚p pSq and the fact that S1 or S2 are lower than S. For piq, if S is provable,
there is nothing to prove. If S “ plϕ ñq and S1 “ pϕ ñq and the sequents
p @˚pS1 ñ ϕq and pϕ ñ  @˚pS1q are provable in G, then using the rule pEq, we
have plϕñ l @˚pS1q which implies plϕ, l @˚pS1 ñq and hence S ¨ p@˚mpS ñq

is provable in G.
If S “ pñ lψq and S2 “ pñ ψq and the sequents p@˚pS2 ñ ψq and pψ ñ @˚pS2q
are provable in G, then using the rule pEq, we have pl@˚pS2 ñ lψq and hence
S ¨ p@˚mpS ñq is provable in G. If @˚mpS “ K, there is nothing to prove.
For pii1q, if S is provable, then @˚mpS “ J and hence C̄ ñ @˚mpS, D̄. Therefore,
assume that S is not provable. If the last rule used in the proof of S ¨ pC̄ ñ D̄q is
the rule pEq, the sequent S ¨ pC̄ ñ D̄q is of the form lϕ ñ lψ. There are four
cases to consider based on if C̄ or D̄ are empty or not. First, if C̄ “ D̄ “ H, then S
is provable which contradicts our assumption. If S is the empty sequent pñ q, then
C̄ ñ D̄ is provable and hence C̄ ñ @˚mpS, D̄ is provable.
If S is of the form S “ plϕ ñq, then C̄ “ H and D̄ “ lψ and hence ψ is p‹-
free. Set S1 “ pϕ ñq and as the last rule is pEq, both of the sequents ϕ ñ ψ
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and ψ ñ ϕ are provable. By U˚p pSq and the fact that S1 is lower than S, we have
pϕ,@˚pS1 ñq or equivalently, pϕñ  @˚pS1q. Again by U˚p pSq for S1, the provability
of S1 ¨ pñ D̄q “ pϕñ ψq and the fact that pñ ψq is p‹-free, we have pñ @˚pS1, ψq
or equivalently, p @˚pS1 ñ ψq. Since pϕ ñ ψq and pψ ñ ϕq are provable, by cut
we can prove the equivalence between ϕ, ψ and  @˚pS1. Using this fact, we have:

ψ ñ  @˚pS1  @˚pS1 ñ ψ
E

l @˚pS1 ñ lψ

Hence, pñ  l @˚pS1,lψq. Then, as S has the form S “ plϕñq and both of the
sequents p @˚pS1 ñ ϕq and pϕñ  @˚pS1q are provable in G, by definition we have
@˚mpS “  l @˚pS1 and hence pñ  l @˚pS1,lψq “ pC̄ ñ @˚mpS, D̄q is provable
in G. The last case where S has the form S “ pñ lψq and C̄ “ lϕ and D̄ “ H is
similar.
For the case G “ GEN, if S ¨ pC̄ ñ D̄q “ pñ lψq is proved by the rule pNq, it

must have the following form
ñ ψ

N
ñ lψ

. Then C̄ “ H and there are two cases

to consider. The first case is when S “ pñ lψq and D̄ “ H, which means that S
is provable which contradicts our assumption. The second case is when S “ pñq
and D̄ “ lψ, and since in this case S is the empty sequent and hence C̄ ñ D̄ is
provable, we have the provability of C̄ ñ @˚mpS, D̄ in G.

4 Modal Logics EC and ECN

In this section we prove that the logics EC and ECN do not enjoy the Craig interpola-
tion property. To this end, if L is either EC or ECN, we show that L $ lp q^rq Ñ
plpp^ qq Ñ lKq, where p, q, and r are three distinct atomic formulas while there
is no formula θ such that V pθq Ď tqu and both formulas lp q ^ rq Ñ θ and
θ Ñ plpp^qq Ñ lKq are provable in L. Set ϕ “ lp q^rq and ψ “ lpp^qq Ñ lK.
Then, using the following proof tree in GEC:

p^ q, q ^ r ñ K K ñ p^ q K ñ  q ^ r
EC

lpp^ qq,lp q ^ rq ñ lK

we see that the formula ϕÑ ψ is provable in EC and hence in ECN. Let G be either
GEC or GECN and assume that the interpolant θ exists. Hence, the sequents
lp q ^ rq ñ θ and lpp ^ qq, θ ñ lK are both provable in G. To show that the
existence of θ is contradictory, we will first analyse the general form of θ.
First, note that by a simple induction on the structure of the formulas, it is possible
to show that any formulaA is G3cp-equivalent to a CNF-style formula

Ź

iPI

Ž

jPJi
Lij ,

where I and Ji’s are (possibly empty) finite sets, V pLijq Ď V pAq, and each Lij is
either an atomic formula, the negation of an atomic formula, lC or  lC, for a
formula C. In particular, the formula θ is G3cp-equivalent to a CNF-style formula
in the form

Ź

iPI

Ž

jPJi
Lij . W.l.o.g, assume that for any i P I, it is impossible to

have both an atomic formula and its negation in tLijujPJi , and that none of sequents
pñ Lijq or pLij ñq are provable in G.

Back to the main argument, as ϕñ θ is provable inG, we have ϕñ
Ź

iPI

Ž

jPJi
Lij

which means that for every i P I, we have ϕ ñ
Ž

jPJi
Lij . Based on the form of

each Lij , we can transform the sequent to a provable sequent of the form ϕ, P,lΓ ñ
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Q,l∆, where P and Q are multisets of atomic formulas and Γ and ∆ are multi-
sets of formulas. We claim that Γ is non-empty. Suppose Γ “ H. Then, we have
ϕ, P ñ Q,l∆. This sequent must have been the conclusion of the rule pECq, be-
cause for G “ GEC, the other possible case is being an axiom which implies either
K P P or the existence of an atomic s in P X Q. Both contradict the structure of
Ž

jPJi
Lij . For G “ GECN, the same holds. Moreover, if the last rule is pNW q,

then for an element δ P ∆, the sequent pñ δq and hence pñ lδq must be provable
in G which contradicts the structure of Lij ’s again. Therefore, T “ pϕ, P ñ Q,l∆q
is the consequence of pECq and hence, it has the form pΣ,lα1, ¨ ¨ ¨ ,lαn ñ lβ,Λq
and the last rule is:

α1, ¨ ¨ ¨ , αn ñ β β ñ α1 ¨ ¨ ¨ β ñ αn
EC

Σ,lα1, ¨ ¨ ¨ ,lαn ñ lβ,Λ

Now there are two cases to consider, either ϕ P Σ or ϕ R Σ. In the first case, as the
formulas outside of Σ are either atomic or boxed, we must have no boxed formula
outside of Σ. This is impossible, as the form of the rule pECq dictates that we must
have at least one boxed formula in the antecedent of the conclusion. Hence, ϕ R Σ.
As all formulas in T a (except ϕ) are atomic, we must have only one boxed formula
in T a, which is ϕ. Therefore, in the premises of the rule, we have  q ^ r ñ β and
β ñ  q ^ r. Since V pβq Ď V pθq Ď tqu, then β is r-free. If we once substitute K for
r and then  q for r, as β remains intact, we will have β ô K and β ô  q, which
implies the contradictory K ô  q. Hence, Γ cannot be empty.

So far, we have proved that Γ is non-empty. Suppose that for every i P I,
the formula Liki has the negative form Liki “  lDi. Now, as lpp ^ qq, θ ñ lK

or equivalently lpp ^ qq,
Ź

iPI

Ž

jPJi
Lij ñ lK is provable in G, we have lpp ^

qq, t lDiuiPI ñ lK is provable in G. Define D “ tDiuiPI . Thus S “ plpp ^
qq ñ lD,lKq is provable. As all the formulas are boxed, this must have been the
conclusion of the rule pECq. The reason is that G has no weakening rules, and for
G “ GEC, the only modal rule is (EC) and for G “ GECN, the last rule cannot be
the rule pNW q as it implies that for one D P D the sequent pñ Dq is provable in G
which means that pñ lDq and hence p lD ñq is provable. The last contradicts
with the structure of Lij ’s. This implies that the last inference is of the form:

α1, ¨ ¨ ¨ , αn ñ β β ñ α1 ¨ ¨ ¨ β ñ αn
EC

Σ,lα1, ¨ ¨ ¨ ,lαn ñ lβ,Λ

Similar as before, there are two cases, either β “ K or β P D. If β “ K, in the
premises we must have p ^ q ô K which is impossible. If β P D, it means that in
the premises we had p ^ q ô β. Note that as β P D we have V pβq Ď V pθq Ď tqu.
Hence β is p-free. Substituting once K and then q for p, leave β intact and hence
we get K ô β and q ô β which implies q ô K, which is impossible.

Theorem 4.1. Logics EC and ECN do not enjoy the Craig interpolation property. As
a consequence, they do not have uniform or uniform Lyndon interpolation property.
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