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Abstract

In [7] and [8], Iemhoff introduced a connection between the ex-
istence of a terminating sequent calculus of a certain kind and the
uniform interpolation property of the super-intuitionistic logic that
the calculus captures. In this paper, we will generalize this relation-
ship to also cover the substructural setting on the one hand and a
more powerful type of systems called semi-analytic calculi, on the
other. To be more precise, we will show that any sufficiently strong
substructural logic with a semi-analytic calculus has Craig interpola-
tion property and in case that the calculus is also terminating, it has
uniform interpolation. This relationship then leads to some concrete
applications. On the positive side, it provides a uniform method to
prove the uniform interpolation property for the logics FLe, FLew,
CFLe, CFLew, IPC, CPC and some of their K and KD-type modal
extensions. However, on the negative side the relationship finds its
more interesting application to show that many substructural logics
including Ln, Gn, BL, R and RM e, almost all super-intutionistic log-
ics (except at most seven of them) and almost all extensions of S4
(except thirty seven of them) do not have a semi-analytic calculus. It
also shows that the logic K4 and almost all extensions of the logic S4
(except six of them) do not have a terminating semi-analytic calculus.

∗The authors were supported by the ERC Advanced Grant 339691 (FEALORA).
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1 Introduction

Proof systems have the main role in any proof theoretic investigation, from
Gentzen’s consistency proof and Kreisel’s proof mining program to the char-
acterizations of the admissible rules of the logical systems and their decidabil-
ity problems. In this respect, proof systems are nothing but some technical
tools in the study of their corresponding mathematical theories. They are
designed and used based on their expected applications and not their inher-
ent mathematical values. They are just the second rank citizens, far from
the independent mathematical objects that they could have been.

Fortunately, in the recent years, alongside this instrumentalist approach,
another approach has also been emerged; an approach that is more interested
in the general behaviour of the proof systems than their possible technical
applications (for instance, see [7], [8] and [3]). We call this emerging ap-
proach, the universal proof theory ;1 a name we hope to be reminiscent of
the technical term universal algebra used for the theory that is supposed to
investigate the generic behaviour of the algebraic structures. This theory is
admittedly a hypothetical theory, but whatever it turns out to be, its agenda
may include the following fundamental problems:

piq The existence problem to investigate the existence of the different sorts
of interesting proof systems such as the terminating systems, the nor-
malizable systems, etc.

piiq The equivalence problem to investigate the natural notions of equiva-
lence between proof systems. This can be interpreted as an approach
to address the so-called Hilbert’s twenty fourth problem of studying
the equivalence of different mathematical proofs, rigorously.

piiiq And finally, the characterization problem to investigate the possible
characterizations of proof systems via a given equivalence relation as
introduced in piiq.

As the first step in this so-called universal proof theory and following the
spirit of [7] and [8], we begin with the most basic problem of the kind, the
existence problem, addressing the existence of the natural sequent style proof

1We are grateful to Masoud Memarzadeh for this elegant terminological suggestion.
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systems for a given propositional and modal logic. The technique is develop-
ing a strong relationship between the existence of some sort of proof systems
and some regularity conditions for the logic that it represents. One loose
example of such a relationship is the relationship between the existence of a
terminating calculus for a logic and its decidability. These relationships are
important because they reduce the existence problem partially or completely
to the regularity conditions of the logic that are calculus-independent and
probably more amenable to our technical tools. Again using our loose exam-
ple, we know that an undecidable logic cannot have a terminating calculus;
a fact that solves the existence problem negatively.

This paper is devoted to one of these kinds of relationships and to explain
how, we have to browse the history a little bit, first. The story begins with
Pitts’ seminal work, [11], in which he introduced a proof theoretic method
to prove the uniform interpolation property for the propositional intuition-
istic logic. His technique is built on the following two main ideas: First he
extended the notion of uniform interpolation from a logic to its sequent cal-
culus in a way that the uniform p-interpolants for a sequent are roughly the
best left and right p-free formulas that if we add them to the left or right
side of the sequent, they make the sequent provable. This reduces the task of
proving uniform interpolation for the logic, to the task of finding these new
uniform interpolants for all sequents. For the latter, he assigned two sets of
p-free formulas to any sequent using the structure of the formulas occurred
in the sequent itself. To define these sets, though, he needed the second cru-
cial tool of the game namely the terminating calculus for IPC, introduced
in [4] by Dyckhoff. The terminating calculus provides a well-founded order
on sequents on which we can define the sets that we have mentioned before,
recursively.

Later, as witnessed in [8], Iemhoff recognized that the main point in the
first part of Pitts’ argument is flexible enough to apply on any rule with a
certain general form. This observation then lets her to lift the technique
from the intuitionistic logic to any extension of the intuitionistic logic pre-
sented with a generic terminating calculus consisting of the usual axioms of
the calculus LJ and the above-mentioned rules that she calls focused axioms
and focused rules, respectively. These are the rules that are very natural
to consider and they are roughly the rules with one main formula in their
consequence such that the rule respects both the side of this main formula

4



and the occurrence of atoms in it, i.e. if the main formula is occurred in the
left-side (right-side) of the consequence, all non-contextual formulas in the
premises should also occur in the left-side (right-side) and any occurrence of
any atom in these formulas must also occur in the main formula. The usual
conjunction and disjunction rules are the prototype examples of these rules
while the implication rules are the non-examples since they clearly do not
respect the side of the main formula.

As we explained, the investigations in [8] lead to an exciting relation-
ship between the existence of a terminating calculus consisting only of the
focused axioms and focused rules for a logic and the uniform interpolation
property of the logic. Iemhoff used this relationship first in a positive manner
to prove the uniform interpolation for some well-known super-intuitionistic
and super-intuitionistic modal logics including IPC, CPC, K and KD and
their intuitionistic versions. And then she switched to the negative part to
show that no extension of the intuitionistic logic can have a terminating cal-
culus consisting of focused axioms and focused rules unless it has the uniform
interpolation property. Since uniform interpolation is a rare property for a
logic, it excludes almost all logical systems, including all super-intuitionistic
logics, except the seven logics with the uniform interpolation property, from
having such a terminating calculus.

Now we are ready to explain what we will pursue in this paper. Our
approach is a generalization of the approach in [7] and [8], in the following
three aspects: First we use a much more general class of rules that we will call
semi-analytic rules. These rules can be defined roughly as the focused rules
relaxing the side preserving condition. Therefore, they cover a vast variety of
rules including focused rules, implication rules, non-context sharing rules in
substructural logics and so many others. Secondly, we generalize the focused
axioms of [8] to cover more general forms of axioms. And finally, we lower the
base logic from the intuitionistic logic to the basic substructural logic FLe to
extend the applicability of the final result to cover substructural logics as well.

After these generalizations, as in [8], our main result connects the exis-
tence of proof systems consisting of semi-analytic rules and focused axioms
to a strong version of Craig interpolation property called the feasible interpo-
lation and in the case that the system is also terminating to an even stronger
form of uniform interpolation. As it is expected, this connection also has two
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sorts of applications. First on the positive side, it says that if we manage to
develop a terminating calculus consisting of semi-analytic rules and focused
axioms, there is a uniform method to establish the uniform interpolation
property. The logics with this property include some substrucutral logics
like FLe, FLew, CFLe, CFLew and their K and KD modal extensions and
intuitionistic and classical logics and some of their modal extensions. (For
the classical modal case see [2], for the substructural logics see [1] and for
intuitionistic and intutionistic modal logics see [11] and [8].) Moreover, note
that there is a possibility that we manage to develop a system of the men-
tioned form that fails to be terminating. In this case the connection is still
useful but only to establish the Craig interpolation. The logics in this cat-
egory include K4 and S4-type of modal extensions of some substructural
logics including the intutionistic and classical linear logics in which the ex-
ponentials play the role of the S4-type modality.

Despite the possible use of the positive applications of the connection, it
is fair to say that developing a uniform method to prove interpolation is not
very useful. The reason is the common knowledge that it is genuinely rare
for a logic to have the interpolation property. To justify this feeling, note
that in the substructural setting, there are a lot of relevant and semilinear
logics ([12], [10]) that lack this property and as we have already seen in the
super-intutionistic case, there is a well-known result by Maksimova [9] stat-
ing that among super-intuitionistic logics, there are only seven specific logics
that have Craig or uniform interpolation.

Using this insight, we will turn the relationship between the interpolation
and the existence of proof systems to its negative side to propose the main
contribution of this paper. We will use the connection to show that logics
without Craig interpolation do not have a calculus consisting only of semi-
analytic rules and focused axioms and if they have Craig interpolation but
fail to have uniform interpolation, the proof system if exists will not be
terminating. Given the generality of these rules and axioms, this negative
application excludes so many logics from having a reasonable proof system.
To name a few concrete examples consider the logics Ln, Gn, BL, R and
RM e in the substructural world, all super-intuitionistic logics except IPC,
LC, KC, Bd2, Sm, GSc and CPC in the super-intuitionistic domain and
all extensions of S4 except at most thirty seven of them in the modal case. In
the uniform case, there are also some concrete examples including the logics
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K4 and all the extensions of S4 except at most six of them for which our
result shows the non-existence of a terminating calculus consisting only of
semi-analytic rules and focused axioms.

2 Preliminaries

In this section we will cover some of the preliminaries needed for the follow-
ing sections. The definitions are similar to the same concepts in [8] and [10],
but they have been changed whenever it is needed.

In the following, we define a translation between two arbitrary languages.
The reason for using such a notion is that in the upcoming sections we will
consider logics with a fixed but an arbitrary language. This is a generalization
which makes our results much stronger since their importance is that they
are negative results. Therefore, the broader the range of the logics is, the
stronger the results will be.

Definition 2.1. Let us denote p1, . . . , pn by p̄, where each pi is an atomic
formula. Let L and L1 be two languages. By a translation t : L Ñ L1,
we mean an assignment which assigns a formula φCpp̄q P L1 to any logical
connective Cpp̄q P L such that any pi has at most one occurrence in φCpp̄q. It
is possible to extend a translation from the basic connectives of the language
to all of its formulas in an obvious compositional way. We will denote the
translation of a formula φ by φt and the translation of a multiset Γ, by
Γt “ tφt | φ P Γu.

In this paper, we will work with a fixed but arbitrary language L that
is augmented by a translation t : t^,_,Ñ, ˚, 0, 1u Y L Ñ L in the single-
conclusion cases and by t : t^,_,Ñ, ˚,`, 0, 1u Y LÑ L in multi-conclusion
cases, that fixes all logical connectives in L. For this reason and w.l.o.g,
we will assume that the language already contains the connectives t^,_,Ñ
, ˚, 0, 1u in single-conclusion cases and t^,_,Ñ, ˚,`, 0, 1u in multi-conclusion
ones. In the case of modal logics, the language L will be extended to contain
the modal operator l, as well.

Example 2.2. The usual language of classical propositional logic is a valid
language in our setting. In this case, there is a canonical translation that
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sends fusion, addition, 1 and 0 to conjunction, disjunction, J and K, respec-
tively. In this paper, whenever we pick this language, we assume that we are
working with this canonical translation.

Definition 2.3. By a logic L in the language L, we mean a subset of the set
of all L-formulas that is closed under arbitrary substitution and the following
rules:

• the modus ponens rule, i.e., if φ, φÑ ψ P L, then ψ P L, and

• the adjunction rule, i.e., if φ, ψ P L, then φ^ ψ P L.

2.1 Sequent Calculi

We denote atomic formulas by small Roman letters, p, q, . . .. Formulas are
defined in the usual way from atomic formulas and atomic constants and con-
nectives in the language, and we denote them by small Greek letters φ, ψ, . . .
or by capital Roman letters A,B, . . .. We denote multisets of formulas by
capital Greek letters Γ,∆, . . . and we mean the order does not matter but
the multiplicity of formulas is important. However, sometimes we use the
bar notation for multisets to make everything simpler. For instance, by φ̄,
we mean a multiset consisting of formulas φ1, . . . , φn. We denote the num-
ber of elements (cardinality) of the multiset Γ by |Γ|. By Γ Y∆ or Γ,∆ we
mean the multiset containing all the formulas φ which is in Γ or in ∆. By
a sequent, we mean an expression of the form Γ ñ ∆, where Γ and ∆ are
finite multisets of formulas in the language. By a single-conclusion sequent
Γ ñ ∆ we mean that the multiset ∆ contains at most one formula, and we
call it multi-conclusion otherwise. In the single-conclusion cases a sequent
Γ ñ ∆ is interpreted as ˚Γ Ñ ∆, and if ∆ “ H as ˚Γ Ñ 0, and in the
multi-conclusion cases it is interpreted as ˚Γ Ñ

Ř

∆, where by ˚Γ we
mean the formula γ1 ˚ γ2 ˚ . . . ˚ γn, where each γi P Γ; the formula

Ř

∆ is
defined similarly.

For a sequent S “ pΓ ñ ∆q, by Sa we mean the antecedent of the
sequent, which is Γ, and by Ss we mean the succedent of the sequent,
which is ∆. The multiplication of two sequents S and T is defined as
S ¨ T “ pSa Y T a ñ Ss Y T sq.

Meta-language, pL, is the language in which we define the sequent calculi. It
consists of infinitely many formula variables φ̂, ψ̂, . . ., the logical connectives
^,_,Ñ, ˚ (and ` in the multi-conclusion cases and l in modal cases), and
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constants 0, 1,K,J. Meta-formulas are defined as usual: all formula vari-
ables, atomic formulas and constants are meta-formulas and if φ and ψ are
meta-formulas, so is φ ˝ψ for ˝ P t^,_,Ñ, ˚u (and φ`ψ in multi-conclusion
cases and lφ in modal cases). We have also an infinite number of meta-

multiset variables, also called contexts, which are denoted by pΓ, p∆, . . .. A
meta-multiset is a multiset containg meta-formulas and meta-multiset vari-
ables. A meta-sequent is an expression of the form pS “ X ñ Y such that
X and Y contain finite number of meta-formulas and meta-multisets. The
set of variables of a meta-formula φ, V pφq, is defined inductively. For any
constant c in the language, V pcq is defined as the empty set. For an atomic
formula p and for a formula variable φ̂, define V ppq “ p and V pφ̂q “ φ̂. For
a logical connective ˝ P t^,_,Ñ, ˚,`, z, {u define V pφ ˝ ψq as V pφq Y V pψq.
Moreover, V plφq “ V pφq, and V pΓq “ tV pφq | φ P Γu for a meta-multiset
Γ. A meta-formula φ is called p-free, for an atomic formula or meta-formula
variable p, when p R V pφq.
A substitution σ is a map from the union of meta-multisets and meta-formulas
in pL to the union of multisets and formulas in L that works as follows: con-
stants are mapped to themselves, meta-formulas to formulas, meta-multisets
to multisets, and σ commutes with the logical connectives and the modal
operator. Therefore, σpφ̂q will be a formula in L, σppΓq will be the multiset

of formulas σpγ̂q, where γ̂ P pΓ, and σppS “ X ñ Y q will be σpXq ñ σpY q.
A rule is an expression of the form

pS1, ¨ ¨ ¨ , pSn

pS

where pS, pS1, . . . , pSn are meta-sequents. Meta-sequents above the line are
called premisses and the one below the line, the conclusion. In the case the
rule has no premises, it is called an axiom. It is called a left (right) rule if
pSa ( pSs) contains a meta-formula. A rule is either a right rule or a left one.
An instance of a rule is obtained by using the substitution map on the rule
as follows

σppS1q, ¨ ¨ ¨ , σppSnq

σppSq

Note that if there is a side condition on the rule, such as the meta-formulas
must everywhere be atoms, this condition works as a restriction on the sub-
stitution σ. A rule is backward applicable to a sequent S, when there is at
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least one instance of the rule where S is the conclusion.
By a sequent calculus G, we mean a set of rules. We will use bold-face capi-
tal Roman letters to denote sequent calculi. A sequent S is derivable from a
set of sequents Γ in G, denoted by Γ $G S, if there exists a finite tree with
sequents as labels of the nodes such that the label of the root is S, labels of
the leaves are axioms of G or members of Γ, and in each node the set of the
labels of the children of the node together with the label of the node itself,
constitute an instance of a rule in G. This finite tree is called the proof of
S in G which is sometimes called a tree-like proof to emphasize its tree-like
form. If Γ “ H then we denote it by G $ S and we say S is derivable in G.
We will use the same notation for a sequent calculus and its logic, i.e., the
set of provable formulas in it, i.e., tφ | G $ pñ φqu.

As it is usually a convention in proof theory papers, from now on we will
not mention “meta” in the meta-language and so on and we will omit the p

notation. It will be always clear from the context which form we are working
with. Therefore, for instance by a meta-sequent Γ, φ̄ ñ ψ, we mean Γ is a
meta-multiset, φ̄ is a possibly empty multiset of meta-formulas and ψ is a
meta-formula.

Let us recall some important systems that we will use throughout the
paper. Consider the following set of rules:

Identity:

φñ φ

Context-free Axioms:

ñ 1 0 ñ

Rules for 0 and 1:

Γ ñ ∆
p1wq

Γ, 1 ñ ∆
Γ ñ ∆

p0wq
Γ ñ 0,∆

Conjunction Rules:

Γ, φñ ∆
pL^q

Γ, φ^ ψ ñ ∆

Γ, ψ ñ ∆
pL^q

Γ, φ^ ψ ñ ∆

Γ ñ φ,∆ Γ ñ ψ,∆
pR^q

Γ ñ φ^ ψ,∆
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Disjunction Rules:

Γ, φñ ∆ Γ, ψ ñ ∆
pL_q

Γ, φ_ ψ ñ ∆

Γ ñ φ,∆
pR_q

Γ ñ φ_ ψ,∆

Γ ñ ψ,∆
pR_q

Γ ñ φ_ ψ,∆

Fusion Rules:

Γ, φ, ψ ñ ∆
pL˚q

Γ, φ ˚ ψ ñ ∆

Γ ñ φ,∆ Σ ñ ψ,Λ
pR˚q

Γ,Σ ñ φ ˚ ψ,∆,Λ

Implication Rules:

Γ ñ φ,∆ Σ, ψ ñ Λ
pLÑq

Γ,Σ, φÑ ψ ñ ∆,Λ

Γ, φñ ψ,∆
pRÑq

Γ ñ φÑ ψ,∆

The system consisting of the single-conclusion version of all of these rules is
FLe

´. If we also add the single-conclusion version of the following axioms,
we reach a system which we denote by FLb

e .

Contextual Axioms:

Γ ñ J,∆ Γ,K ñ ∆

In the standard definition of FLe the language does not contain the constants
K and J and therefore their axioms are not present in the sequent calculus,
as well. However, since the presence of K and J is essential in our discussions
in the future sections, we allow them in the language and their axioms in the
sequent calculus.
In the multi-conclusion case define CFLe

´ and CFLe with the same rules
as FLe

´ and FLe, this time in their full multi-conclusion version and add `
to the language and the following rules to the systems:

Rules for `:

Γ, φñ ∆ Σ, ψ ñ Λ
pL`q

Γ,Σ, φ` ψ ñ ∆,Λ

Γ ñ φ, ψ,∆
pR`q

Γ ñ φ` ψ,∆

The system MALL is defined as CFLe minus the implication rules. More-
over, if we consider the following rules:

!Γ ñ φ
:

!Γ ñ!φ

Γ, φñ ∆

Γ, !φñ ∆
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Γ ñ ∆
Γ, !φñ ∆

Γ, !φ, !φñ ∆

Γ, !φñ ∆

we can define ILL as FLe plus the single-conclusion version of the above
rules and CLL as CFLe plus the above rules, themselves. In both cases,
the rule : is single-conclusion. The set of provable formulas in any of the
sequent calculi defined above, i.e., their corresponding logics, are denoted by
FL´e ,CFL

´
e ,FLe,CFLe,MALL, ILL, and CLL.

We will use later the structural rules given below:

Weakening rules:

Γ ñ ∆
pLwq

Γ, φñ ∆
Γ ñ ∆

pRwq
Γ ñ φ,∆

Note that in the single-conclusion cases, in the rule pRwq, ∆ must be empty.

Contraction rules:

Γ, φ, φñ ∆
pLcq

Γ, φñ ∆

Γ ñ ∆, φ, φ
pRcq

Γ ñ φ,∆

The rule pRcq is only allowed in multi-conclusion systems.

If we consider the sequent calculus FLe and add the weakening rules
(contraction rules), the resulting system is called FLew (FLec). Their cor-
responding logics are denoted by FLew and FLec. In a similar manner, we
define CFLew and CFLec, and their corresponding logics CFLew and CFLec.
Finally, adding all the structural rules to FLe, we obtain the system FLewc

in which the connectives ˚ and ^ become equivalent, i.e., φ ˚ψ ô φ^ψ will
become provable in the system. Moreover, K and 0, and J and 1 will become
equivalent in FLewc. Furthermore, in the system CFLewc, we can also prove
that ` and _ are equivalent. Hence, it is possible to define FLewc (CFLewc)
even on the restricted language t^,_,J,K,Ñu. This system is nothing but
the usual sequent calculus LJ (LK) for the intuitionistic (classical) logic
IPCpCPCq. All the sequent calculi presented here enjoy the cut-elimination
property [].

We will also use the following rules in the future sections:

Context-sharing left implication:
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Γ ñ φ Γ, ψ ñ ∆

Γ, φÑ ψ ñ ∆

Left weakening rule for boxed formulas:

Γ ñ ∆
Γ,lφñ ∆

Modal rules:

Γ ñ φ
K

lΓ ñ lφ
Γ ñ

D
lΓ ñ

lΓ,Γ ñ φ
4

lΓ ñ lφ

lΓ,Γ ñ
4D

lΓ ñ

Γ, φñ ∆
LS4

Γ,lφñ ∆

lΓ ñ φ
RS4

lΓ ñ lφ

We use the convention that lH “ H. We say a sequent calculus G satisfies
the modal admissibility conditions if the following conditions hold in G:

• if the rule pDq is present in G, the rule pKq is admissible in it;

• if the rule p4Dq is present in G, the rule p4q is admissible in it, as well,
and

• if the rule pRS4q is present in G, the rule pLS4q is admissible in it.

Adding these rules to the above sequent calculi does not affect the cut-
elimination property [].

Finally, note that Γ and ∆ are multiset variables everywhere, therefore
the exchange rule is built in and hence admissible in our system. Moreover,
note that the calculi defined in this section are written in the given language
which can be any extension of the language of the system itself. For instance,
FLe is the calculus with the mentioned rules on our fixed language that can
have more connectives than t^,_, ˚,Ñ,J,K, 1, 0u.
By a subsequent of a sequent Γ ñ ∆ we mean a sequent Γ1 ñ ∆1. We call it
proper if either Γ1 Ř Γ or ∆1 Ř ∆.

Definition 2.4. A sequent calculus G is terminating with respect to ă, where
ă is a well-founded order on the sequents, G is finite and there are at most
finitely many instances of the rules in G with the conclusion S. Moreover,
the order is defined in a way that the order of the following are less than the
order of S:
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• the premises of all instance of a rule whose conclusion is S;

• proper subsequents of S, and

• any sequent S 1 of the form pΓ,Π ñ ∆,Λq, where S is of the form
pΓ,lΠ ñ ∆,lΛq. Note that ΠY Λ must be non-empty.

Definition 2.5. Let G be a sequent calculus and L be a logic such that they
have the same language. We say G is a sequent calculus for L when

G $ Γ ñ ∆ if and only if L $ p˚Γ Ñ
Ř

∆q.

Note that if the calculus is single-conclusion, by
Ř

∆, we mean ∆ if ∆ is
a singleton, and 0 if ∆ is empty. Therefore, in this case we do not need the
` operator. As a result of Definition 2.5, if G is a sequent calculus for L we
have

G $ φñ ψ iff L $ φÑ ψ.

2.2 Logical Systems

In this subsection we will recall the Craig interpolation property, the uniform
interpolation property and also some useful substructural logics that we will
need in the rest of the paper.

Definition 2.6. We say that a logic L has Craig interpolation property if
for any formulas φ and ψ if L $ φ Ñ ψ, then there exists a formula θ such
that L $ φÑ θ and L $ θ Ñ ψ and V pθq Ď V pφq X V pψq.

Definition 2.7. We say a logic L has the uniform interpolation property if for
any formulas φ and any atomic formula p, there are two p-free formulas, the
p-pre-interpolant, @pφ and the p-post-interpolant Dpφ, such that V pDpφq Ď
V pφq and V p@pφq Ď V pφq and

piq L $ @pφÑ φ,

piiq For any p-free formula ψ if L $ ψ Ñ φ then L $ ψ Ñ @pφ,

piiiq L $ φÑ Dpφ, and

pivq For any p-free formula ψ if L $ φÑ ψ then L $ DpφÑ ψ.
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To recall some of the well known substructural logics and following [10],
we have to introduce the semantical framework, first.

Definition 2.8. By a pointed commutative residuated lattice we mean an
algebraic structure A “ xA,^,_, ˚,Ñ, 0, 1y where ^,_, ˚,Ñ are binary op-
erations, and 0, 1 are constants such that xA,^,_y is a lattice with partial
order ď and xA, ˚, 1y is a commutative monoid. We define for all x, y, z P A,
x ˚ y ď z if and only if x ď y Ñ z. For a single pointed commutative resid-
uated lattice A and a class of pointed commutative residuated lattices K,
denote VpAq and VpKq as the varieties generated by A and K, respectively.

In the following we will borrow the definitions of some logics from [10].
First, we need the following equational conditions for pointed commutative
residuated lattices.

‚ (prl) prelinearity : 1 ď pxÑ yq _ py Ñ xq

‚ (dis) distributivity : x^ py _ zq “ px^ yq _ px^ zq

‚ (inv) involutivity :   x “ x

‚ (int) integrality : x ď 1

‚ (bd) boundedness : 0 ď x

‚ (id) idempotence : x “ x ˚ x

‚ (fp) fixed point negation : 0 “ 1

‚ (div) divisibility : x ˚ pxÑ yq “ y ˚ py Ñ xq

‚ (can) cancellation : xÑ px ˚ yq “ y

‚ (rcan) restricted cancellation : 1 “  x_ ppxÑ px ˚ yqq Ñ yq

‚ (nc) non-contradiction : x^ x ď 0

In the following, we have the definitions of some logics that we are inter-
ested in. Note that in all of them, both of the axioms pprlq and pdisq are
present, and hence we just mention the other axioms.

‚ pUL´q unbounded uninorm logic
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‚ pIUL´q unbounded involutive uninorm logic : pinvq

‚ pMTLq monoidal t-norm logic : pintq, pbdq

‚ pSMTLq strict monoidal t-norm logic : pintq, pbdq, pncq

‚ pIMTLq involutive monoidal t-norm logic : pintq, pbdq, pinvq

‚ pBLq basic fuzzy logic : pintq, pbdq, pdivq

‚ pGq Gödel logic : pintq, pbdq, pidq

‚ pLq Lukasiewicz logic : pintq, pbdq, pdivq, pinvq

‚ pPq product logic : pintq, pbdq, pdivq, prcanq

‚ pCHLq cancellative hoop logic : pintq, pfpq, pdivq, pcanq

‚ pUML´q unbounded uninorm mingle logic : pidq

‚ pRMeq R-mingle with unit : pidq, pinvq

‚ pIUML´q unbounded involutive uninorm mingle logic : pidq, pinvq, pfpq

‚ pAq abelian logic : pinvq, pfpq, pcanq

Furthermore, we will define the following important logics, as well.
For n ą 1 define

Ln “ t0,
1

n´1
, ¨ ¨ ¨ , n´2

n´1
, 1u , L8 “ r0, 1s

and the pointed commutative residuated lattices (again for n ą 1)

Ln “ xLn,min,max, ˚L,ÑL, 1, 0y

and

Gn “ xLn,min,max,min,ÑG, 1, 0y

where x ˚L y “ maxp0, x ` y ´ 1q, x ÑL y “ minp1, 1 ´ x ` yq, and x ÑG y
is y if x ą y, otherwise 1. Then, for n ą 1, Ln and Gn are the logics with
equivalent algebraic semantics VpLnq and VpGnq, respectively. The logics
G8 and H8 are the Gödel logic and Lukasiewicz logic, as defined before.
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R is the logic of a variety consisting of all distributive pointed commuta-
tive residuated lattices with the condition that x ˚ x ď x for all x.

Now consider the following binary functions on the set of integers Z,
where ^ and _ are min and max, respectively, and |x| is the absolute value
of x:

x ˚ y “

$

’

&

’

%

x^ y if |x| “ |y|

y if |x| ă |y|

x if |y| ă |x|

xÑ y “

#

´pxq _ y if x ď y

´pxq ^ y otherwise

And finally define the following algebras:

S2m “ xt´m,´m` 1, ¨ ¨ ¨ ,´1, 1, ¨ ¨ ¨ ,m´ 1,mu,^,_, ˚,Ñ, 1,´1y pm ě 1q

S2m`1 “ xt´m,´m`1, ¨ ¨ ¨ ,´1, 0, 1, ¨ ¨ ¨ ,m´1,mu,^,_, ˚,Ñ, 0, 0y pm ě 0q

and define RM e
n as the logic of VpSnq.

3 Semi-analytic Rules

In this section we will introduce a class of rules which we will investigate in
the rest of the paper. We will only consider rules with exactly one meta-
formula φ in the conclusion, which is different from contexts (or multiset
variables) Γi,Πj or ∆i.
By the notation xxSiryryi, where Sir’s are meta-sequents, we mean first con-
sidering the meta-sequents Sir ranging over r and then ranging over i. More-
over, for the sake of simplicity, we omit the domain of indices, while we always
mean that 1 ď i ď n and 1 ď r ď mi. Note that mi depends on the index
i. For instance, xxΓi, φ̄ir ñ ψ̄ir,∆iyryi is short for the following sequence of
meta-sequents where 1 ď i ď n, and 1 ď r ď mi:

Γ1, φ̄11 ñ ψ̄11,∆1, ¨ ¨ ¨ ,Γ1, φ̄1m1 ñ ψ̄1m1 ,∆1,

Γ2, φ̄21 ñ ψ̄21,∆2, ¨ ¨ ¨ ,Γ2, φ̄2m2 ñ ψ̄2m2 ,∆2,

...

Γn, φ̄n1 ñ ψ̄n1,∆n, ¨ ¨ ¨ ,Γn, φ̄nmn ñ ψ̄nmn ,∆n.
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where each φ̄ir is a multiset of meta-formulas φ1
ir, . . . , φ

kir
ir or the empty se-

quence and ψ̄ir is a multiset of meta-formulas ψ1
ir, . . . , ψ

k1ir
ir or the empty

sequence. The reason for such a complicated notation is that we want to
be able to talk about the rules in their most general form. Therefore, The
premises in a rule may be made of meta-sequents with the same contexts
and/or meta-sequents with different contexts. At a closer look, in the ith
horizontal line in the definition above, there are mi sequents with the same
contexts Γi and ∆i and possibly different sequences of meta-formulas φ̄imi

and ψ̄imi
, while in vertical lines we also allow the contexts to change. The

sequences xxΓi, φ̄ir ñ ∆iyryi and xxΠj, ψ̄js ñ θ̄jsysyj are defined similarly.
In the former, there are no sequences of meta-formulas in the succedents of
the sequents and in the latter, there are no contexts in the succedents of
sequents.
Throughout this paper, we will mostly work with sequences in the form
xxΠj, ψ̄js ñ θ̄jsysyj, xxΓi, φ̄ir ñ ∆iyryi, or xxΓi, φ̄ir ñ ψ̄ir,∆iyryi where
ψ̄js, θ̄js, φ̄ir and ψ̄ir are either the empty sequence or a multiset of meta-
formulas and Πj,Γi, and ∆i are pairwise disjoint sets of multiset variables.
In each sequent, Γi and Πj are called the left context while ∆i is called the
right context.

Definition 3.1. A rule is called occurrence preserving if any formula variable
appeared in any of the premises also appears in the conclusion.

For instance, for the following rule

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, φ̄ir ñ ∆iyryi

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

the occurrence preserving condition is

Ť

i,r V pφ̄irq Y
Ť

j,s V pψ̄jsq Y
Ť

j,s V pθ̄jsq Ď V pφq.

Note that the occurrence preserving condition is defined on the form of the
rule and not on an instance of a rule. Therefore, when we say a variable is
occurred in the premises we mean in ψ̄js, θ̄js or φ̄ir and when it appears in
the conclusion, it must appear in φ.

In the following we will define a class of occurrence preserving rules that
we will call semi-analytic, since the occurrence preserving condition is the
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weaker version of the analycity property in the analytic rules, which de-
mands the formulas in the premises to be subformulas of the formulas in
the consequence. Based on a rule being single-conclusion, multi-conclusion,
context-sharing or a modal rule, the notion of being semi-analytic is defined
as follows.

Definition 3.2. Let Γi,Πj and ∆i be pairwise distinct multiset variables,
ψ̄js, φ̄ir and θ̄js be multisets of meta-formulas and φ be a meta-formula where
i ď n and j ď m. In the left single-conclusion semi-analytic rule, |∆i| ď 1
and θ̄js is either one meta-formula or empty, for every i, j, and s. Also, in
the right single-conclusion semi-analytic rule, ψ̄ir is either one meta-formula
or empty for each i and r. A rule is called semi-analytic if it is occurrence
preserving and has one of the following forms.

• left single-conclusion semi-analytic:

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, φ̄ir ñ ∆iyryi

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

• right single-conclusion semi-analytic:

xxΓi, φ̄ir ñ ψ̄iryryi

Γ1, ¨ ¨ ¨ ,Γn ñ φ

• context-sharing semi-analytic:

xxΓi, ψ̄is ñ θ̄isysyi xxΓi, φ̄ir ñ ∆iyryi

Γ1, ¨ ¨ ¨ ,Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

• left multi-conclusion semi-analytic:

xxΓi, φ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

• right multi-conclusion semi-analytic:

xxΓi, φ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn ñ φ,∆1, ¨ ¨ ¨ ,∆n
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Here are some remarks. First, note that in the left single-conclusion semi-
analytic rule since the number of elements of the succedent of the conclusion
of the rule must be at most 1, it means that at most one of ∆i’s can be
non-empty. Secondly, whenever it is clear from the context, we will omit the
phrase “multi-conclusion”.

Example 3.3. A generic example of a left semi-analytic rule is the following:

Γ, φ1, φ2 ñ ψ Γ, θ ñ η Π, µ1, µ2, µ3 ñ ∆
Γ,Π, αñ ∆

where

V pφ1, φ2, ψ, θ, η, µ1, µ2, µ3q Ď V pαq.

Note that the premises on the left and in the middle of the example have
the same context Γ in the antecedent and have no context in the succedents.
Therefore, there should be only one copy of Γ in the antecedent of the con-
clusion. A generic example of a context-sharing left semi-analytic rule is:

Γ, θ ñ η Γ, µ1, µ2, µ3 ñ ∆
Γ, αñ ∆

where

V pθ, η, µ1, µ2, µ3q Ď V pαq

Moreover, for a generic example of a right semi-analytic rule we can have

Γ, φñ ψ Γ, θ1, θ2 ñ η Π, µ1, µ2,ñ ν
Γ,Π ñ α

where

V pφ, ψ, θ1, θ2, η, µ1, µ2, νq Ď V pαq

Here are some remarks. First note that in any left single-conclusion semi-
analytic rule there are two types of premises. In the first type, the succedent
of the meta-sequent is empty or includes only one meta-formula and in the
second type the succedent of the meta-sequent has only one multi-set vari-
able. This is a crucial point to consider. Any left semi-analytic rule allows any
kinds of combination of sharing/combining contexts in any type. However,
between two types, we can only combine the contexts in the antecedent. The
case in which we can share the contexts of the antecedents of meta-sequents
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of the two types is called context-sharing semi-analytic rule. This should
explain why our second example is called context-sharing left semi-analytic
while the first one is not. The reason is the fact that the two types share the
same context of the antecedent in the second rule while in the first one this
situation happens in just one type. The second important point about the
semi-analytic rules is the presence of contexts. This is very crucial for almost
all the arguments in this paper, that any sequent present in a semi-analytic
rule must have multiset variables as left contexts and in the case of left rules,
at least one multiset variable for the right hand-side must be present.

Example 3.4. Now for more concrete examples, note that all the usual
conjunction, disjunction and implication rules in LJ are semi-analytic. The
same also holds for all the rules in substructural logic FLe, the weakening
and the contraction rules, the modal rule pLS4q, and some of the well-known
restricted versions of them including the following rules for exponentials in
linear logic:

Γ, !φ, !φñ ∆

Γ, !φñ ∆
Γ ñ ∆

Γ, !φñ ∆

For a context-sharing semi-analytic rule, consider the following rule in
Dyckhoff’s calculus for IPC (see [4]):

Γ, ψ Ñ γ ñ φÑ ψ Γ, γ ñ ∆

Γ, pφÑ ψq Ñ γ ñ ∆

Example 3.5. For a concrete non-example consider the cut rule; it is not
semi-analytic because it does not preserve the variable occurrence condition.
Moreover, the following rule in the calculus of KC:

Γ, φñ ψ,∆

Γ ñ φÑ ψ,∆

in which ∆ should consist of negation formulas is not a multi-conclusion
semi-analytic rule, simply because the context is not free for all possible
substitutions. The rule of thumb is that any rule in which we have side
conditions on the contexts is not semi-analytic.

Definition 3.6. A meta-sequent is called a focused axiom, if it has one of
the following forms:

p1q Identity axiom: (φñ φ)

21



p2q Context-free right axiom: (ñ ᾱ)

p3q Context-free left axiom: (β̄ ñ)

p4q Contextual left axiom: (Γ, φ̄ñ ∆)

p5q Contextual right axiom: (Γ ñ φ̄,∆)

where Γ and ∆ are multiset variables and ᾱ, β̄, φ̄ are multisets of meta-
formulas and φ is a meta-formula. Moreover, in p2q the variables in any pair
of elements in ᾱ are equal, in other words V pµq “ V pνq, for any µ, ν P ᾱ.
The same condition also holds for any pair of elements in β̄ in p3q or in φ̄ in
p4q and p5q. A sequent is called a context-free focused axiom if it has one of
the forms p1q, p2q or p3q.

Example 3.7. It is easy to see that the axioms given in the preliminaries
are examples of focused axioms. Here are some more examples:

 1 ñ , ñ  0

φ, φñ , ñ φ, φ

Γ, J ñ ∆ , Γ ñ ∆, K

where the first four are context-free while the last two are contextual. As a
non-example consider p, p, q ñ, where p and q are distinct atomic formulas.
It is not a focused axiom since the set of variables of p and q (or  p and q)
are not equal.

4 Craig Interpolation

In this section we will investigate the relationship between semi-analytic rules
and the Craig interpolation property. Apart from its application to prove in-
terpolation for different logics, it will be used to show that several substruc-
tural and super-intuitionistic logics cannot have a calculus consisting only
of semi-analytic rules and focused axioms. To investigate the relationship
between sequent calculi consisting of semi-analytic rules and focused axioms,
and the Craig interpolation property we need a notion of comparative inter-
polation.
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Definition 4.1. Let L and L1 be two logics such that LL Ď LL1 . We say L1

is an extension of L (or L1 extends L) if L $ A implies L1 $ A.

Definition 4.2. Let G and H be two sequent calculi such that LG Ď LH .
We say H is an extension of G if all the rules of G are admissible in H, i.e.,
for any instance of a rule of G, if the premises are provable in H then so is
its consequence. Moreover, H is called an axiomatic extension of G, if the
provable sequents of G are considered as axioms of H, to which H may add
some rules.

Definition 4.3. Let G and H be two sequent calculi such that H is an
axiomatic extension of G. Let π be a proof of a sequent in H. By the H-
length of π we mean counting just the new rules that H adds to the provable
sequents in G that H considers as axioms.

Theorem 4.4. Let L be a logic and G a single-conclusion (multi-conclusion)
sequent calculus for L. Then for any logic M P tFLe

´,FLe, IPCu (M P

tCFLe
´,CFLeu), if we denote the calculus of M, defined previously in this

section, by GM , we have:

piq If L extends FLe
´ (CFLe

´), then the cut rule is admissible in G.

piiq If L extends M, then G extends the calculus GM .

Proof. First, observe that for any formulas φ and ψ, if L $ φ and L $ ψ then
we have L $ φ ˚ ψ. The reason is that L extends FLe

´ and FLe
´
$ φ Ñ

pψ Ñ φ ˚ψq. Therefore, L $ φÑ pψ Ñ φ ˚ψq. Since L is closed under modus
ponens, if L $ φ and L $ ψ then L $ φ ˚ ψ.

Now let us prove piq. For the single-conclusion case, set
Ř

∆ as φ when
∆ “ φ and

Ř

∆ “ 0, when ∆ is empty. Assume that G $ Γ ñ A,∆ and
G $ Γ1, Añ ∆1. Hence L $ ˚Γ Ñ A`p

Ř

∆q and L $ p˚Γ1q ˚AÑ p
Ř

∆1q

by the soundness of G. Therefore, by the previous observation we have

L $ r˚Γ Ñ A` p
Ř

∆qs ˚ rp˚Γ1q ˚ AÑ p
Ř

∆1qs

Since L extends FLe
´ (CFLe

´) and in this logic the previous formula implies
the formula

rp˚Γq ˚ p˚Γ1q Ñ p
Ř

∆q ` p
Ř

∆1qs
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By modus ponens in L the last formula is also provable in L which implies
G $ Γ,Γ1 ñ ∆,∆1 again by the completeness of G.

For piiq, let R be an instance of a rule in the system M and let S1, ¨ ¨ ¨ ,
Sn and S0 be the premises and the consequence of R, respectively. Define
F pΓ ñ ∆q “ r˚Γ Ñ

Ř

∆s. Then there are three cases to consider:

1. R is an instance of an axiom. Then M proves F pS0q. Since L extends
M,we have L $ F pS0q which implies G $ S0.

2. R is an instance of the conjunction, the disjunction or the structural
rules (in this case M “ IPC). Then it is easy to see that the formula

n
ľ

i“1

F pSiq Ñ F pS0q

is provable in M and hence in L. Now, if G $ Si for all 1 ď i ď n, we
have L $ F pSiq which implies L $

Źn
i“1 F pSiq by the adjunction rule. Since

L is closed under modus ponens, L $ F pS0q which implies G $ S0 by the
completeness of G.

3. R is an instance of the rules for 0 and 1, the fusion, the addition or
the implication rule. Then it is easy to see that the formula

n
˚
i“1

F pSiq Ñ F pS0q

is provable in M and hence in L. Now, if G $ Si for all 1 ď i ď n, we have
L $ F pSiq which implies L $ ˚n

i“1 F pSiq by the previous observation. Finally,
since L is closed under modus ponens, L $ F pS0q which implies G $ S0 by
the completeness of G.

First, let us define the interpolation property for a sequent calculus.

Definition 4.5. (essentially Maehara) Let G and H be two sequent calculi.

• G has H-interpolation if for any sequent S, and any partition ΣYΛ of
the antecedent of S, if S is provable in G, then there exists a formula
C such that

H $ Σ ñ C and H $ Λ, C ñ Ss

and V pCq Ď V pΣq X V pΛY Ssq.
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• G has strong H-interpolation if for any sequent S, any partition ΣYΛ
of the antecedent of S, and any partition ΘY∆ of the succedent of S,
if S is provable in G, then there exists a formula C such that

H $ Σ ñ C,Θ and H $ Λ, C ñ ∆

and V pCq Ď V pΣYΘq X V pΛY∆q.

If G has strong H-interpolation, then it also has H-interpolation, by
taking Θ as the empty multiset. If both Θ and ∆ are non-empty multisets,
then both G and H must be multi-conclusion sequent calculi. However,
in the case that G has H-interpolation, G and H can be either single- or
multi-conclusion.

The following theorem shows that the interpolation property of a sequent
calculus results the Craig interpolation of its logic.

Theorem 4.6. Let G be a sequent calculus for the logic L. If G has the
G-interpolation property, then L has Craig interpolation.

Proof. Let L $ φ Ñ ψ. Since G is a sequent calculus for L, by Definition
2.5 we have G $ φ ñ ψ. The sequent calculus G has the G-interpolation
property, therefore there exists θ such that G $ φ ñ θ, G $ θ ñ ψ and
V pθq Ď V pφq X V pψq. Again, by Definition 2.5, L $ φ Ñ θ and L $ θ Ñ ψ
which completes the proof.

The following theorem ensures that any subset of the focused axioms
of a sequent calculus H, has H-interpolation property. It can also serve
as an example to show how this notion of relative interpolation, Definition
4.5, works. The formula Jn is defined recursively. J0 is defined as 1 and
Ji`1 “ Ji ˚ J.

Theorem 4.7. Let G be a set of focused (context-free focused) axioms, and
H be a sequent calculus containing G. Then,

• if both G and H are single-conclusion and H extends FLe (FLe
´), G

has H-interpolation, and

• if both G and H are multi-conclusion and H extends CFLe (CFLe
´),

G has strong H-interpolation.
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Proof. We will only prove the case where G and H are both single-conclusion,
using Definition 4.5. The proof for the multi-conclusion case is similar. Note
that a sequent S is provable in G if it is one of the focused axioms. We will
check each case separately. In the cases that the interpolant is a constant,
i.e., 0, 1,K, or J, the condition on variables in Definition 4.5 is obviously
satisfied since the set of variables of a constant is empty.

p1q In this case the sequent S is of the form pφ ñ φq. For any partition
Σ and Λ of the antecedent, we have to find a formula C such that
pΣ ñ Cq and pΛ, C ñ φq are provable in H. There are two cases to
consider. First, if Σ “ tφu and Λ “ tu. For this case define C to be
φ. Obviously both conditions hold since we have pφñ φq as an axiom.
Second, if Σ “ tu and Λ “ tφu define C as 1. We must show that
pñ 1q and p1, φ ñ φq are provable in H. The former is an axiom of
FL´e and hence provable in H since H extends FL´e . The latter is the
consequence of an instance of the rule p1wq and the fact that pφñ φq
is provable in H.

p2q For the case pñ ᾱq, consider C to be 1. Then since both Σ and Λ are
empty sequents, we must have pñ 1q and p1 ñ ᾱq in H. The former is
an axiom of FL´e , and the latter is derived by applying the rule p1wq,
which is again present in FL´e , on pñ ᾱq.

p3q For the axiom pβ̄ ñq, where β̄ “ β1, . . . , βn, there are three cases to
consider:

piq If Λ “ β̄ and Σ “ tu. Then define C “ 1. It is clear that
H $ Σ ñ 1. Moreover, by the axiom and the rule p1wq we will
have H $ Λ, 1 ñ.

piiq If Σ “ β̄ and Λ “ tu, define C “ 0. The reasoning is dual of the
argument in piq.

piiiq Otherwise, both Σ and Λ are non-empty. W.l.o.g. suppose Σ “

β1, . . . , βi and Λ “ βi`1, . . . , βn, where 1 ď i ď n. Define C “ ˚Σ.
Then Σ ñ C is provable in H by applying the rule pR˚q for i´ 1
many times. Moreover, pΛ, C ñq holds in H by the axiom itself
and applying the rule pL˚q for i ´ 1 many times. To check the
condition on the variables, if p P V pCq, then p P V pΣq. Recall
that by Definition 3.6, each pair of the elements of β̄ have the
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same set of variables. Since Σ Y Λ “ β̄, and both Σ and Λ are
non-empty, therefore, p P V pΛq. Hence p P V pΣq X V pΛq.

p4q If S is of the form Γ, φ̄ñ ∆, there are three cases to consider:

piq If φ̄ Ď Λ, define C “ J. Then Σ ñ J is an instance of an axiom in
FLe, hence provable in H. Moreover, since Γ, φ̄ñ ∆ is an axiom
in G, and H extends G, it is also provable in H. Substitute
tJu Y Λ´ φ̄ for Γ to have J,Λ ñ ∆ provable in H.

piiq If φ̄ Ď Σ, define C “ K. Then, K,Λ ñ ∆ is an instance of an
axiom in FLe and hence provable in H. Moreover, substitute Σ´φ̄
for Γ and K for ∆ in Γ, φ̄ñ ∆, to obtain Σ ñ K provable in H.

piiiq If none of the above happens, then both φ̄ X Σ and φ̄ X Λ are
non-empty. Define C “ ˚pΣ X φ̄q ˚ Jn where n is the cardinal
of Σ ´ pΣ X φ̄q. First we have Σ ñ C in H. Because for any
φi P ΣX φ̄, φi ñ φi and for any ψ P Σ´ pΣX φ̄q we have ψ ñ J

(which is an instance of an axiom in FLe and hence provable in
H), and at the end we use the rule pR˚q for appropriate many
times. In the case that Σ ´ pΣ X φ̄q “ H, then J0 “ 1 and ñ 1
is provable in H. Secondly, Λ, C ñ ∆ is provable in H. The
reason is that the part of φ̄ which is occurred in Σ (and now in
C) together with the part of φ̄ in Λ completes φ̄. Therefore, if we
substitute the multiset tpΛ´ φ̄q,Jnu for Γ in the axiom Γ, φ̄ñ ∆,
we get pΛ´φ̄q,Jn, pΛXφ̄q, pΣXφ̄q ñ ∆, which after using the rule
pL˚q for appropriate many times obtains Λ, C ñ ∆. Finally, for
the variables, if Σ X φ̄ “ H then V pCq “ H, as well. Otherwise,
if p P V pCq then p P V pΣ X φ̄q. Since there is at least one of φ̄’s
in Λ and each pair of the elements of φ̄ have the same variables,
p P V pΛq which completes the proof.

p5q If S is of the form pΓ ñ φ̄,∆q define C “ J. Note that Σ ñ J is valid
in H on the one hand and C,Λ ñ φ̄,∆ on the other. The latter is an
instance of the axiom itself and hence valid.

Note that in the context-free axioms, 1, 2, and 3, we only made use of the
fact that H extends FL´e . In 4 and 5, we used the axioms for K and J, which
was possible since H extends FLe in these cases.
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4.1 The Single-conclusion Case

Now we are ready to prove that semi-analytic rules respect the interpolation
property. This subsection is devoted to the single-conclusion case. Through-
out the rest of Section 4, we will assume that 1 ď i ď n, 1 ď r ď ui, 1 ď
j ď m, and 1 ď s ď vj. However, for simplicity, we omit these domains.
Moreover, we use the convention that tΓ1iu

n
i“1 “ Γ1 and tΠ1iu

m
j“1 “ Π1. The

same goes for Γ2i , Π2j , ∆i, ∆1
i, and ∆2

i .

Theorem 4.8. Let G and H be two single-conclusion sequent calculi such
that H extends FLe

´ and satisfies the modal admissibility conditions. Sup-
pose H is an axiomatic extension of G, to which we add the “single-conclusion”
version of any of the following rules:

piq semi-analytic rules;

piiq any of the rules pKq, pDq, pLS4q, or pRS4q;

piiiq any of the rules p4q or p4Dq, given the condition that the left weakening
rule for boxed formulas is admissible in H;

pivq context-sharing semi-analytic rules, given the condition that the left and
right weakening rules and the left context-sharing implication rule are
all admissible in H.

Then, if G has H-interpolation, so does H.

Proof. In each case, we will show that H has H-interpolation. Let S be a
sequent of the form Γ ñ ∆ provable in H with the proof π. We will use
induction on the H-length of π. If the H-length is zero, then it means that
the proof is in G and hence the existence of the interpolant is guarantied by
the assumption. For the induction step, we will investigate the last rule used
in the proof. Since the proofs of most of the cases are similar, we will only
prove some of them.

piq There are two possibilities: either the added rule is a left semi-analytic
rule, or it is a right one.

˝ Consider the case where the last rule used in the proof is a left semi-
analytic rule and the main formula, φ, is in part Λ in the Definition 4.5
(or informally, φ appears in the same sequent as ∆ does). Hence, we are

28



in the case that Sa is partitioned as Σ “ tΓ1,Π1u and Λ “ tΓ2,Π2, φu
and S is of the form pΓ1,Γ2,Π1,Π2, φñ ∆q. We have to find a formula
C that satisfies pΓ1,Π1 ñ Cq and pΓ2,Π2, φ, C ñ ∆q. Since the last
rule used in the proof is a left semi-analytic one, it is of the form

xxΠ1j,Π
2
j , ψ̄js ñ θ̄jsysyj xxΓ1i,Γ

2
i , φ̄ir ñ ∆iyryi

Π1,Π2,Γ1,Γ2, φñ ∆
p:q

Using the induction hypothesis for the premises, there are Cjs and Dir

for each i, j, r, and s such that

Π1j ñ Cjs , Π2j , ψ̄js, Cjs ñ θ̄js

Γ1i ñ Dir , Γ2i , φ̄ir, Dir ñ ∆i

Using the rule pR^q for the left sequents and the rule pL^q for the
right ones, we get

Π1j ñ
Ź

s

Cjs , Π2j , ψ̄js,
Ź

s

Cjs ñ θ̄js

Γ1i ñ
Ź

r

Dir , Γ2i , φ̄ir,
Ź

r

Dir ñ ∆i

For the left sequents, use the rule pR˚q to obtain

Π11, . . . ,Π
1
m,Γ

1
1, . . . ,Γ

1
n ñ p˚

j

Ź

s

Cjsq ˚ p˚
i

Ź

r

Dirq.

And, apply the rule p:q on the right sequents, such that we substitute
each pΠ2j ,

Ź

sCjsq for Π2j and each pΓ2i ,
Ź

rDirq for Γ2i in p:q. This is
possible, first because of the condition in definition of semi-analytic
rules (Definition 3.2) that contexts are free for any substitution of mul-
tisets and second because

Ź

sCjs depends only on j and not on s and
Ź

rDir depends only on i and not on r. Then, using the rule pL˚q on
the conclusion of this rule, we obtain

Π21, . . . ,Π
2
m,Γ

2
1, . . . ,Γ

2
n, p˚

j

Ź

s

Cjsq ˚ p˚
i

Ź

r

Dirq, φñ ∆1, . . . ,∆n
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Therefore, we let C be p˚
j

Ź

s

Cjsq ˚ p˚
i

Ź

r

Dirq and we have proved

pΓ1,Π1 ñ Cq and pΓ2,Π2, φ, C ñ ∆q.

To check V pCq Ď V pΣq X V pΛ Y∆q, note that an atom is in C if and
only if it is in one of Cjs or Dir. If it is in Cjs, by induction hypothesis,
it is either in Π1j (which means it is in Σ), or it is in tΠ2j , ψ̄js, θ̄jsu. If it
is in Π2j , then it is in Λ and if it is in either ψ̄js or θ̄js, since the rule
is occurence preserving, it also appears in φ which means it appears in
Λ.
If the atom is in Dir, we reason in a similar way, and it either appears
in Γ1i (and hence in Σ) or it appears in tΓ2i , φ̄ir,∆iu and hence in ΛY∆.

˝ Consider the case where the last rule used in the proof is a left semi-
analytic rule and the main formula, φ, is this time in Σ in the Definition
4.5. Hence, Sa is partitioned as Σ “ tΓ1,Π1, φu and Λ “ tΓ2,Π2u. The
sequent S is again of the form pΓ1,Γ2,Π1,Π2, φ ñ ∆q and we have to
find a formula C that satisfies pΓ1,Π1, φ ñ Cq and pΓ2,Π2, C ñ ∆q.
Since S is a single-conclusion sequent, and ∆ “ ∆1, . . . ,∆n, at most
one of ∆i’s can be non-empty. W.l.o.g., suppose that for i ‰ 1 we have
∆i “ H and ∆1 “ ∆. Therefore, the last rule used in the proof is of
the form

xxΠ1j,Π
2
j , ψ̄js ñ θ̄jsysyj xxΓ1i,Γ

2
i , φ̄ir ñyryi‰1 xΓ11,Γ

2
1, φ̄1r ñ ∆yr

Π1,Π2,Γ1,Γ2, φñ ∆
p;q

Using the induction hypothesis for the premises, there exist formulas
Cjs and Dir for each i ‰ 1 and j, s, r and formulas D1r for each r such
that

Π1j, ψ̄js, Cjs ñ θ̄js , Π2j ñ Cjs

Γ1i, φ̄ir, Dir ñ , Γ2i ñ Dir

Γ11, φ̄1r ñ D1r , Γ21, D1r ñ ∆

Using the rules pL^q, pR^q, pR_q and pL_q, we have (for i ‰ 1)
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Π1j, ψ̄js,
Ź

s

Cjs ñ θ̄js , Π2j ñ
Ź

s

Cjs

Γ1i, φ̄ir,
Ź

r

Dir ñ , Γ2i ñ
Ź

r

Dir

Γ11, φ̄1r ñ
Ž

r

D1r , Γ21,
Ž

r

D1r ñ ∆

If we substitute the above left sequents in the original rule p;q, such
that we take each pΠ1j,

Ź

sCjsq as Π1j, each pΓ1i,
Ź

rDirq as Γ1i (for i ‰ 1),
and Γ11 as Γ11, we get (for i ‰ 1)

Π1,Γ1,
Ź

s

Cjs,
Ź

r

Dir, φñ
Ž

r

D1r.

And first, using the rule pL˚q and then pRÑq we get

Π1,Γ1, φñ p˚
i‰1

Ź

r

Dirq ˚ p˚
j

Ź

s

Cjsq Ñ
Ž

r

D1r.

On the other hand, using the rules pR˚q and pL Ñq for the right se-
quents we have

Π2,Γ2, p˚
i‰1

Ź

r

Dirq ˚ p˚
j

Ź

s

Cjsq Ñ
Ž

r

D1r ñ ∆

It is enough to take C as p˚
i‰1

Ź

r

Dirq ˚ p˚
j

Ź

s

Cjsq Ñ
Ž

r

D1r to finish the

proof of this case.

It is easy to check the condition on the variables of C (similar to the
previous case). To check V pCq Ď V pΣqXV pΛY∆q, note that an atom
is in C if and only if it is either in one of Cjs or Dir for pi ‰ 1q or in
D1r. By induction hypothesis if it is in Cjs, it is both in tΠ1j, ψ̄js, θ̄jsu
and in Π2j . If it is in Dir for pi ‰ 1q, then it is both in tΓ1i, φ̄iru and in
Γ2i . And if it is in D1r, then it is both in tΓ11, φ̄1ru and in tΓ21,∆u. One
can easily check that therefore, the atom will be both in Σ “ tΓ1,Π1, φu
and in Λ Y ∆ “ tΓ2,Π2,∆u. Note that in the reasoning we will need
the occurrence preserving property, as well.
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˝ The case where the last rule used in the proof is a right semi-analytic
rule, is similar. Consider the case where the last rule used in the proof
is a right semi-analytic rule. Since S “ pΓ ñ ∆q is a single-conclusion
sequent, ∆ “ φ. Now, for the partitions Σ “ Γ2 and Λ “ Γ1 of Sa,
we have to find a formula C that satisfies pΓ2 ñ Cq and pΓ1, C ñ φq.
Therefore, the last rule used in the proof must have been of the form

xxΓ1i,Γ
2
i , φ̄ir ñ ψ̄iryryi

Γ1,Γ2 ñ φ
p:;q

Using the induction hypothesis, we get

Γ1i, Cir, φ̄ir ñ ψ̄ir , Γ2i ñ Cir.

Using the rules pL^q and pR^q we have

Γ1i,
Ź

r

Cir, φ̄ir ñ ψ̄ir , Γ2i ñ
Ź

r

Cir.

Substituting the left sequents for each i and r in the original rule p:;q
and then using the rule pL˚q, we conclude

Γ1,˚
i
p
Ź

r

Cirq ñ φ.

On the other hand, using the rule pR˚q for the sequents Γ2i ñ
Ź

r

Cir

for 1 ď i ď n, we get Γ2 ñ ˚
i
p
Ź

r

Cirq which means that the formula

˚
i
p
Ź

r

Cirq serves as the interpolant C.

To check V pCq Ď V pΣq X V pΛ Y∆q, note that an atom is in C if and
only if it is either in one of Cir. Then by induction hypothesis it is
both in tΓ1i, φ̄ir, ψ̄iru and in Γ2i . It is easy to check that it meets the
conditions needed.

piiq Consider the case where the last rule used in the proof is either K or D,
and if it is D, then the rule K is admissible in H. Then, the sequent S
is of the form lΓ1,lΓ2 ñ l∆, where ∆ is either one formula (in the
case that the last rule is K) or it is the empty sequence (in the case that
the last rule is D). Recall that lH “ H. We have to find a formula C
that satisfies lΓ1 ñ C and C,lΓ2 ñ l∆. The last rule used in the
proof is of the form
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Γ1,Γ2 ñ ∆

lΓ1,lΓ2 ñ l∆

Using the induction hypothesis there exists a formula D such that

Γ1 ñ D , Γ2, D ñ ∆.

Then, using the rule K for both of them (or if ∆ “ H, use the rule D
for the sequent pΓ2, D ñq), we get

lΓ1 ñ lD , lΓ2,lD ñ l∆.

It is worth mentioning that, as observed above, when we are dealing
with the rule D, the rule K must be present in H, so that we would be
able to obtain lΓ2,lD ñ l∆ from Γ1 ñ D in the calculus. Let lD be
the formula C and we are done. And since V pDq Ď V pΓ1qXV pΓ2Y∆q
we have V pCq Ď V plΓ1q X V plΓ2 Yl∆q, because the set of variables
of lΠ for a multiset Π is the same as the one for Π.

For the other rules, note that the rule pLS4q is of the from of a left
single-conclusion semi-analytic rule. Therefore, by piq, we can freely
add it to H. The proof of the case of the rule pRS4q is similar to the
case piiq. Now, suppose the last rule used in the proof is the rule pRS4q,
and pLS4q is also present in H. Therefore, for the sequent S of the form
lΓ1,lΓ2 ñ lφ, we have to find a formula C that satisfies lΓ1 ñ C
and C,lΓ2 ñ lφ. The last rule used in the proof is of the form

lΓ1,lΓ2 ñ φ

lΓ1,lΓ2 ñ lφ

Using the induction hypothesis there exists a formula D such that

lΓ1 ñ D , lΓ2, D ñ φ.

On the left sequent, apply the rule pRS4q. On the right sequent, first
apply the rule pLS4q and then the rule pRS4q. We get

lΓ1 ñ lD , lΓ2,lD ñ lφ
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It is easy to see that C “ lD works in this case.

piiiq This case is similar to the case piiq. Now, consider the case that the last
rule used in the proof is 4. Then, the sequent S is of the form lΓ1,lΓ2 ñ lφ,
and we have to find a formula C that satisfies lΓ1 ñ C and C,lΓ2 ñ lφ.
The last rule used in the proof is of the form

Γ1,Γ2,lΓ1,lΓ2 ñ φ

lΓ1,lΓ2 ñ lφ

Using the induction hypothesis there exists a formula D such that

Γ1,lΓ1 ñ D , Γ2,lΓ2, D ñ φ.

If we use the rule 4 on the left sequent and using the left weakening rule on
the right sequent (adding lD to the left hand side of the sequent) and then
using the rule 4, we get

lΓ1 ñ lD , lΓ2,lD ñ lφ

If we take C “ lD, then the claim follows. Checking the atoms is similar as
before.
For the proof of the case 4D is identical to the proof of the rule 4, if we ignore
φ and lφ everywhere.

pivq The proof of this case is similar to piq where the added rule is a left
semi-analytic rule. Finally, we will investigate the case where the last rule
used in the proof is a context-sharing semi-analytic one. There are two cases
to consider, based on the appearance of the main formula in the partition of
Sa.

˝ Suppose the main formula, φ, is in Λ in Definition 4.5 (or informally, φ
appears in the same sequent as ∆ does). Hence, Sa is partitioned as Σ “
tΓ1u and Λ “ tΓ2, φu, and the sequent S is of the form pΓ1,Γ2, φñ ∆q.
We have to find a formula C that satisfies pΓ1 ñ Cq and pΓ2, φ, C ñ ∆q.
Therefore, the last rule used in the proof is of the form

xxΓ1i,Γ
2
i , ψ̄is ñ θ̄isysyi xxΓ1i,Γ

2
i , φ̄ir ñ ∆iyryi

Γ1,Γ2, φñ ∆
p‹q

Using the induction hypothesis for the premises, there are formulas Cis

and Dir for each i, r, and s such that
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Γ1i ñ Cis , Γ2i , ψ̄is, Cis ñ θ̄is

Γ1i ñ Dir , Γ2i , φ̄ir, Dir ñ ∆i

Using the rules pR^q and pL^q we have

Γ1i ñ
Ź

s

Cis , Γ2i , ψ̄is,
Ź

s

Cis ñ θ̄is

Γ1i ñ
Ź

r

Dir , Γ2i , φ̄ir,
Ź

r

Dir ñ ∆i

To be able to apply the original rule p‹q on the right sequents above,
we have to make sure that we can make the contexts in the antecednts
become equivalent. Therefore, what we do is using the rule pL^q to
get

Γ2i , ψ̄is, p
Ź

s

Cisq ^ p
Ź

r

Dirq ñ θ̄is , Γ2i , φ̄ir, p
Ź

r

Dirq ^ p
Ź

s

Cisq ñ ∆i.

Now, they have the same contexts in the antecedents and we can sub-
stitute them in the original rule and conclude

Γ2, xp
Ź

r

Dirq ^ p
Ź

s

Cisqyi, φñ ∆.

And, using the rule pL˚q we get

Γ2,˚
i
rp

Ź

r

Dirq ^ p
Ź

s

Cisqs, φñ ∆.

On the other hand, considering the sequents pΓ1i ñ
Ź

s

Cisq and pΓ1i ñ
Ź

r

Dirq, if for each i we use the rule pR^q, we get

Γ1i ñ p
Ź

r

Dirq ^ p
Ź

s

Cisq,

and then using the rule pR˚q we have
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Γ1 ñ ˚
i
rp

Ź

r

Dirq ^ p
Ź

s

Cisqs.

Then, we can see that ˚
i
rp

Ź

r

Dirq ^ p
Ź

s

Cisqs serves as C.

To check V pCq Ď V pΣq X V pΛ Y∆q, note that an atom is in C if and
only if it is either in one of Cis or Dir. By induction hypothesis, if it is
in Cis, then it is both in Γ1i and in tΓ2i , ψ̄is, θ̄isu and if it is in Dir, then
it is both in Γ1i and in tΓ2i , φ̄ir,∆iu. It is easy to check that it meets
the condition for variables.

˝ Now, suppose the main formula, φ, is in Σ in Definition 4.5. Hence, Sa

is partitioned as Σ “ tΓ1, φu and Λ “ tΓ2u and the sequent S is of the
form pΓ1,Γ2, φ ñ ∆q. We have to find a formula C that pΓ1, φ ñ Cq
and pΓ2, C ñ ∆q. W.l.o.g., suppose that for i ‰ 1 we have ∆i “ H

and ∆1 “ ∆. Therefore, the last rule used in the proof is of the form

xxΓ1i,Γ
2
i , ψ̄is ñ θ̄isysyi xxΓ1i,Γ

2
i , φ̄ir ñyryi‰1 xΓ11,Γ

2
1, φ̄1r ñ ∆yr

Γ1,Γ2, φñ ∆
p‹q

Using the induction hypothesis for the premises, there exist formulas
Cis and Dir such that

Γ1i, ψ̄is, Cis ñ θ̄is , Γ2i ñ Cis

Γ1i, φ̄ir, Dir ñ , Γ2i ñ Dir (for i ‰ 1)

Γ11, φ̄1r ñ D1r , Γ21, D1r ñ ∆

Using the rules pL^q, pR^q, pR_q and pL_q, we have (for i ‰ 1)

Γ1i, ψ̄is,
Ź

s

Cis ñ θ̄is , Γ2i ñ
Ź

s

Cis

Γ1i, φ̄ir,
Ź

r

Dir ñ , Γ2i ñ
Ź

r

Dir

Γ11, φ̄1r ñ
Ž

r

D1r , Γ21,
Ž

r

D1r ñ ∆
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Γ11, ψ̄1s,
Ź

s

C1s ñ θ̄1s , Γ21 ñ
Ź

s

C1s

To be able to apply the original rule p‹q on the left sequents above,
we have to make sure that we can make the contexts in the antecednts
become equivalent. For pi ‰ 1q use the rule pL^q to obtain the context
tΓ1i, p

Ź

s

Cisq ^ p
Ź

r

Dirqu and for pi “ 1q use the left weakening rule (on

the left sequent in the third row) to get the context tΓ11,
Ź

s

C1su. If we

substitute the updated left sequents in the original rule p‹q, we get

Γ1, xp
Ź

s

Cisq ^ p
Ź

r

Dirqyi‰1,
Ź

s

C1s, φñ
Ž

r

D1r.

If we first apply the rule pL˚q and then pR Ñq on the above sequent,
we get

Γ1, φñ p˚
i‰1
rp

Ź

s

Cisq ^ p
Ź

r

Dirqs ˚
Ź

s

C1sq Ñ
Ž

r

D1r.

On the other hand, applying the rule pR^q on the sequents Γ2i ñ
Ź

s

Cis

and Γ2i ñ
Ź

r

Dir, for pi ‰ 1q, we get Γ2i ñ p
Ź

s

Cisq^p
Ź

r

Dirq. Together

with the sequent Γ21 ñ
Ź

s

C1s, and using the rule pR˚q we get

Γ2 ñ p˚
i‰1
rp

Ź

s

Cisq ^ p
Ź

r

Dirqs ˚
Ź

s

C1sq.

Moreover, we have Γ21,
Ž

r

D1r ñ ∆. Apply the left weakening rule on

it to get Γ2,
Ž

r

D1r ñ ∆. Now, we can use the context-sharing left

implication rule to get

Γ2, p˚
i‰1
rp

Ź

s

Cisq ^ p
Ź

r

Dirqs ˚
Ź

s

C1sq Ñ
Ž

r

D1r ñ ∆.

We can see that p˚
i‰1
rp

Ź

s

Cisq^ p
Ź

r

Dirqs ˚
Ź

s

C1sq Ñ
Ž

r

D1r serves as C

and we are done.
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To check V pCq Ď V pΣq X V pΛ Y∆q, note that an atom is in C if and
only if it is either in one of Cis or Dir. By induction hypothesis, if it
is in Cis, then it is both in tΓ1i, ψ̄is, θ̄isu and in Γ2i and if it is in Dir for
pi ‰ 1q, then it is both in Γ1i, φ̄ir, and in tΓ2i u. If it is in D1r, then it
is both in Γ11, φ̄1r, and in tΓ21,∆u. It is easy to check that it meets the
conditions on variables.

4.2 The Multi-conclusion Case

In this subsection we will generalize Theorem 4.8 to also cover the multi-
conclusion case.

Theorem 4.9. Let G and H be two multi-conclusion sequent calculi such that
H extends CFLe

´ and satisfies the modal admissibility conditions. Suppose
H is an axiomatic extension of G, to which we add the “multi-conclusion”
version of any of the following rules:

piq semi-analytic rules;

piiq any of the rules pKq, pDq, pLS4q, or pRS4q;

piiiq any of the rules p4q or p4Dq, given the condition that the left weakening
rule for boxed formulas is admissible in H.

Then, if G has strong H-interpolation, so does H.

Proof. The proof is similar to the proof of Theorem 4.8. First, note that in
the multi-conclusion case, a context-charing semi-analytic rule is also of the
form of a left semi-analytic rule. Therefore, the case of adding a context-
charing semi-analytic rule to H is covered in piq. The proof again uses in-
duction on the H-length of π, where π is a proof of a sequent S in H.

piq We add to H a multi-conclusion semi-analytic rule. There are four cases
to consider, depending on whether the rule is a left or a right one and also
on the appearance of the main formula in the partitions of Sa and Ss. We
will only prove one of these cases.

˝ Consider the case where the last rule used in the proof is a left multi-
conclusion semi-analytic rule and the main formula, φ, is in Λ in (the second
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part of) Definition 4.5. Hence, the sequent S is of the form pΓ1,Γ2, φ ñ
∆1,∆2q and we have to find a formula C that satisfies pΓ1 ñ C,∆1q and
pΓ2, φ, C ñ ∆2q. The last rule used in the proof is of the form

xxΓ1i,Γ
2
i , φ̄ir ñ ψ̄ir,∆

1
i,∆

2
i yryi

Γ1,Γ2, φñ ∆1,∆2
p‹q

By induction hypothesis for the premises, for every i and r there exists a
formula Cir such that

Γ1i ñ Cir,∆
1
i , Γ2i , φ̄ir, Cir ñ ψ̄ir,∆

2
i .

Using the rule pR^q and pL^q we have for every i

Γ1i ñ
Ź

r

Cir,∆
1
i , Γ2i , φ̄ir,

Ź

r

Cir ñ ψ̄ir,∆
2
i .

Using the rule pR˚q for the left sequents we get

Γ1 ñ ˚
i

Ź

r

Cir,∆
1.

Moreover, if we substitute the right sequents in the original rule p‹q, and
then using the rule pL˚q, we get

Γ2, φ,˚
i

Ź

r

Cir ñ ∆2

Hence, we take C as ˚
i

Ź

r

Cir and we are done.

To check V pCq Ď V pΓ1 Y ∆1q X V ptΓ2 Y tφuu Y ∆2q, note that an atom
is in C if and only if it is in one of Cir’s. Then, by induction hypothesis, it
is in pΓ1i Y∆1

iq and in tΓ2i , φ̄ir, ψ̄ir,∆
2
i u. It can be easily seen that the claim

holds; the only thing to remember is that if the atom is in either φ̄ir or in
ψ̄ir, since the rule is occurrence preserving, it also appears in φ.

˝ Consider the case where the last rule used in the proof is a left multi-
conclusion semi-analytic rule and the main formula, φ, is in Σ in the Defi-
nition 4.5. Hence, the sequent S is of the form pΓ1,Γ2, φ ñ ∆1,∆2q and we
have to find a formula C that satisfies pΓ1, φ ñ C,∆1q and pΓ2, C ñ ∆2q.
The last rule used in the proof is of the form

xxΓ1i,Γ
2
i , φ̄ir ñ ψ̄ir,∆

1
i,∆

2
i yryi

Γ1,Γ2, φñ ∆1,∆2
p:q

By induction hypothesis for the premises, for every i and r there exists a
formula Cir such that
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Γ1i, φ̄ir ñ ψ̄ir, Cir,∆
1
i , Γ2i , Cir ñ ∆2

i .

Using the rules pR_q and pL_q, we have for every i

Γ1i, φ̄ir ñ ψ̄ir,
Ž

r

Cir,∆
1
i , Γ2i ,

Ž

r

Cir ñ ∆2
i .

If we substitute the left sequents above in the original rule p:q, we get

Γ11, . . . ,Γ
1
n, φñ

Ž

r

C1r, . . . ,
Ž

r

Cnr,∆
1
1, . . . ,∆

1
n.

Using the convention (stated at the beginning of Subsection 4.1) and applying
the rule pR`q we get

Γ1, φñ
Ř

i

Ž

r

Cir,∆
1.

On the other hand, applying the rule pL`q on the sequents Γ2i ,
Ž

r

Cir ñ ∆2
i

we obtain

Γ2,
Ř

i

Ž

r

Cir ñ ∆2.

It is enough to take C as
Ř

i

Ž

r

Cir to finish the proof of this case.

To check V pCq Ď V ptΓ1 Y tφuu Y ∆1q X V pΓ2 Y ∆2q, note that an atom
is in C if and only if it is in one of Cir’s. Then, by induction hypothesis, it
is in tΓ1i, φ̄ir, ψ̄ir,∆

1
iu and in pΓ2i Y∆2

i q. It can be easily seen that the claim
holds; the only thing to remember is that if the atom is in either φ̄ir or in
ψ̄ir, since the rule is occurrence preserving, it also appears in φ.

Let the last rule used in the proof be the rule K. Therefore, the sequent
S is of the form lΓ1,lΓ2 ñ lφ. There can be two cases based on the
appearance of lφ in the partition of Ss. Either, in Definition 4.5, ∆ “ lφ
and Θ “ H and we have to show that there exists a formula C such that
lΓ1 ñ C and lΓ2, C ñ lφ are provable in H. Or Θ “ lφ and ∆ “ H in
Definition 4.5 and we have to show that there exists C such that lΓ1 ñ C,lφ
and lΓ2, C ñ hold in H. Since the proof of the first case is similar to the
proof in Theorem 4.8, we will investigate the second case. The last rule used
in the proof is of the form

Γ1,Γ2 ñ φ

lΓ1,lΓ2 ñ lφ

Using the induction hypothesis for the premise, there exists a formula D such
that the following are provable in H
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Γ1 ñ D,φ , D,Γ2 ñ

Apply the rule pL Ñq on the axiom pñ 0q together with the above sequent
on the left. Moreover, apply the rule p0wq on the sequent above on the right
and then use the rule pRÑq. As the result we get

Γ1, D ñ, φ , Γ2 ñ  D.

Use the rule K on both sequents to obtain

lΓ1,l D ñ lφ , lΓ2 ñ l D.

It is easy to see that from the above sequents we can get

lΓ1 ñ  l D,lφ ,  l D,lΓ2 ñ

which means we have to take C “  l D. It is also easy to check the
condition on the variables of the interpolant.
The rest of the cases are proved similarly to the proof of Theorem 4.8. As
an example, let us investigate one case. Consider the case where the last
rule used in the proof is the rule 4, and we assume that the left weakening
rule for boxed formulas is admissible in H. Therefore, the sequent S is of
the form lΓ1,lΓ2 ñ lφ. There can be two cases based on the appearance
of lφ in the partition of Ss. Either, in Definition 4.5, ∆ “ lφ and Θ “ H

and we have to show that there exists a formula C such that lΓ1 ñ C and
lΓ2, C ñ lφ are provable in H. Or Θ “ lφ and ∆ “ H in Definition
4.5 and we have to show that there exists C such that lΓ1 ñ C,lφ and
lΓ2, C ñ hold in H. Since the proof of the first case is similar to the proof
in Theorem 4.8, we will investigate the second case. The last rule used in
the proof is of the form

Γ1,Γ2,lΓ1,lΓ2 ñ φ

lΓ1,lΓ2 ñ lφ

Using the induction hypothesis for the premise, there exists a formula D such
that the following hold in H

Γ1,lΓ1 ñ D,φ , D,Γ2,lΓ2 ñ

Apply the rule pL Ñq on the axiom pñ 0q together with the sequent above
on the left. Moreover, apply the rule p0wq on the above sequent on the right
and then use the rule pRÑq. As the result, we get

Γ1,lΓ1, D ñ φ , Γ2,lΓ2 ñ  D.
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Use the left weakening rule for boxed formulas on the left sequent (to add
l D to the antecedent of the sequent). Then, apply the rule 4 on both
sequents to get

lΓ1,l D ñ lφ , lΓ2 ñ l D.

It is easy to see that from the above sequents we can get

lΓ1 ñ  l D,lφ ,  l D,lΓ2 ñ

Take C “  l D as the interpolant. It is easy to check the condition for
the variables of C.

The cases where the last rule used in the proof is the rule D or 4D is
similar to the proof of the same cases in Theorem 4.8. In the case of the rule
pRS4q, we have exactly the same cases as in the rule K:

lΓ1 ñ C , lΓ2, C ñ lφ

and

lΓ1 ñ C,lφ , lΓ2, C ñ

Only the second case is new (the proof for the first one is the same as the
proof of the same case in Theorem 4.8). The proof of the second case is the
same as the case for the rule K in the above, and C “  l D works here,
as well. The cases where the last rule in the proof is a right multi-conclusion
semi-analytic one is similar and we do not investigate them here.

For the rest of this section, define R as the set of the modal rules
tK,D, 4, 4D, RS4, LS4u. Combining Theorems 4.7, 4.8 and 4.9 we will have:

Theorem 4.10. Let H be a sequent calculus that satisfies the modal admis-
sibility conditions.

piq If H is single-conclusion and is an extension of FLe (FLe
´) consisting

of focused axioms (context-free focused axioms), semi-analytic rules,
and any subset of R, then H has H-interpolation.

piiq If H is single-conclusion and is an extension of LJ consisting of focused
axioms, semi-analytic rules, context-sharing semi-analytic rules, and
any subset of R, then H has H-interpolation.
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piiiq If H is multi-conclusion and is an extension of CFLe (CFLe
´) con-

sisting of focused axioms (context-free focused axioms), semi-analytic
rules, and any subset of R, then H has H-interpolation.

Combining Theorems 4.4, 4.6, and 4.10 we get the main corollary of this
section:

Corollary 4.11. Let G be a sequent calculus for the logic L with the condition
that if G contains a subset of R, then it satisfies the modal admissibility
conditions. Then, if any of the following happens, the logic L has Craig
interpolation.

• FLe Ď L, (FLe
´
Ď L) and G is single-conclusion and consists of fo-

cused axioms (context-free focused axioms), semi-analytic rules, and
any subset of R;

• IPC Ď L and G is single-conclusion and consists of focused axioms,
semi-analytic rules, context-sharing semi-analytic rules, and any subset
of R; or

• CFLe Ď L, (CFLe
´
Ď L) and G is multi-conclusion and consists of

focused axioms (context-free focused axioms), semi-analytic rules, and
any subset of R.

In the following, we present some applications of Corollary 4.11. Let us
first consider a positive application:

Corollary 4.12. The logics FLe, FLec, FLew, CFLe, CFLew, CFLec, ILL, CLL,
IPC, CPC and their K, KD and S4 versions have the Craig interpolation
property. The same also goes for K4 and KD4 extensions of IPC and CPC.

Proof. The cut-free sequent calculi for these logics presented in Preliminaries
consist of focused axioms and semi-analytic rules. Therefore, by the Corollary
4.11 we can prove the Craig interpolation property for all of them.

For the negative applications, we use the results in [5], [10] and [12] to
ensure that the following logics do not enjoy the Craig interpolation property.
Then, we will use Corollary 4.11 to prove that these logics do not have a semi-
analytic calculus consisting only of focused axioms and semi-analytic rules.

Corollary 4.13. The following logics do not contain a single- or multi-
conclusion sequent calculus consisting only of focused axioms, semi-analytic
rules, and rules from the set R.
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• Logics R, UL´, IUL´, MTL, SMTL, IMTL, BL, L8, Ln for n ě 3, P,
CHL and A;

• none of the consistent BL-extensions, except for G, G3 and CPC;

• none of the consistent IMTL-extensions, except for CPC;

• none of the consistent extensions of RMe, except for RMe, IUML´, CPC,
RMe

3 , RMe
4 , CPC X IUML´, RMe

4 X IUML´, and CPC X RMe
3. This

category includes:

piq RMe
n for n ě 5,

piiq RMe
2m X RMe

2n`1 for n ě m ě 1 with n ě 2.,

piiiq RMe
2m X IUML´ for m ě 3;

• none of the consistent super-intuitionistic logics, except for IPC, LC,
KC, Bd2, Sm, GSc and CPC;

• none of the consistent extensions of S4, except for at most thirty seven
of them.

5 Uniform Interpolation

In this section we will generalize the investigations of [8] to also cover the sub-
structural setting and semi-analytic rules. We will show that any extension
of a sequent calculus by semi-analytic rules preserves uniform interpolation if
the resulted system turns out to be terminating. Our method here is similar
to the method used in [8].

As a first step, let us generalize the notion of uniform interpolation from
logics to sequent calculi. The following definition offers three versions of such
a generalization, each of which suitable for different forms of rules.

Definition 5.1. Let G and H be two sequent calculi. G has H-uniform
interpolation if for any sequent S and T where T s “ H and any atom p,
there exist p-free formulas IpSq and JpT q such that V pIpSqq Ď V pSa Y Ssq

and V pJpT qq Ď V pT aq and

piq S ¨ pIpSq ñq is derivable in H.
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piiq For any p-free multiset Γ, if S ¨ pΓ ñq is derivable in G then Γ ñ IpSq
is derivable in H.

piiiq T ¨ pñ JpT qq is derivable in H.

pivq For any p-free multisets Γ and ∆, if T ¨ pΓ ñ ∆q is derivable in G then
JpT q,Γ ñ ∆ is derivable in H.

Similarly, we say G has weak H-uniform interpolation if instead of piiq we
have

pii1q For any p-free multiset Γ, if S ¨ pΓ ñq is derivable in G then JpS̃q,Γ ñ
IpSq is derivable in H where S̃ “ pSa ñq.

We say G has strong H-uniform interpolation if instead of piiq we have

pii2q For any p-free multisets Γ and ∆, if S ¨ pΓ ñ ∆q is derivable in G then
Γ ñ IpSq,∆ is derivable in H.

Note that in the case of the strong uniform interpolation, T s can be non-
empty, and we have multi-conclusion rules.

We call IpSq a left p-interpolant (weak p-interpolant, strong p-interpolant)
of S and JpT q a right p-interpolant (weak right p-interpolant, strong right p-
interpolant) of T in G relative to H. The system H has unifrom interpolation
property (weak unifrom interpolation property, strong unifrom interpolation
property) if it has H-uniform interpolation (weak H-uniform interpolation,
strong H-uniform interpolation).

Theorem 5.2. If G is a sequent calculus with (weak/strong) uniform inter-
polation and complete for a logic L extending (FLe/CFLe) FLe, L has the
uniform interpolation property.

Proof. First note that since G is complete for L, L $ φÑ ψ iff G $ φñ ψ.
Hence we can rewrite the definition of the uniform interpolation using the
sequent system G. Now pick S “ pñ Aq. By uniform interpolation property
of G, there is a p-free formula IpSq such that S ¨ pIpSq ñq and for any
p-free Σ if S ¨ pΣ ñq, then Σ ñ IpSq. It is clear that IpSq works as the
p-pre-interpolant of A, because firstly IpSq ñ A and secondly if B ñ A
then B ñ IpSq for any p-free B. The same argument also works for the p-
post-interpolant. In the case of weak uniform interpolation, first note that by
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definition if T “ pñq then pñ JpT qq. Secondly, note that since G is complete
for L, the calculus should admit the cut rule by Theorem 4.4. Now we claim
that IpSq works again. The reason now is that if B ñ A for a p-free B, then
JpS̃q, B ñ IpSq. Since S̃ “ T and we have the cut rule, B ñ IpSq. The
case for strong uniform interpolation is similar to the interpolation case.

In the following theorem, we will check the uniform interpolation property
for a set of focused axioms. It can also be considered as an example to show
how this notion works in practice.

Theorem 5.3. Let G and H be two sequent calculi such that every provable
sequent in G is also provable in H and G consists only of finite focused
axioms. Then:

piq If G and H are single-conclusion and H extends FLe, then G has
H-uniform interpolation.

piiq If G and H are single-conclusion and H extends FLe and has the left
weakening rule, then G has weak H-uniform interpolation.

piiiq If G and H are multi-conclusion and H extends CFLe, then G has
strong H-uniform interpolation.

Proof. To prove part piq of the theorem, we have to find IpSq and JpT q for
given sequents S “ pΣ ñ Λq and T “ pΠ ñq such that the four conditions
in the Definition 5.1 hold. We will denote our IpSq and JpT q by @pS and
DpT , respectively.

First, we will prove piq and we will investigate the case DpT , first. For
that purpose, define DpT as the following

rp˚Πpq ˚ Js ^ 0^ K

where Πp is the subset of Π consisting of all p-free formulas and by ˚Πp we
mean φ1 ˚ ¨ ¨ ¨ ˚ φk, where tφ1, ¨ ¨ ¨ , φku “ Πp. Note that J appears in the
first conjunct only when Π ´ Πp is non-empty. Moreover, 0 only appears as
a conjunct when T is of the form axiom 3 (which is β̄ ñ) and β̄ “ Π, and
K only appears as a conjunction when T is of the form of axiom 4 (which is
Σ, φ̄ñ Λ) and we have φ̄ Ď Π.
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First, we have to show that Π ñ DpT holds in H. Note that Π is of
the form Πp Y pΠ ´ Πpq. By definition, for every ψ P Πp we have ψ ñ ψ
and hence using the rule pR˚q we have Πp ñ ˚Πp holds in H (note that
since H extends FLe, it has the rule pR˚q). On the other hand, using the
axiom for J we have Π ´ Πp ñ J and then using the rule pR˚q we have
Πp,Π´ Πp ñ p˚Πpq ˚ J, which is Π ñ p˚Πpq ˚ J.

The formula 0 appears as a conjunct when T is of the form axiom 3 and
β̄ “ Π, which means that in this case Π ñ is an instance of axiom 3 and it
holds in H. Hence, using the rule p0wq we have Π ñ 0.

The formula K appears as a conjunct when T is of the form axiom 4 and
φ̄ Ď Π. Hence, Π ñ K is an instance of axiom 4 when we let ∆ to be K.

Now, we have to show that if for p-free sequents C̄ and D̄ if Π, C̄ ñ D̄ is
provable in G, then DpT, C̄ ñ D̄ is provable in H. Therefore, Π, C̄ ñ D̄ is
of the form of one of the focused axioms and we have five cases to consider:

p1q If Π, C̄ ñ D̄ is of the form of the axiom φ ñ φ. Then, since D̄ “ φ,
it means that φ is p-free. There are two cases; first, if Π “ φ and
C̄ “ H, then ˚Πp “ φ and since Π´Πp “ H, we do not have J in the
conjunct. Hence, Π ñ φ and using the rule pL^q we have DpT ñ D̄.
Second, if Π “ H and C̄ “ φ, then ˚Πp “ 1 and since Π ´ Πp “ H,
then J does not appear in the first conjunct in the definition of DpT .
Hence, since C̄ ñ D̄ is equal to φ ñ φ and this is of the form of the
axiom 1, using the rule p1wq we have 1, φñ φ and using pL^q we have
DpT, C̄ ñ D̄.

p2q If Π, C̄ ñ D̄ is of the form of the axiom ñ ᾱ. Then, since D̄ “ ᾱ, it
means that ᾱ is p-free and Π “ C̄ “ H. Hence, like the above case
˚Πp “ 1 and we do not have J in the definition, either. Again, using
the rule p1wq we have 1 ñ ᾱ and by pL^q we have DpT ñ ᾱ.

p3q If Π, C̄ ñ D̄ is of the form of the axiom pβ̄ ñq. Then there are two
cases; first if β̄ “ Π, then we must have 0 as one of the conjuncts in
the definition of DpT . We have C̄ “ D̄ “ H and 0 ñ is an axiom in H
and using the rule pL^q we have DpT ñ. Second, if Π Ĺ β̄, since we
have β̄ “ Π, C̄ and C̄ is p-free, and we have this condition that for any
two formulas in β̄ they have the same variables, we have Π is p-free,
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as well, which means every formula in Π is p-free and Π “ Πp and J
does not appear in the definition of DpT . Hence, using the rule pL˚q on
Π, C̄ ñ, we have ˚Πp, C̄ ñ and by the rule pL^q we have DpT, C̄ ñ.

p4q If Π, C̄ ñ D̄ is of the form of the axiom Γ, φ̄ñ ∆, then there are two
cases; first if φ̄ Ď Π, then by definition of DpT , K is one of the conjuncts.
Therefore, since K, C̄ ñ D̄ is an instance of an axiom in H, using the
rule pL^q we have DpT, C̄ ñ D̄ is derivable in H. Second, if φ̄ Ę Π,
then at least one of the elements in φ̄ is in C̄ and hence it is p-free.
Therefore, by the condition that for any two formulas in φ̄ they have
the same variables, φ̄ is p-free. Hence, there cannot be any element
of φ̄ present in Π ´ Πp and hence φ̄ Ď Πp, C̄ and then φ̄ Ď Πp, C̄,J.
Therefore, we have Πp, C̄ ñ D̄ because it is of the form of the axiom
Γ, φ̄ ñ ∆ of G and hence it is provable in H. Therefore, using the
axiom pL˚q we have p˚Πpq ˚ J, C̄ ñ D̄ and by pL^q, DpT, C̄ ñ D̄.
(Note that it is possible that Π´ Πp is empty. It is easy to show that
in this case the claim also holds. It is enough to drop J in the last part
of the proof.)

p5q Consider the case where Π, C̄ ñ D̄ is of the form of the axiom Γ ñ
φ̄,∆. Then, since φ̄ Ď D̄, we have DpT, C̄ ñ D̄ is an instance of the
same axiom Γ ñ φ̄,∆ when we substitute Γ by DpT, C̄.

Now, we will investigate the case @pS for S of the form Σ ñ Λ. Define @pS
as the following

rp˚Σp Ñ Kqs _ r˚pβ̄ ´ Σqs _ φ_ 1_ J

where in the first disjunct, Σp means the p-free part of Σ, the second disjunct
appears whenever there exists an instance of an axiom of the form p3q in G
where Σ Ď β̄, Λ “ H and β̄ is p-free. The third disjunct appears if Σ “ H

and Λ “ φ where φ is p-free. The fourth disjunct appears if Σ ñ Λ equals
to one of the instances of the axiom p1q, p2q, or p3q in G. And finally, the
fifth disjunct appears when φ̄ Ď Σ for an instance of φ̄ in axiom p4q in G or
φ̄ Ď Λ for an instance of φ̄ in axiom p5q in G.

First we have to show that Σ, @pS ñ Λ. For this purpose, we have to
prove that for any possible disjunct X, we have Σ, X ñ Λ. For the first
disjunct note that Σp ñ ˚Σp and Σ´Σp,K ñ Λ. Hence, Σ, p˚Σp Ñ Kq ñ
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Λ using the rule pÑ Lq.
For the second disjucnt, we have Σ Ď β̄ and Λ “ H. Therefore

Σ,˚pβ̄ ´ Σq ñ Λ

by the axiom p3q itself. For the third disjunct, note that Σ “ H and Λ “ φ
where φ is p-free. Hence Σ, φ ñ Λ by axiom p1q. For the fourth disjunct,
note that Σ ñ Λ is an axiom itself and hence Σ, 1 ñ Λ. Finally, for the fifth
disjunct, note that Σ ñ Λ is an instance of the axioms p4q or p5q which means
if we also add J to the left hand-side of the sequent, it remains provable.

Now we have to prove that if Σ, C̄ ñ Λ in G then C̄ ñ @pS in H. For
this purpose, we will check all possible axiomatic forms for Σ, C̄ ñ Λ.

p1q If Σ, C̄ ñ Λ is an instance of the axiom p1q, there are two possible
cases. First if Σ “ H and C̄ “ φ and Λ “ φ. Then φ will be p-free and
hence φ appears in @pS as a disjunct. Since C̄ ñ φ, we have C̄ ñ @pS.
For the second case, if Σ “ φ and C̄ “ H then Σ ñ Λ is an instance
of the axiom p1q which means that 1 is a disjunct in @pS. Since pñ 1q
and C̄ “ H we have C̄ ñ @pS.

p2q If Σ, C̄ ñ Λ is an instance of the axiom p2q. Then Σ “ C̄ “ H and
Λ “ ᾱ. Therefore, 1 is a disjunct in @pS and since C̄ “ H we have
C̄ ñ @pS.

p3q If Σ, C̄ ñ Λ is an instance of the axiom p3q. Then there are two cases
to consider. First if Σ “ β̄. Then C̄ “ H and Λ “ H. By definition, 1
is a disjunct in @pS and again like the previous cases C̄ ñ @pS. Second
if Σ Ĺ β̄. Then β̄ X C̄ is non-empty. Pick ψ P β̄ X C̄. ψ is p-free, since
any pair of the elements in β̄ have the same variables, β̄ is p-free. Now
by definition, ˚pβ̄´Σq is a disjunct in @pS. Since C̄ “ β´Σ, we have
C̄ ñ @pS.

p4q If Σ, C̄ ñ Λ is an instance of the axiom p4q. Similar to the previous
case, there are two cases. If φ̄ Ď Σ, then by definition J is a disjunct in
@pS and there is nothing to prove. In the second case, at least one the
elements of φ is in C̄ and hence p-free. Since any pair of the elements
in φ̄ have the same variables, φ̄ is p-free. We can partition Σ, C̄ to
Σp, C̄, pΣ´Σpq. Since every element of pΣ´Σpq has p, and φ̄ is p-free,
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the whole φ should belong to Σp, C̄. Therefore, by the axiom p4q itself,
Σp, C̄ ñ K which implies C̄ ñ p˚Σp Ñ Kq. By definition p˚Σpq Ñ K

is a disjunct in @pS and hence C̄ ñ @pS.

p5q If Σ, C̄ ñ Λ is an instance of the axiom p5q. Then φ̄ Ď Λ. By definition
J is a disjunct in @pS and therefore, there is nothing to prove.

For piiq, note that using the part piq we have formulas DpT and @pS for
any sequents S and T (T s “ H) with the conditions of H-uniform inter-
polation. The conditions for the weak H-uniform interpolation is the same
except for the second part of the left weak p-interpolant which demands that
if Σ, C̄ ñ Λ, then DpS̃, C̄ ñ @pS. If we use the same uniform interpolants,
we satisfy all the conditions of weak H-uniform interpolation. The reason is
that except the mentioned condition, all of the others are the same as the
conditions for H-interpolation and for the other condition, we can argue as
follows: By Σ, C̄ ñ Λ, we have C̄ ñ @pS and by the left weakening rule we
will have DpS̃, C̄ ñ @pS.

For piiiq, first note that proving the existence of the right interpolants is
enough. It is sufficient to define @pS “  DpS and using the assumption that
CFLe is admissible in H to reduce the conditions of @pS to DpS. Now define
DpS for any S “ pΣ ñ Λq as:

rp˚Σpq ˚ Js ^ r pK ` p
ă

Λpqqs ^ 0^ K

where by ˚Σp we mean ψ1 ˚ ¨ ¨ ¨ ˚ ψr, where tψ1, ¨ ¨ ¨ , ψru “ Σp and
Ř

Λp is
defined similarly. Note that in rp˚Σpq˚Js the formula J appears iff Σ ‰ Σp,
and K appears in the second conjunct iff Λ ‰ Λp. The third conjunct appears
if Σ ñ Λ is an instance of an axiom of the forms p1q, p2q and p3q in G and
the fourth conjunct appears if Σ ñ Λ is an instance of an axiom of the forms
p4q, p5q in G.

First, we have to show that Σ ñ DpS,Λ. For that purpose, we have to
check that for any conjunct X we have Σ ñ X,Λ. For the first conjunct, if
Σ ‰ Σp then note that Σp ñ ˚Σp and Σ´ Σp ñ J,Λ therefore

Σ ñ rp˚Σpq ˚ Js,Λ

If Σ “ Σp, then there is no need for J and the claim is clear by Σ ñ ˚Σp.
For the second conjunct, if Λ ‰ Λp note that

Ř

Λp ñ Λp and Σ,K ñ Λ´Λp,
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hence
Σ, rK ` p

ă

Λpqs ñ Λ

hence
Σ ñ r pK ` p

ă

Λpqqs,Λ

If Λ “ Λp, similar to the case before, there is no need for K.

The cases for the third and the fourth conjuncts are similar to the similar
cases in the proof of piq.

Now we want to prove that if Σ, C̄ ñ Λ, D̄ in G, then DpS, C̄ ñ D̄ in H.
For this purpose, we will check all the cases one by one:

p1q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p1q, we have four cases to
check.

‚ If φ P C̄ and φ P D̄, then Σ “ Λ “ H and C̄ “ D̄ “ φ. Hence
˚Σp “ 1. Therefore, since 1, C̄ ñ D̄ we have DpS, C̄ ñ D̄.

‚ If φ P C̄ and φ R D̄ then Σ “ H and Λ “ φ. Therefore, φ is
p-free and hence Λp “ φ. Since D̄ “ H and Λ “ φ, we have
, φ, C̄ ñ D̄. Therefore,  p

Ř

Λpq, C̄ ñ D̄.

‚ If φ R C̄ and φ P D̄. This case is similar to the previous case.

‚ If φ R C̄ and φ R D̄ then Σ “ Λ “ φ and C̄ “ D̄ “ H. Hence,
by definition, we have 0 as a conjunct in DpS. Since 0 ñ, we will
have DpS, C̄ ñ D̄.

p2q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p2q. Then Σ “ C̄ “ H.
There are two cases to consider. If Λ “ ᾱ. Then by definition 0 appears
in DpS. Since D̄ “ H and p0 ñq we have C̄, DpS ñ D̄. If Λ Ĺ ᾱ, then
D̄X ᾱ is non empty. Therefore, there exists a p-free formula in ᾱ. Since
the variables of any pair in ᾱ are equal, ᾱ is p-free. Therefore, Λ Ď ᾱ is
p-free, hence Λ “ Λp (and K does not appear in the second conjunct).
Since pñ Λ, D̄q, we have pñ

Ř

Λ, D̄q therefore p p
Ř

Λpq ñ D̄q which
implies pDpS ñ D̄q.

p3q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p3q. This case is similar to
the previous case p2q.
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p4q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p4q. There are two cases
to consider. If φ̄ Ď Σ. Then by definition K is a conjunct in DpS and
therefore there is nothing to prove. For the second case, if φ̄ Ę Σ, then
φ̄X C̄ is non-empty. Hence, φ̄ has a p-free element. Since the variables
of any pair in φ̄ are equal, φ̄ is p-free. Since φ̄ Ď Σp, C̄,Σ´Σp and φ̄ is
p-free, we should have φ̄ Ď Σp, C̄. Therefore, if Σ ‰ Σp, by the axiom
p4q itself, J,Σp, C̄ ñ D̄. Since p˚Σpq ˚ J is a conjunct in DpS, we will
have DpS, C̄ ñ D̄. Note that if Σ “ Σp, then we will use Σp, C̄ ñ D̄
instead of J,Σp, C̄ ñ D̄.

p5q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p5q. This case is similar to
the previous case 4.

5.1 The Single-conclusion Case

In this section, we assume that for any sequent S “ Γ ñ ∆, the nimber
of elements of ∆ is at most one. We will show how the single-conclusion
semi-analytic and context-sharing semi-analytic rules preserve the uniform
interpolation property. For this purpose, we will investigate these two kinds
of rules separately. First we will study the semi-analytic rules and then we
will show in the presence of weakening and context-sharing implication rules,
we can also handle the context-sharing semi-analytic rules.

5.1.1 Semi-analytic Case

Let us begin right away with the following theorem which is one of the main
theorems of this paper.

Theorem 5.4. Let G and H be two single-conclusion sequent calculi and H
extends FLe. If H is a terminating sequent calculus axiomatically extending
G with only single-conclusion semi-analytic rules, then if G has H-uniform
interpolation property, then so does H.

Proof. For any sequent U and V where V s “ H and any atom p, we define
two p-free formulas, denoted by @pU and DpV and we will prove that they
meet the conditions for the left and the right p-interpolants of U and V , re-
spectively. We define them simultaneously and the definition uses recursion
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on the rank of sequents which is specified by the terminating condition of
the sequent calculus H.

If V is the empty sequent we define DpV as 1 and otherwise, we define
DpV as the following

p
ľ

par

˚
i
DpSiq^p

ľ

LR
rp˚

j

ľ

s

@pTjsq˚p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rsq^plDpV
1
q^pD

GpV q.

In the first conjunct, the conjunction is over all non-trivial partitions of
V “ S1 ¨ ¨ ¨ ¨ ¨Sn and i ranges over the number of Si’s, in this case 1 ď i ď n.
In the second conjunct, the first big conjunction is over all left semi-analytic
rules that are backward applicable to V in H. Since H is terminating,
there are finitely many of such rules. The premises of the rule are xxTjsysyj,
xxSiryryi‰1 and xS1ry and the conclusion is V , where Tjs “ pΠj, ψ̄js ñ θ̄jsq
and Sir “ pΓi, φ̄ir ñ ∆iq which means that Sir’s are those who have context
in the right side of the sequents (∆i) in the premises of the left semi-analytic
rule. (Note that picking the block xS1ry is arbitrary and we include all con-
juncts related to any choice of xS1ry.) The conjunct lDpV 1 appears in the
definition whenever V is of the form plΓ ñq and we consider V 1 to be pΓ ñq.
And finally, since G has the H-uniform interpolation property, by definition
there exists JpV q as right p-interpolant of V . We choose one such JpV q and
denote it as DGpV and include it in the definition.

If U is the empty sequent define @pU as 0. Otherwise, define @pU as the
following

p
ł

par

p˚
i‰1
DpSi Ñ @pS1qq _ p

ł

LR
rp˚

j

ľ

s

@pTjsq ˚ p˚
i

ľ

r

@pSirqsq

_p
ł

RR
p˚
i

ľ

r

@pSirqq _ pl@pU
1
q _ p@

GpUq.

In the first disjunct, the big disjunction is over all partitions of U “ S1¨ ¨ ¨ ¨ ¨Sn

such that for each i ‰ 1 we have Ss
i “ H and S1 ‰ U . (Note that in this

case, if Ss “ H it may be possible that for one i ‰ 1 we have Si “ U . Then
the first disjunct of the definition must be DpU Ñ @pS1 where @pS1 “ 0.
But this does not make any problem, since the definition of DpU is prior to
the definition of @pU .) In the second disjunct, the big disjunction is over all
left semi-analytic rules that are backward applicable to U in H. Since H is
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terminating, there are finitely many of such rules. The premises of the rule
are xxTjsysyj and xxSiryryi and the conclusion is U . In the third disjunct, the
big disjunction is over all right semi-analytic rules backward applicable to
U in H. The premise of the rule is xxSiryryi and the conclusion is U . The
fourth disjunct is on all semi-analytic modal rules with the result U and the
premise U 1. And finally, since G has the H-uniform interpolation property,
by definition there exists IpUq as left p-interpolant of U . We choose one such
IpUq and denote it as @GpU and include it in the definition.

To prove the theorem we use induction on the order of the sequents and we
prove both cases @pU and DpV simultaneously. First note that both @pU and
DpV are p-free by construction and since in all the rules the variables in the
premises also occurs in the consequence, we have V p@pUq Ď V pUaq Y V pU sq

and V pDpV q Ď V pV aq. Secondly, we have to show that:

piq V ¨ pñ DpV q is derivable in H.

piiq U ¨ p@pU ñq is derivable in H.

We show them using induction on the order of the sequents U and V . When
proving piq, we assume that piq holds for sequents whose succedents are empty
and with order less than the order of V and piiq holds for any sequent with
order less than the order of V . We have the same condition for U when
proving piiq.

To prove piq, note that if V is the empty sequent, then by definition
DpV “ 1 and hence piq holds. For the rest, we have to show that V ¨ pñ Xq
is derivable in H for any X that is one of the conjuncts in the definition of
DpV . Then, using the rule pR^q it follows that V ¨ pñ DpV q. Since V is of
the form Γ ñ, we have to show Γ ñ X is derivable in H.

˝ In the case that the conjunct is p
Ź

par

˚
i
DpSiq, we have to show that for

any non-trivial partition S1 ¨ ¨ ¨ ¨ ¨ Sn of V we have Γ ñ ˚
i
DpSi is

derivable in H. Since the order of each Si is less than the order of

V and Ss
i “ pΓi ñq for 1 ď i ď n where

n
Ť

i“1

Γi “ Γ, we can use the

induction hypothesis and we have Γi ñ DpSi. Using the right rule for
p˚q we have Γ1, ¨ ¨ ¨ ,Γn ñ ˚

i
DpSi which is Γ ñ ˚

i
DpSi.
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˝ For the second conjunct in the definition of DpV , we have to check that
for every left semi-analytic rule we have

V ¨ pñ rp˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rsq.

is derivable in H. Therefore, V is the conclusion of a left semi-analytic
rule such that the premises are xxTjsysyj, xxSiryryi and xS1ryr and hence
the order of all of them are less than the order of V . We can easily see
that the claim holds since by induction hypothesis we can add @pTjs
and @pSir to the left side of the sequents Tjs and Sir for i ‰ 1. And
again by induction hypothesis we can add DpS1r to the right side of the
sequents S1r. Then using the rules L^, L˚ and R_ the claim follows.
What we have said so far can be seen precisely in the following:

Note that xxTjsysyj is of the form xxΠj, ψ̄js ñ θ̄jsysyj and xxSiryryi is of
the form xxΓi, φ̄ir ñyryi and V is of the form

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, φñ

Using induction hypothesis we have for every 1 ď j ď m

pΠj, @pTj1, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj, @pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

for every 1 ă i ď n we have

pΓi, @pSi1, φ̄i1 ñq, ¨ ¨ ¨ , pΓi, @pSir, φ̄ir ñq, ¨ ¨ ¨

and for i “ 1 we have

pΓ1, φ̄11 ñ DpS11q, ¨ ¨ ¨ , pΓ1, φ̄1r ñ DpS1rq, ¨ ¨ ¨

Hence, using the rule pL^q, for every 1 ď j ď m we have

pΠj,
ľ

s

@pTjs, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,
ľ

s

@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

and for every 1 ă i ď n we have

pΓi,
ľ

r

@pSir, φ̄i1 ñq, ¨ ¨ ¨ pΓi,
ľ

r

@pSir, φ̄ir ñq, ¨ ¨ ¨
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and using the rule pR_q, for i “ 1 we have

pΓ1, φ̄11 ñ
ł

r

DpS1rq, ¨ ¨ ¨ , pΓ1, φ̄1r ñ
ł

r

DpS1rq ¨ ¨ ¨

Substituting all these three in the original left semi-analytic rule (we
can do this, since in the original rule, there are contexts, ∆i’s in the
right hand side of the sequents S 1irs), we conclude

Π,Γ, φ, x
ľ

s

@pTjsyj, x
ľ

r

@pSiryi‰1 ñ
ł

r

DpS1r.

where Π “ Π1, ¨ ¨ ¨ ,Πm, Γ “ Γ1, ¨ ¨ ¨ ,Γn, x
Ź

s

@pTjsyj “
Ź

s

@pT1s, ¨ ¨ ¨ ,
Ź

s

@pTms

and x
Ź

r

@pSiryi‰1 “
Ź

r

@pS2r, ¨ ¨ ¨ ,
Ź

r

@pSnr.

Now, using the rule pL˚q we have

Π,Γ, φ, p˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq ñ
ł

r

DpS1r.

And finally, using the rule RÑ we conclude

Π,Γ, φñ rp˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rs.

˝ Consider the conjunct lDpT 1. In this case, T must have been of the
form plΓ ñq and T 1 of the form pΓ ñq. By definition, the order of
T 1 is less than the order of T . Hence, by induction hypothesis we have
T 1 ¨ pñ DpT 1q or in other words Γ ñ DpT 1. Now, we use the rule K and
we have lΓ ñ lDpT 1 which means T ¨ pñ lDpT 1q.

˝ The last case is DGpV . We have to show V ¨ pñ DGpV q is provable
in H which is the case since G has H-uniform interpolation property
and by Definition 5.1 part piiiq there exists p-free formula J such that
V ¨ pñ Jq is derivable in H. We chose one such J and call it DGpV ,
hence V ¨ pñ DGpV q in H by definition.

To prove piiq, note that if U is the empty sequent, then by definition
@pU “ 0 and hence piiq holds. For the rest, we have to show that U ¨ pX ñq

is derivable in H for any X that is one of the disjuncts in the definition of
@pU . Then, using the rule pL_q it follows that U ¨ p@pU ñq. Since U is of
the form Γ ñ ∆, we have to show that Γ, X ñ ∆ is derivable in H.
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˝ In the case that the disjunct is p
Ž

par

p˚
i‰1
DpSi Ñ @pS1qq we have to prove

that for any partitions of U “ S1 ¨ ¨ ¨ ¨ ¨ Sn such that Ss
i “ H for each

i ‰ 1 and S1 ‰ U , we have U ¨ pp˚
i‰1
DpSi Ñ @pS1q ñq. First, consider

the case that none of Si’s are equal to U (or in other words, Ss ‰ H);
then the order of each Si is less than the order of S and we can use the
induction hypothesis. Since for i ‰ 1 the succedent of each Si is empty,
we have Si “ pΓi ñq and pΓi ñ DpSiq and using the rule R˚ we have
pΓ2, ¨ ¨ ¨ ,Γn ñ ˚

i‰1
DpSiq. And for S1 “ Γ1 ñ ∆ we have Γ1, @pS1 ñ ∆.

Hence using the rule LÑ we conclude

Γ1, ¨ ¨ ¨ ,Γn, ˚
i‰1
DpSi Ñ @pS1 ñ ∆

and the claim follows.
In the case that U s “ H, it is possible that for i ‰ 1, one of Si’s is equal
to U . In this case what appears in the definition of @pU is DpU Ñ @pS1

which is equivalent to DpU Ñ 0. But, we can do this, since we defined
DpU prior to the definition of @pU and we have proved U ¨ pñ DpUq
prior to the case that we are checking now.

˝ In the case that the disjunct is p
Ž

LR
rp˚

j

Ź

s

@pTjsq˚p˚
i

Ź

r

@pSirqsq, we have

to prove that for any left semi-analytic rule that is backward applicable
to U in H we have U ¨ pp˚

j

Ź

s

@pTjsq ˚ p˚
i

Ź

r

@pSirq ñq. The premises

of the rule are xxTjsysyj and xxSiryryi and the conclusion is U . Since
the orders of all Tjs’s and Sir’s are less than the order of U we can use
the induction hypothesis and have Tjs ¨ p@pTjs ñq and Sir ¨ p@pSir ñq.
Using the rule pL^q for context sharing sequents (when j is fixed and i
is fixed we have context sharing sequents) and then using the rule pL˚q
for non context sharing sequents (when s and r are fixed and we are
ranging over j and i) and then applying the same left rule we can prove
the claim. The proof is similar to the second case of piq and precisely
it goes as the following: Using induction hypothesis we have for every
1 ď j ď m

pΠj, @pTj1, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj, @pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

and for every 1 ď i ď n we have

pΓi, @pSi1, φ̄i1 ñ ∆iq, ¨ ¨ ¨ , pΓi, @pSir, φ̄ir ñ ∆iq, ¨ ¨ ¨
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Hence, using the rule pL^q, for every 1 ď j ď m we have

pΠj,
ľ

s

@pTjs, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,
ľ

s

@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

and for every 1 ď i ď n we have

pΓi,
ľ

r

@pSir, φ̄i1 ñ ∆iq, ¨ ¨ ¨ , pΓi,
ľ

r

@pSir, φ̄ir ñ ∆iq, ¨ ¨ ¨

Substituting these two in the original left semi-analytic rule, we con-
clude

Π,Γ, φ, x
ľ

s

@pTjsyj, x
ľ

r

@pSiryi ñ ∆,

and using the rule pL˚q we have

Π,Γ, φ, p˚
j

ľ

s

@pTjsq ˚ p˚
i

ľ

r

@pSirq ñ ∆.

˝ In the case that the disjunt is p
Ž

RR
p˚
i

Ź

r

@pSirqq, we have to prove that

for any right semi-analytic rule backward applicable to U in H, we have
U ¨ p˚

i

Ź

r

@pSir ñq. In this case the premises of the rule are xxSiryryi,

where Sir “ pΓi, φ̄ir ñ ψ̄irq and the conclusion is U “ pΓ1, ¨ ¨ ¨ ,Γn ñ

φq. Since the order of each Sir is less than the order of S, we can use
the induction hypothesis and for every 1 ď i ď n we have

pΓi, @pSi1, φ̄i1 ñ ψ̄i1q, ¨ ¨ ¨ , pΓi, @pSir, φ̄ir ñ ψ̄irq, ¨ ¨ ¨

Using the rule L^ we have

pΓi,
ľ

r

@pSir, φ̄i1 ñ ψ̄i1q, ¨ ¨ ¨ , pΓi,
ľ

r

@pSir, φ̄ir ñ ψ̄irq, ¨ ¨ ¨

and substituting it in the original right rule, we conclude

Γ, x
ľ

r

@pSiryi ñ φ,

and using the rule pL˚q we have

Γ,˚
i

ľ

r

@pSir ñ φ.
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˝ For the case that the disjunct is l@pU 1 we have that U is the conclusion
of a semi-analytic modal rule and the premise is U 1. Hence, U is of the
form plΓ ñ l∆q and U 1 is of the form pΓ ñ ∆q. Since the order
of U 1 is less than the order of U , we can use the induction hypothesis
and we have pΓ, @pU 1 ñ ∆q. Now, using the rule K we can conclude
plΓ,l@pU 1 ñ l∆q which is equivalent to U ¨ pl@pU 1 ñq.

˝ And finally, for the case that the disjunct is @GpU we have to show
that U ¨ p@GpU ñq holds in H, which does since G has H-uniform
interpolation property and by Definition 5.1 part piq there exists p-free
formula I such that U ¨ pI ñq is derivable in H. We choose one such I
and call it @GpU and hence we have U ¨ p@GpU ñq in H by definition.

So far we have proved piq and piiq. We want to show that H has H-
uniform interpolation. Therefore, based on the Definition 5.1, we have to
prove the following, as well:

piiiq For any p-free multisets C̄ and D̄, if V ¨ pC̄ ñ D̄q is derivable in G then
DpV, C̄ ñ D̄ is derivable in H, where C̄ “ C1, ¨ ¨ ¨ , Ck and |D̄| ď 1.

pivq For any p-free multiset C̄, if U ¨ pC̄ ñq is derivable in G then C̄ ñ @pU
is derivable in H, where C̄ “ C1, ¨ ¨ ¨ , Ck.

Recall that V is of the form pΓ ñq and U is of the form pΓ ñ ∆q. We will
prove piiiq and pivq simultaneously using induction on the length of the proof
and induction on the order of U and V . More precisely, first by induction on
the order of U and V and then inside it, by induction on n, we will show:

‚ For any p-free multisets C̄ and D̄, if V ¨ pC̄ ñ D̄q has a proof in G with
length less than or equal to n, then DpV, C̄ ñ D̄ is derivable in H.

‚ For any p-free multiset C̄, if U ¨ pC̄ ñq has a proof in G with length
less than or equal to n, then C̄ ñ @pU is derivable in H.

Where by the length we mean counting just the new rules that H adds to G.

First note that for the empty sequent and for piiiq, we have to show that
if C̄ ñ D̄ is valid in G, then C̄, 1 ñ D̄ is valid in H, which is trivial by the
rule p1wq. Similarly, for pivq, if C̄ ñ is valid in G, then C̄ ñ 0 is valid in H,
which is trivial by the rule p0wq.
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For the base of the other induction, note that if n “ 0, for piiiq it means
that Γ, C̄ ñ D̄ is valid in G. By Definition 5.1 part pivq, DGpV, C̄ ñ D̄ and
hence DpV, C̄ ñ D̄ is provable in H. For pivq, it means that Γ, C̄ ñ ∆ is valid
in G. Therefore, again by Definition 5.1, C̄ ñ @GpU and hence C̄ ñ @pU is
provable in H.

For n ‰ 0, to prove piiiq, we have to consider the following cases:

˝ The case that the last rule used in the proof of V ¨ pC̄ ñ D̄q is a left
semi-analytic rule and φ P C̄ (which means that the main formula of the
rule, φ, is one of Ci’s). Therefore, V ¨pC̄ ñ D̄q “ pΠ,Γ, X̄, Ȳ , φñ ∆q is
the conclusion of a left semi-analytic rule and V is of the form pΠ,Γ ñq
and C̄ “ pX̄, Ȳ , φq and we want to prove pDpV, X̄, Ȳ , φ ñ ∆q. Hence,
we must have had the following instance of the rule

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, φ̄ir ñ ∆iyryi

Π,Γ, X̄, Ȳ , φñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Consider Tjs “ pΠj ñq and Sir “ pΓi ñq. Since Tjs’s do not depend
on the suffix s, we have Tj1 “ ¨ ¨ ¨ “ Tjs and we denote it by Tj. And,
since Sir’s do not depend on r, we have Si1 “ ¨ ¨ ¨ “ Sir and we denote
it by Si. Therefore, T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a partition of V . First,
consider the case that it is a non-trivial partition. Then the order of all
of them are less than the order of V and since the rule is semi-analytic
and φ is p-free then ψ̄js, θ̄js and φ̄ir are also p-free. Hence, we can use
the induction hypothesis to get:

DpTj, ψ̄js, X̄j ñ θ̄js , DpSi, φ̄ir, Ȳi ñ ∆i

If we let tDpTj, X̄ju and tDpSi, Ȳiu be the contexts in the original left
semi-analytic rule, we have the following

xxDpTj, ψ̄js, X̄j ñ θ̄jsysyj xxDpSi, φ̄ir, Ȳi ñ ∆iyryi

DpT1, ¨ ¨ ¨ , DpTm, DpS1, ¨ ¨ ¨ , DpSn, X̄, Ȳ , φñ ∆

Using the rule pL˚q we have

p˚
j
DpTjq ˚ p˚

i
DpSiq, X̄, Ȳ , φñ ∆.
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Therefore using the rule pL^q, we have pDpV, C̄ ñ D̄q.

If T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a trivial partition of V , it means that one of
them equals V and all the others are empty sequents. W.l.o.g. suppose
T1 “ V “ pΣ ñq and the others are empty. Then we must have had
the following instance of the rule:

xxΣ, ψ̄js, X̄j ñ θ̄jsysyj xxφ̄ir, Ȳi ñ ∆iyryi

Σ, X̄, Ȳ , φñ ∆

Therefore, V ¨ pψ̄js, X̄j ñ θ̄jsq for every j and s are premises of V ¨ pC̄ ñ
D̄q, and hence the length of their trees are smaller than the length of
the proof tree of V ¨ pC̄ ñ D̄q, and since the rule is semi-analytic and
φ is p-free then ψ̄js and θ̄js are also p-free. Hence, for all of them we
can use the induction hypothesis (induction on the length of the proof),
and we have DpV, ψ̄js, X̄j ñ θ̄js. Substituting tDpV, X̄ju, tX̄ju, tȲiu and
t∆u as the contexts of the premises in the original left rule we have

xxDpV, ψ̄js, X̄j ñ θ̄jsysyj xxφ̄ir, Ȳi ñ ∆iyryi

DpV, X̄, Ȳ , φñ ∆

which is pDpV, C̄ ñ D̄q.

˝ Consider the case where the last rule used in the proof of V ¨ pC̄ ñ D̄q
is a left semi-analytic rule and φ R C̄. Therefore,

V ¨ pC̄ ñ D̄q “ pΠ,Γ, X̄, Ȳ , φñ ∆q

is the conclusion of a left semi-analytic rule and V is of the form
pΠ,Γ, φ ñq and C̄ “ pX̄, Ȳ q and we want to prove pDpV, X̄, Ȳ ñ ∆q.
Hence, we must have had the following instance of the rule

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, φ̄ir ñyryi‰1 xΓ1, Ȳ1, φ̄1r ñ ∆yr
p:q

Π,Γ, X̄, Ȳ , φñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄ and
Ť

i

Ȳi “ Ȳ .

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we
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can consider the same substition of meta-sequents and meta-formulas
as above in the original rule, except that we do not take X̄j’s and Ȳi’s as
contexts. More precisely, we reach the following instance of the original
rule:

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, φ̄ir ñyryi‰1 xΓ1, φ̄1r ñ ∆yr
Π,Γ, φñ ∆

If we let Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, φ̄ir ñq for i ‰ 1 and
S1r “ pΓ1, φ̄1r ñ ∆q, we can claim that this rule is back ward applicable
to V and Tjs’s and Sir’s are the premises of the rule. Hence, their orders
are less than the order of V and we can use the induction hypothesis
for them. Note that we have V ¨ pC̄ ñ D̄q is provable in H and from p:q

we have that Tjs ¨ pX̄j ñq and for i ‰ 1, Sir ¨ pȲi ñq and S1r ¨ pȲ1 ñ ∆q
are also provable in H. Using the induction hypothesis we get

pX̄j ñ @pTjsq , pȲi ñ @pSirqi‰1 , pȲ1, DpS1r ñ ∆q

Note that we were allowed to use the induction hypothesis because for
i ‰ 1 we have ∆i “ H and ∆ is p-free and Tjs’s and Sir’s meet the
conditions of piiiq and pivq in the induction step. Now, using the rules
pR^q and pL_q we have

pX̄j ñ
Ź

s

@pTjsq , pȲi ñ
Ź

r

@pSirqi‰1 , pȲ1,
Ž

r

DpS1r ñ ∆q

Denote p
Ź

s

@pTjsq as Aj and p
Ź

r

@pSirq as Bi (for i ‰ 1) and p
Ž

r

DpS1rq

as C. We have

xX̄j ñ Ajyj
R˚

X̄ ñ ˚
j
Aj

xȲi ñ Biyi‰1
R˚

Y2, ¨ ¨ ¨ , Yn ñ ˚
i‰1

Bi

R˚

X̄, Y2, ¨ ¨ ¨ , Yn ñ p˚
j
Ajq ˚ p˚

i‰1
Biq Ȳ1, C ñ ∆

LÑ

X̄, Ȳ , p˚
j
Ajq ˚ p˚

i‰1
Biq Ñ C ñ ∆

Note that p˚
j
Ajq˚p˚

i‰1
Biq Ñ C is defined as the second conjunct in the

definition of DpV and hence using the rule pL^q we have pDpV, C̄ ñ ∆q.
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˝ Consider the case when the last rule used in the proof of V ¨ pC̄ ñ D̄q
is a right semi-analytic rule. Therefore, V ¨ pC̄ ñ D̄q “ pΓ, C̄ ñ φq is
the conclusion of a right semi-analytic rule and V is of the form pΓ ñq
and D̄ “ φ and we want to prove pDpV, C̄ ñ φq. Hence, we must have
had the following instance of the rule

xxΓi, C̄i, φ̄ir ñ ψ̄iryryi

Γ, C̄ ñ φ

where
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄. Denote pΓi ñq as Si. Then we have

that S1, ¨ ¨ ¨ , Sn is a partition of V . First consider the case where it is
a non-trivial partition of V . Therefore, the order of any Si is less than
the order of V and since the rule is semi-analytic and φ is p-free then
ψ̄ir and φ̄ir are also p-free, we can use the induction hypothesis on the
order, and get

DpSi, C̄i, φ̄ir ñ ψ̄ir

Now, substituting tDpSi, C̄iu as the context in the original rule, we get

DpS1, ¨ ¨ ¨ , DpSn, C̄1, ¨ ¨ ¨ , C̄n ñ φ

then using the rule pL˚q we have

˚
i
DpSi, C̄ ñ φ

and since ˚
i
DpSi appears as the first conjunct in the definition of DpV ,

using the rule pL^q we have pDpV, C̄ ñ φq.
It remains to investigate the case where S1, ¨ ¨ ¨ , Sn is a trivial partition
of V . W.l.o.g. suppose S1 “ V and all the others are the empty
sequents. Hence, we must have had the following instance of the rule

xΓ, C̄1, φ̄1r ñ ψ̄1ryr xx C̄i, φ̄ir ñ ψ̄iryryi‰1

Γ, C̄ ñ φ

We have, for all r, V ¨ pC̄1, φ̄1r ñ ψ̄1rq are the premises of V ¨ pC̄ ñ φq.
Hence the length of tree proofs of all of them are less than the length
of proof of V ¨ pC̄ ñ φq and since the rule is semi-analytic and φ
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is p-free then ψ̄1r and φ̄1r are also p-free, we can use the induction
hypothesis (induction on the length of proof) and get DpV, C̄1, φ̄1r ñ

ψ̄1r. Substituting tDpV, C̄1u as the context in the original semi-analytic
rule we get

xDpV, C̄1, φ̄1r ñ ψ̄1ryr xx C̄i, φ̄ir ñ ψ̄iryryi‰1

DpV, C̄ ñ φ

which is what we wanted.

˝ And the final case is when the last rule used in the proof of V ¨pC̄ ñ D̄q
is a semi-analytic modal rule. Therefore, V ¨ pC̄ ñ D̄q “ plΓ,lC 1 ñ
l∆q is the conclusion of a semi-analytic modal rule and V is of the
form plΓ ñq and C̄ “ lC 1 and D̄ “ l∆q, where |l∆| ď 1 and
V 1 “ pΓ ñq. We want to prove pDpV, C̄ ñ D̄q. We must have had the
following instance of the rule

Γ, C̄ 1 ñ ∆̄

lΓ,lC 1 ñ l∆

Since the order of V 1 is less than the order of V , and C 1 and ∆ are
p-free, we can use the induction hypothesis and get

DpV 1, C̄ 1 ñ ∆̄

Using the rule K or D (depending on the cardinality of l∆) we have
lDpV 1,lC 1 ñ l∆ and since we have lDpV 1 as one of the conjuncts
in the definition of DpV , we conclude DpV, C̄ ñ D̄ using the rule pL^q.

Now, we have to prove pivq. Similar to the proof of part piiiq, there are
several cases to consider.

˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a left
semi-analytic rule and φ P C̄. Therefore, U ¨ pC̄ ñq “ pΠ,Γ, X̄, Ȳ , φñ
∆q is the conclusion of a left semi-analytic rule and U is of the form
Π,Γ ñ ∆ and C̄ “ X̄, Ȳ , φ and we want to prove X̄, Ȳ , φ ñ @pU .
Hence, we must have had the following instance of the rule:

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, φ̄ir ñ ∆iyryi

Π,Γ, X̄, Ȳ , φñ ∆

64



where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Consider Tjs “ pΠj ñq, S1r “ Γ1 ñ ∆1, and for i ‰ 1 let Sir “ pΓi ñq.
Since Tjs’s do not depend on the suffix s, we have Tj1 “ ¨ ¨ ¨ “ Tjs and
we denote it by Tj. And, since Sir’s do not depend on r for i ‰ 1, we
have S21 “ ¨ ¨ ¨ “ Sir and we denote it by Si and with the same line
of reasoning we denote S1r by S1. Therefore, T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is
a partition of U . First, consider the case that S1 does not equal U .
Then the order of all of them are less than the order of U (or in some
cases that the others can be equal to U , the length of their proof in
the premises is lower) and since the rule is semi-analytic and φ is p-free
then ψ̄js, θ̄js and φ̄ir are also p-free, we can use the induction hypothesis
to get (for i ‰ 1):

DpTj, ψ̄js, X̄j ñ θ̄js , DpSi, φ̄ir, Ȳi ñ , φ̄1r, Ȳ1 ñ @pS1r

If we let tDpTj, X̄ju and tDpSi, Ȳiu and tȲ1u and t@pS1ru be the contexts
in the original left semi-analytic rule, we have the following

xxDpTj, ψ̄js, X̄j ñ θ̄jsysyj xxDpSi, φ̄ir, Ȳi ñyryi‰1 xφ̄1r, Ȳ1 ñ @pS1ryr

DpT1, ¨ ¨ ¨ , DpTm, DpS2, ¨ ¨ ¨ , DpSn, X̄, Ȳ , φñ @pS1

Using the rule pL˚q we have

p˚
j
DpTjq ˚ p˚

i‰1
DpSiq, X̄, Ȳ , φñ @pS1.

Therefore using the rule pRÑq, we have

X̄, Ȳ , φñ p˚
j
DpTjq ˚ p˚

i‰1
DpSiq Ñ @pS1.

Since the right side of the sequent is a disjunct in the definition of @pU ,
using the rule pR_q we have C̄, φñ @pU .
In the case that T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a trivial partition of U , it
means that either S1 “ U or U s “ H and one of the others is equal
to U . The latter case is investigated in the previous case, so it only
remains to consider the first one.
If S1 “ U “ Γ ñ ∆, then all the others are the empty sequents. Then
we must have had the following instance of the rule:
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xxψ̄js, X̄j ñ θ̄jsysyj xxφ̄ir, Ȳi ñyryi‰1 xΓ, φ1r, Ȳ1 ñ ∆yr

Γ, X̄, Ȳ , φñ ∆

Therefore, U ¨ pφ1r, Ȳ1 ñq for every r are premises of U ¨ pC̄ ñq, and
hence the length of their trees are smaller than the length of the proof
tree of U ¨ pC̄ ñq and since the rule is semi-analytic and φ is p-free
then φ̄1r are also p-free, which means that for all of them we can use
the induction hypothesis (induction on the length of the proof), and
we have pφ1r, Ȳ1 ñ @pUq. Substituting t@pUu, tX̄iu and tȲiu as the
contexts of the premises in the original left rule and letting all the other
contexts in the original left rule to be empty we have

xxψ̄js, X̄j ñ θ̄jsysyj xxφ̄ir, Ȳi ñyryi‰1 xφ1r, Ȳ1 ñ @pUyr

X̄, Ȳ , φñ @pU

which is what we wanted.

˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a left
semi-analytic rule and φ R C̄. Therefore, U ¨ pC̄ ñq “ pΠ,Γ, X̄, Ȳ , φñ
∆q is the conclusion of a left semi-analytic rule and U is of the form
Π,Γ, φñ ∆ and C̄ “ X̄, Ȳ and we want to prove X̄, Ȳ ñ @pU . Hence,
we must have had the following instance of the rule:

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, φ̄ir ñ ∆iyryi
p;q

Π,Γ, X̄, Ȳ , φñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas
as above in the original rule, except that we do not take X̄j’s and Ȳi’s
in the contexts. More precisely, we reach the following instance of the
original rule:

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, φ̄ir ñ ∆iyryi

Π,Γ, φñ ∆

If we let Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, φ̄ir ñ ∆iq, we can claim
that this rule is backward applicable to U and Tjs’s and Sir’s are the
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premises of the rule. Hence, their orders are less than the order of U
and we can use the induction hypothesis for them. Note that we have
U ¨ pC̄ ñq is provable in H and from p;q we have that Tjs ¨ pX̄j ñq and
Sir ¨ pȲi ñq are also provable in H. Using the induction hypothesis we
get

X̄j ñ @pTjs , Ȳi ñ @pSir

Using the rule pR^q we get

X̄j ñ
Ź

s

@pTjs , Ȳi ñ
Ź

r

@pSir

and using the rule pR˚q we get

X̄, Ȳ ñ p˚
j

ľ

s

@pTjsq ˚ p˚
r

ľ

r

@pSirq.

Since the right side of the sequent is appeared as the second disjunct
in the definition of @pU , using the rule pR_q we have C̄ ñ @pU .

˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a
right semi-analytic rule. Therefore, U ¨ pC̄ ñq “ pΓ, C̄ ñ φq is the
conclusion of a right semi-analytic rule and U is of the form Γ ñ φ and
we want to prove C̄ ñ @pU . Hence, we must have had the following
instance of the rule:

xxΓi, C̄i, φ̄ir ñ ψ̄iryryi
p‹q

Γ, C̄ ñ φ

where
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄.

With the similar reasoning as in the previous case, since C̄i’s are in the
context positions in the original rule, we can consider the same sub-
stitution of meta-sequents and meta-formulas as above in the original
rule, except that we do not take C̄i’s in the contexts. More precisely,
we reach the following instance of the original rule:

xxΓi, φ̄ir ñ ψ̄iryryi

Γ ñ φ
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If we let Sir “ pΓi, φ̄ir ñ ψ̄irq we can claim that this rule is backward
applicable to U and Sir’s are the premises of the rule. Hence, their
orders are less than the order of U and hence we can use the induction
hypothesis for them. Using the induction hypothesis we get for every i
and r,

C̄i ñ @pSir.

Using the rule pR^q we get C̄i ñ
Ź

r

@pSir and then using the rule

pR˚q we get C̄i ñ ˚
i

Ź

r

@pSir. And since the right side of the sequent

is appeared as one of the disjuncts in the definition of @pU , using the
rule pR_q we have C̄ ñ @pU .

˝ And the final case is when the last rule used in the proof of U ¨ pC̄ ñq is
a semi-analytic modal rule. Therefore, U ¨ pC̄ ñq “ plΓ,lC 1 ñ l∆q
is the conclusion of a semi-analytic modal rule and U is of the form
plΓ ñ l∆q and C̄ “ lC 1, where |l∆| ď 1 and U 1 “ pΓ ñ ∆q. We
want to prove pC̄ ñ @pUq. We must have had the following instance
of the rule

Γ, C̄ 1 ñ ∆̄

lΓ,lC 1 ñ l∆

Since the order of U 1 is less than the order of U and C 1 is p-free, we
can use the induction hypothesis and get

C̄ 1 ñ @pU 1

Using the rule K or D (depending on the cardinality of l∆) we have
lC 1 ñ l@pU 1 and since we have l@pU 1 as one of the disjuncts in the
definition of @pU , we conclude C̄ ñ @pU using the rule pR_q.

Theorem 5.5. Any terminating single-conclusion sequent calculus H that
extends FLe and consists of focused axioms and single-conclusion semi-analytic
rules, has H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 5.3 and
Theorem 5.4.
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Corollary 5.6. If FLe Ď L and L has a terminating single-conclusion
sequent calculus consisting of focused axioms and single-conclusion semi-
analytic rules, then L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 5.5 and
Theorem 5.2.

In the following application, we will use the Corollary 5.6 to generalize
the result of [1] to also cover the modal cases:

Corollary 5.7. The logics FLe, FLew and their K and KD versions have
uniform interpolation.

Proof. Since all the rules of the usual calculi of these logics are semi-analytic
and their axioms are focused and since in the absence of the contraction
rule the calculi are clearly terminating, by Corollary 5.6, we can prove the
claim.

5.1.2 Context-Sharing Semi-analytic Case

In this subsection we will modify the investigations of the last subsection to
also cover the context-sharing semi-analytic rules.

Theorem 5.8. Let G and H be two single-conclusion sequent calculi with
the property that the right and left weakening rules and the context-sharing
pL Ñq rule are admissible in H and H extends FLe. Then if H is a ter-
minating sequent calculus axiomatically extending G with single-conclusion
semi-analytic rules and context-sharing semi-analytic rules and G has weak
H-uniform interpolation property, so does H.

Proof. The proof is similar to the proof of Theorem 5.4. For any sequent U
and V where V s “ H and any atom p, we define two p-free formulas, denoted
by @pU and DpV and we will prove that they meet the conditions in the defi-
nition of weak H-uniform interpolation. We define them simultaneously and
the definition uses recursion on the rank of sequents which is specified by the
terminating condition of the sequent calculus H.

If V is the empty sequent we define DpV as 1 and otherwise, we define
DpV as the following:
ľ

LRcs

p˚
i‰1
rp

ľ

r

pDpS̃ir Ñ @pSirqq^p
ľ

s

pDpT̃is Ñ @pTisqqs˚pp
ľ

s

DpT̃1s Ñ @pT1sq Ñ
ł

r

DpS1rq
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^
ľ

LRcs

p˚
i

ľ

r

pDpS̃ir Ñ @pSirq ˚ p˚
j

ľ

s

pDpT̃js Ñ @pTjsq Ñ
ł

r

DpS1rq

^p
ľ

par

˚
i
DpSiq ^ plDpV

1
q ^ pD

GpV q.

where for any sequent R, by R̃ we mean Ra ñ. In the first conjunct (the
first line), the first big conjunction is over all context-sharing semi-analytic
rules that are backward applicable to V in H. Since H is terminating,
there are finitely many of such rules. The premises of the rule are xxTisysyi,
xxSiryryi‰1 and xS1ry and the conclusion is V , where Tis “ pΓi, ψ̄is ñ θ̄isq
and Sir “ pΓi, φ̄ir ñ ∆iq which means that Sir’s are those who have context
in the right side of the sequents (∆i) in the premises of the context-sharing
semi-analytic rule. (Note that picking the block xS1ry between the Sir blocks
is arbitrary and for any choice of xS1ry, we add one conjuct to the definition.)

In the second conjunct (the second line), the first big conjunction is over
all left semi-analytic rules that are backward applicable to V in H. Since
H is terminating, there are finitely many of such rules. The premises of
the rule are xxTjsysyj, xxSiryryi‰1 and xS1ry and the conclusion is V , where
Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, φ̄ir ñ ∆iq which means that Sir’s are
those who have context in the right side of the sequents (∆i) in the premises
of the left semi-analytic rule. (Again note that picking the block xS1ry be-
tween the Sir blocks is arbitrary and for any choice of xS1ry, we add one
conjuct to the definition.)

In the third conjunct (first one in the third line), the conjunction is over
all non-trivial partitions of V “ S1 ¨ ¨ ¨ ¨ ¨ Sn and i ranges over the number
of Si’s, in this case 1 ď i ď n.

The conjunct lDpV 1 appears in the definition whenever V is of the form
plΓ ñq and we consider V 1 to be pΓ ñq. And finally, since G has weak H-
uniform interpolation property, by definition there exist JpV q as weak right
p-interpolant of V . We choose one such JpV q and denote it as DGpV and
include it in the definition.

If U is the empty sequent define @pU as 0. Otherwise, define @pU as the
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following:

ł

LRcs

p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqsq

_
ł

LRcs

pr˚
i

ľ

r

pDpS̃ir Ñ @pSirqs ˚ r˚
j

ľ

s

pDpT̃js Ñ @pTjsqsq

_p
ł

RR
p˚
i

ľ

r

pDpS̃ir Ñ @pSirqqq

_
ł

par

p˚
i‰1
pDpSiq Ñ @pS1q _ plpDpŨ 1 Ñ @pU 1qq _ p@GpUq.

In the first conjunct (the first line), the first big conjunction is over all context
sharing semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are xxTisysyi, xxSiryryi and the conclusion is V , where Tis “ pΓi, ψ̄is ñ θ̄isq
and Sir “ pΓi, φ̄ir ñ ∆iq.

In the second conjunct (the second line), the first big conjunction is over
all left semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are xxTjsysyj, xxSiryryi and the conclusion is V , where Tjs “ pΠj, ψ̄js ñ θ̄jsq
and Sir “ pΓi, φ̄ir ñ ∆iq.

In the third disjunct (the third line), the big disjunction is over all right
semi-analytic rules backward applicable to U in H. The premise of the rule
is xxSiryryi and the conclusion is U .

In the fourth disjunct, the big disjunction is over all partitions of U “

S1 ¨ ¨ ¨ ¨ ¨ Sn such that for each i ‰ 1 we have Ss
i “ H and S1 ‰ U . (Note

that in this case, if Ss “ H it may be possible that for one i ‰ 1 we have
Si “ U . Then the first disjunct of the definition must be DpU Ñ @pS1 where
@pS1 “ 0. But this does not make any problem, since the definition of DpU
is prior to the definition of @pU .)

The fifth disjunct is on all semi-analytic modal rules with the result U
and the premise U 1. And finally, since G has weak H-uniform interpolation
property, by definition there exist IpUq as left weak p-interpolant of U . We
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choose one such IpUq and denote it as @GpU and include it in the definition.

To prove the theorem we use induction on the order of the sequents to
prove both cases @pU and DpV simultaneously. First note that both @pU and
DpV are p-free by construction and since in all the rules the variables in the
premises also occurs in the consequence, we have V p@pUq Ď V pUaq Y V pU sq

and V pDpV q Ď V pV aq. Secondly, we have to show that:

piq V ¨ pñ DpV q is derivable in H.

piiq U ¨ p@pU ñq is derivable in H.

The proof is similar to the proof of the Theorem 5.4. Therefore, we will prove
two cases, one for piq and one for piiq, where there is a notable difference.

˝ In proving piq, we have to show that V ¨pñ Xq is derivable in H for any
X that is one of the conjuncts in the definition of DpV . Then, using
the rule pR^q it follows that V ¨ pñ DpV q. Since V is of the form Γ ñ,
we have to show that Γ ñ X is derivable in H.
Consider the case where X is the first conjunct in the definition of
DpV . In this case, we have to prove that for any context-sharing
semi-analytic rules that is backward applicable to V in H, we have
V ¨ pñ Y q in H, where X “

Ź

LRcs
Y . Therefore, V is the conclu-

sion of a context-sharing semi-analytic rule and is of the form pΓ, φñq
such that the premises are xxTisysyi and xxSiryryi, where Tis is of the
form pΓi, ψ̄is ñ θ̄isq and Sir is of the form pΓi, φ̄ir ñq and we have
tΓ1, ¨ ¨ ¨ ,Γnu “ Γ. Therefore, their orders are less than the order of V .
Moreover, since T̃is “ pT

a
is ñq and S̃ir “ pT

a
ir ñq and they are subse-

quents of Tis and Sir, their orders are less than or equal to the orders of
Tis and Sir. Hence, we can use the induction hypothesis for all of them.

Using the induction hypothesis for Tis, T̃is, Sir and S̃ir, for i ‰ 1, we
have the following

Γi, ψ̄is, @pTis ñ θ̄is , Γi, ψ̄is ñ DpT̃is,

Γi, φ̄ir, @pSir ñ , Γi, φ̄ir ñ DpS̃ir.

And using the induction hypothesis for S1r, T1s and T̃1s we have
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Γ1, φ̄1r ñ DpS1r , Γ1, ψ̄1s, @pT1s ñ θ̄1s , Γ1, ψ̄1s ñ DpT̃1s.

Now, using the left context-sharing implication rule, we have

Γi, ψ̄is, DpT̃is Ñ @pTis ñ θ̄is

Γi, φ̄ir, DpS̃ir Ñ @pSir ñ

Γ1, ψ̄1s, DpT̃1s Ñ @pT1s ñ θ̄1s

Now, first using the rules pL^q and pR_q, we have

Γi, ψ̄is,
Ź

s

pDpT̃is Ñ @pTisq ñ θ̄is , Γi, φ̄ir,
Ź

r

pDpS̃ir Ñ @pSirq ñ

Γ1, ψ̄1s,
Ź

s

pDpT̃1s Ñ @pT1sq ñ θ̄1s , Γ1, φ̄1r ñ
Ž

r

DpS1r.

For simplicity, denote pDpT̃is Ñ @pTisq as Ais and pDpS̃ir Ñ @pSirq as
Bir. If we use the rule pL^q again, and the rule left weakening only for
S1r, and not changing the rule for T1r, we have

Γi, ψ̄is, p
Ź

s

Ais ^
Ź

r

Birq ñ θ̄is , Γi, φ̄ir, p
Ź

s

Ais ^
Ź

r

Birq ñ

Γ1, ψ̄1s,
Ź

s

A1s ñ θ̄1s , Γ1, φ̄1r,
Ź

s

A1s ñ
Ž

r

DpS1r.

Now, it is easy to see that the contexts are sharing and we can substitute
the above sequents in the original rule. More precisely, in the original
context-sharing semi-analytic rule consider pΓi, p

Ź

s

Ais^
Ź

r

Birqq as the

context of the premises (as Γi’s in definition of a context-sharing semi-
analytic rule 3.2) for i ‰ 1 and consider pΓ1,

Ź

s

A1sq as the context of

the premises for i “ 1 (as Γ1’s in definition of a context-sharing semi-
analytic rule 3.2). Therefore, after substituting the above sequents in
the original context-sharing semi-analytic rule, we conclude

Γ1,
ľ

s

A1s,Γ2, ¨ ¨ ¨ ,Γn, p
ľ

s

Ais ^
ľ

r

Birqi‰1, φñ
ł

r

DpS1r
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And finally, using the rule L˚ and RÑ we get

Γ, φñ p˚
i‰1
p
ľ

s

Ais ^
ľ

r

Birq ˚ p
ľ

s

A1sq Ñ
ł

r

DpS1rq

and this is what we wanted.

˝ To prove piiq, we have to show that U ¨ pX ñq is derivable in H for any
X that is one of the disjuncts in the definition of @pU . Then, using the
rule pL_q it follows that U ¨ p@pU ñq. Since U is of the form pΓ ñ ∆q,
we have to show that pΓ, X ñ ∆q is derivable in H.
In the case that the disjunt is:

ł

LRcs

p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqsq,

we have to prove that for any context-sharing semi-analytic rule that
is backward applicable to U in H we have

U ¨ p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqs ñq.

The proof goes exactly as in the previous case (in proof of piq for
context-sharing semi-analytic rules), except that this time the succe-
dents of Sir’s and U are not empty and ∆i’s and ∆ appear in their
positions everywhere. And, we do not separate the cases T1s and S1r

and we proceed with the proof considering the induction hypothesis for
every i, in a uniform manner.

Note that these two cases were the cases for the only rule that is not consid-
ered in the proof of 5.4. For the proof of piq for the other conjuncts and piiq
for the other disjuncts, we proceed with the proof of the corresponding cases
as in the proof of 5.4, this time substituting pDpT̃js Ñ @pTjsq for @pTjs and
pDpS̃ir Ñ @pSirq for @pSir wherever it is needed. One can easily see that the
proof essentially goes as before, considering this minor change.

Secondly, we have to prove the following, as well.

piiiq For any p-free multisets Γ and ∆, if T ¨ pΓ ñ ∆q is derivable in G then
JpT q,Γ ñ ∆ is derivable in H.
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pivq For any p-free multiset Γ, if S ¨ pΓ ñq is derivable in G then JpS̃q,Γ ñ
IpSq is derivable in H.

Again, since the spirit of the proof is the same as the proof of Theorem 5.4,
we will prove two cases for the context-sharing semi-analytic rule, which were
not present in the Theorem 5.4. We will prove piiiq and pivq simultaneously
using induction on the length of the proof and induction on the order of U
and V as in the Theorem 5.4.

˝ To prove piiiq, consider the case where the last rule used in the proof
of V ¨ pC̄ ñ D̄q is a context-sharing semi-analytic rule and φ R C̄.
Therefore, V ¨ pC̄ ñ D̄q “ pΓ, C̄, φñ ∆q is the conclusion of a context-
sharing semi-analytic rule and V is of the form pΓ, φñq and we want to
prove pDpV, C̄ ñ ∆q. Hence, we must have had the following instance
of the rule

xxΓi, C̄i, ψ̄is ñ θ̄isysyi xxΓi, C̄i, φ̄ir ñyryi‰1 xΓ1, C̄1, φ̄1r ñ ∆yr

Γ, C̄, φñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄.

Since, C̄i’s are in the context positions in the original rule, we can
consider the same substition of meta-sequents and meta-formulas as
above in the original rule, except that we do not take C̄i’s as contexts.
More precisely, we reach the following instance of the original rule:

xxΓi, ψ̄is ñ θ̄isysyi xxΓi, φ̄ir ñyryi‰1 xΓ1, φ̄1r ñ ∆yr
Γ, φñ ∆

If we let Tis “ pΓi, ψ̄is ñ θ̄isq and Sir “ pΓi, φ̄ir ñq for i ‰ 1 and
S1r “ pΓ1, φ̄1r ñ ∆q, we can claim that this rule is backward applicable
to V and Tis’s and Sir’s are the premises of the rule. Hence, their orders
are less than the order of V and we can use the induction hypothesis
for them. Furthermore, since T̃is “ pT

a
is ñq and S̃ir “ pS

a
ir ñq, their

orders are smaller than or equal to the orders of Tis and Sir and we can
use the induction hypothesis for them, as well. Using the induction
hypothesis (informally speaking, for the first two premises, use the
induction hypothesis of @, and for the last premise use the induction
hypothesis of D) we get
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pC̄i, DpT̃is ñ @pTisq , pC̄i, DpS̃ir ñ @pSirqi‰1 , pC̄1, DpS1r ñ ∆q

Now, first using the rules pR Ñq and then using the rule pR^q and
pL_q we have

pC̄i ñ
ľ

s

pDpT̃is Ñ @pTisqq

pC̄i ñ
ľ

r

pDpS̃ir Ñ @pSirqqi‰1

pC̄1,
ł

r

DpS1r ñ ∆q

Denote p
Ź

s

@pTjsq as Aj and p
Ź

r

@pSirq as Bi (for i ‰ 1) and p
Ž

r

DpS1rq

as D. We have for i ‰ 1

C̄i ñ Ai , C̄i ñ Bi

and for i “ 1 we have

C̄1 ñ A1 , C̄1, D ñ ∆.

Now, and using the rule pR^q for i ‰ 1 we get C̄i ñ Ai^Bi. Together
with C̄1 ñ A1 and using the rule pR˚q we get

C̄1, C̄2, ¨ ¨ ¨ , C̄n ñ ˚
i
pAi ^Biq ˚ A1.

Consider the sequent C̄1, D ñ ∆ and use the left weakening rule to get

C̄1, C̄2, ¨ ¨ ¨ , C̄n, D ñ ∆.

Now, use the rule left context-sharing implication to reach

C̄, p˚
i
pAi ^Biq ˚ A1q Ñ D ñ ∆.

And, we are done.
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˝ For the proof of pivq, consider the case where the last rule in the proof of
U ¨ pC̄ ñq is a context-sharing semi-analytic rule and φ P C̄. Therefore,

U ¨ pC̄ ñq “ Γ, X̄, φñ ∆

is the conclusion of a context-sharing semi-analytic rule and U is of the
form Γ ñ ∆ and C̄ “ X̄, φ and we want to prove DpŨ , X̄, φ ñ @pU .
Hence, we must have had the following instance of the rule:

xxΓi, X̄i, ψ̄is ñ θ̄isysyi xxΓi, X̄i, φ̄ir ñ ∆iyryi

Γ, X̄, φñ ∆

where
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄, and
Ť

i

∆i “ ∆. Consider Tis “ pΓi ñq,

S1r “ pΓ1 ñ ∆1q, and for i ‰ 1 let Sir “ pΓi ñq. Since Tis’s do not
depend on the suffix s, we have Ti1 “ ¨ ¨ ¨ “ Tis and we denote it by Ti.
And, since Sir’s do not depend on r for i ‰ 1, we have S21 “ ¨ ¨ ¨ “ Sir

and we denote it by Si and with the same line of reasoning we denote
S1r by S1. Therefore, S1, ¨ ¨ ¨ , Sn is a partition of U . First, consider the
case that S1 ‰ U . Then the order of all of them are less than the order
of U (or in some cases that one of the others equals to U , the length of
the proof is shorter) and since the rule is context sharing semi-analytic
and φ is p-free then ψ̄is and φ̄ir are also p-free, we can use the induction
hypothesis to get (for i ‰ 1):

DpTi, ψ̄is, X̄i ñ θ̄is , DpSi, φ̄ir, X̄i ñ , DpS̃1, φ̄1r, X̄1 ñ @pS1

Note that for every i ‰ 1 we have Ti “ Si and for i “ 1 we have
T1 “ S̃1 and we can rewrite the above sequents according to this new
information. Hence, if we let tDpTi, X̄iu and t@pS1u be the contexts in
the original left semi-analytic rule, we have the following

xxDpTi, ψ̄is, X̄i ñ θ̄isysyi xxDpTi, φ̄ir, X̄i ñyryi‰1 xDpT1, φ̄1r, X̄1 ñ @pS1yr

DpT1, ¨ ¨ ¨ , DpTn, X̄, φñ @pS1

Using first the rule pL˚q and second the rule RÑ we get

DpT1, X̄, φñ ˚
i‰1
DpTi Ñ @pS1
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Since T2, ¨ ¨ ¨ , Tn, S1 is a partition of U , the right hand side of the above
sequent is appeared as one of the disjuncts in the definition of @pU . And
since T1 “ Ũ , we have

DpŨ , C̄ ñ @pU

and we are done.

We have to investigate the case when S1 “ U , as well. However, the
line of reasoning is as above and as in the case of @pU , and φ P C̄
in the proof of the Theorem 5.4. The important thing is that in the
case where S1 “ U , with similar reasoning as above, at the end we get
DpS̃1, C̄ ñ @pS1 which solves the problem. Note that this case is one of
the main reasons that we have changed uniform interpolation to weak
uniform interpolation.

And finally, to prove piiiq and pivq for the other cases, use similar reasoning
as in the proof of Theorem 5.4, this time substituting pDpT̃js Ñ @pTjsq for
@pTjs and pDpS̃ir Ñ @pSirq for @pSir wherever it is needed, then the proof
easily follows.

Theorem 5.9. Any terminating single-conclusion sequent calculus H that
extends IPC and consists of focused axioms, single-conclusion semi-analytic
and context-sharing semi-analytic rules, has weak H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 5.3 and the
Theorem 5.8.

Corollary 5.10. If IPC Ď L and L has a terminating single-conclusion se-
quent calculus consisting of focused axioms, single-conclusion semi-analytic
rules and context-sharing semi-analytic rules, then L has uniform interpola-
tion.

Proof. The proof is a result of the combination of the Theorem 5.9 and the
Theorem 5.2.

Definition 5.11. We will define the following sequent calculus for intuition-
istic logic, G4i, which was first introduced by Dyckhoff in [4].

φñ φ pIdq , Γ,K ñ ∆ pLKq , Γ ñ ∆,J pRJq

Γ ñ ∆
pLwq

Γ, φñ ∆
Γ ñ

pRwq
Γ ñ φ
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Γ, φ, ψ ñ ∆
pL^q

Γ, φ^ ψ ñ ∆

Γ ñ φ,∆ Γ ñ ψ,∆
pR^q

Γ ñ φ^ ψ,∆

Γ, φñ ∆ Γ, ψ ñ ∆
pL_q

Γ, φ_ ψ ñ ∆

Γ ñ φ
pR_q

Γ ñ φ_ ψ

Γ ñ ψ
pR_q

Γ ñ φ_ ψ

Γ, φñ ψ
pRÑq

Γ ñ φÑ ψ

Γ, p, ψ ñ ∆
pL1 ÑqΓ, p, pÑ ψ ñ ∆

Γ, φÑ pψ Ñ γq ñ ∆
pL2 ÑqΓ, φ^ ψ Ñ γ ñ ∆

Γ, φÑ γ, ψ Ñ γ ñ ∆
pL3 ÑqΓ, φ_ ψ Ñ γ ñ ∆

Γ, ψ Ñ γ ñ φÑ ψ Γ, γ ñ ∆
pL4 Ñq

Γ, pφÑ ψq Ñ γ ñ ∆

where p is an atom. Structural rules and the cut rule are admissible in the
system and in each rule ∆ has at most one element. Note that this system
is slightly different than the usual G4i system. The usual definition does
not include the explicit weakening rules and the axioms for J and K. It also
has the axiom Γ, pñ p only for atomic formula p, instead of the axiom pIdq
as we assumed. The system we have introduced is clearly equivalent to the
usual one and it is also terminating with the same Dyckhoff order [4] that
we will see in a moment. The advantage of the new system, though, is that
it is more in line with our later general approach to sequent-style rules.

Define the rank of a propositional formula as follows:

rppq “ rpKq “ rpJq “ 1

rpφ ˝ ψq “ rpφq ` rpψq ` 1 ˝ P t_,Ñu

rpφ^ ψq “ rpφq ` rpψq ` 2

Then a sequent S is called lower than the sequent T if S is the result of
replacing the elements of T with any number of elements with lower ranks.
With this order, it is not hard to see that the system G4i is terminating.
Note that with this order, for any formula ψ and any atom p, the sequent
Γ, ψ ñ ∆ is lower than the sequent Γ, p Ñ ψ ñ ∆. We will use this fact in
Corollary 5.12.

Corollary 5.12. [11] The logic IPC has uniform interpolation.
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Proof. Use G4i, the Dyckhoff terminating calculus for IPC, introduced in
the Preliminaries section. Using the Theorem 5.2, it is enough to show that
this system has weak G4i-uniform interpolation. For this matter, note that
all the rules in this calculus, except the rules pL4 Ñq and pL1 Ñq are semi-
analytic, while pL4 Ñq is context-sharing semi-analytic and all the axioms are
focused. Therefore, the system has only one rule beyond our context-sharing
semi-analytic machinery, namely pL1 Ñq. However, note that the proof for
the Theorem 5.8 is pretty modular which addresses any rule separately by
adding its corresponding disjunct or conjunct in the recursive definition of
@pS and DpS, respectively. Therefore, to prove the claim it is enough to add
other disjunct and conjunct terms to also address the rule pL1 Ñq. This is
what we will implement in the following:

For @pS add the following terms as disjuncts to the definition of @pS as
defined in the proof of the Theorem 5.8:

@1atpS For any atom q ‰ p if q P Sa add q Ñ pDpS̃ 1 Ñ @pS 1q where S 1 is S
after eliminating one occurrence of q in Sa.

@2atpS For any atom q ‰ p if q Ñ ψ P Sa for some formula ψ add pDpS̃ 1 Ñ
@pS 1q ^ q where S 1 is S after replacing one occurrence of q Ñ ψ by ψ
in Sa.

And for DpS add the following terms as conjuncts:

D1atpS For any atom q ‰ p if q P Sa add q^DpS 1 where S 1 is S after eliminating
one occurrence of q in Sa.

D2atpS For any atom q ‰ p if q Ñ ψ P Sa for some formula ψ add q Ñ DpS 1

where S 1 is S after replacing one occurrence of q Ñ ψ by ψ in Sa.

The first thing to check is that based on the well-founded order on the se-
quents used for the system G4i, the sequent S 1 in all cases is below the
sequent S and hence the recursive step is well-defined. This is clear because
in two cases S 1 is a proper subsequent of S and in two other cases, we are
replacing a formula of the form q Ñ ψ by ψ which has lower rank according
to the rank function we introduced in the Preliminaries. Secondly, note that
the number of disjuncts or conjuncts that we are adding are clearly finite
and hence @pS and DpS are well-defined as formulas. Finally, note that we
are only using q ‰ p in the terms and hence @pS and DpS remain p-free.
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Moreover, since in all cases V pS 1q Ď V pSq, by induction on the Dyckhoff’s
order we have V p@pSq Ď V pSaq Y V pSsq and V pDpSq Ď V pSaq.

Now we have to check that adding these terms respects the properties
that we have discussed in the proof of the Theorem 5.8. First, let us check
that adding the disjuncts @1atpS and @2atpS to @pS respects the property piiq
namely G4i $ S ¨ p@pS ñq. We have two cases to check:

For @1atpS, let us assume that S “ pΓ, q ñ ∆q. Then it is enough to
prove that Γ, q, q Ñ pDpS̃ 1 Ñ @pS 1q ñ ∆ where S 1 “ pΓ ñ ∆q. Using the
rule pL1 Ñq, it is enough to prove the sequent Γ, q, pDpS̃ 1 Ñ @pS 1q ñ ∆.
But note that by the IH, we have Γ ñ DpS̃ 1 and Γ, @pS 1 ñ ∆. Therefore,
by applying pL Ñq and weakening by q (both admissible in G4i) we have
Γ, q, pDpS̃ 1 Ñ @pS 1q ñ ∆.

For @2atpS, let us assume that S “ pΓ, q Ñ ψ ñ ∆q. Then S 1 “ pΓ, ψ ñ
∆q and we want to prove that Γ, q Ñ ψ, pDpS̃ 1 Ñ @pS 1q^q ñ ∆. Again using
the rule pL1 Ñq itself, it is enough to prove Γ, q, ψ, pDpS̃ 1 Ñ @pS 1q ñ ∆. By
IH we have Γ, ψ ñ DpS̃ 1 and Γ, ψ,@pS 1 ñ ∆. By pLÑq and weakening by q
(both admissible in G4i), we can prove Γ, q, ψ, pDpS̃ 1 Ñ @pS 1q ñ ∆.

Now we will show that adding the conjuncts D1atpS and D2atpS to DpS re-
spects the property piq namely G4i $ S¨pñ DpSq for any S such that Ss “ H.

For D1atpS, let us assume that S “ pΓ, q ñq. Then it is enough to prove
that Γ, q ñ q ^ DpS 1 where S 1 “ pΓ ñq. By the IH, we have Γ ñ DpS 1 and
hence we have what we wanted by p^Rq and weakening by q.

For D2atpS let us assume that S “ pΓ, q Ñ ψ ñq. Then S 1 “ pΓ, ψ ñq
and we want to prove that Γ, q Ñ ψ ñ q Ñ DpS 1. Using the rule pÑ Rq,
it is enough to prove Γ, q, q Ñ ψ ñ DpS 1. By pL1 Ñq itself, it is enough to
prove Γ, q, ψ ñ DpS 1. But by IH we have Γ, ψ ñ DpS 1 which implies what
we wanted.

Now we are ready to check the other conditions, meaning:

piiiq For any p-free multisets C̄ and D̄, if S ¨ pC̄ ñ D̄q is derivable in G4i
then DpS, C̄ ñ D̄ is derivable in G4i for any S that Ss “ H.
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pivq For any p-free multiset C̄, if S ¨pC̄ ñq is derivable in G4i then DpS̃, C̄ ñ
@pS is derivable in G4i.

First let us prove pivq. It is enough to address the case that the last rule
in the proof of S ¨ pC̄ ñq is the rule pL1 Ñq. There are four cases to consider:

‚ Both q and q Ñ ψ are in C̄. This case is similar to the left semi-analytic
case in the proof of the Theorem 5.8 where the main formula is in C̄.

‚ Both q and q Ñ ψ are not in C̄. This case is similar to the left semi-
analytic case in the proof of the Theorem 5.8 where the main formula
is not in C̄.

‚ q Ñ ψ P C̄ and q R C̄. Since q Ñ ψ is in C̄, it is p-free and hence q ‰ p
and ψ is p-free. We have

Γ, q, ψ ñ ∆

Γ, q, q Ñ ψ ñ ∆

Define Γ1 “ Γ´ C̄ and C̄ 1 “ C̄ ´tq Ñ ψu. Therefore, S “ pΓ1, q ñ ∆q.
Define S 1 “ pΓ1 ñ ∆q. Since both q and ψ are p-free and S 1 is a proper
subsequent of S and hence lower than S in the Dyckhoff’s order, by IH,
DpS̃ 1, C̄ 1, q, ψ ñ @pS 1. By pL1 Ñq we have DpS̃ 1, C̄ 1, q, q Ñ ψ ñ @pS 1

Hence, C̄ 1, q Ñ ψ ñ q Ñ pDpS̃ 1 Ñ @pS 1q. Since the right hand-side
is a disjunct in @pS, we have q Ñ ψ, C̄ 1 ñ @pS and by weakening
DpS̃, q Ñ ψ, C̄ 1 ñ @pS.

‚ q Ñ ψ R C̄ and q P C̄. Since q P C̄, it is not p itself. Again, we have

Γ, q, ψ ñ ∆

Γ, q, q Ñ ψ ñ ∆

Define Γ1 “ Γ´ C̄ and C̄ 1 “ C̄ ´tqu. Therefore, S “ pΓ1, q Ñ ψ ñ ∆q.
Define S 1 “ pΓ1, ψ ñ ∆q. Since q is p-free and S 1 is lower than S
in the Dyckhoff’s order, by IH, DpS̃ 1, C̄ 1, q ñ @pS 1. Hence, C̄ 1, q ñ
pDpS̃ 1 Ñ @pS 1q ^ q. Since the right hand-side is a disjunct in @pS, we
have C̄ 1, q ñ @pS and by weakening DpS̃, q, C̄ 1 ñ @pS. .

For piiiq, again there are four cases:
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‚ Both q and q Ñ ψ are in C̄. This case is similar to the left semi-analytic
case in the proof of the Theorem 5.8 where the main formula is in C̄.

‚ Both q and q Ñ ψ are not in C̄. This case is similar to the left semi-
analytic case in the proof of the Theorem 5.8 where the main formula
is not in C̄.

‚ q Ñ ψ P C̄ and q R C̄. Since q Ñ ψ is in C̄, it is p-free and hence q ‰ p
and ψ is p-free. We have

Γ, q, ψ ñ D̄

Γ, q, q Ñ ψ ñ D̄

Define Γ1 “ Γ ´ C̄ and C̄ 1 “ C̄ ´ tq Ñ ψu. Therefore, S “ pΓ1, q ñq.
Define S 1 “ pΓ1 ñq. Since both q and ψ are p-free and S 1 is a proper
subsequent of S and hence lower than S in the Dyckhoff’s order, by IH,
DpS 1, C̄ 1, q, ψ ñ D̄. By pL1 Ñq we have DpS 1, C̄ 1, q, q Ñ ψ ñ D̄ Hence,
pDpS 1 ^ qq, C̄ 1, q Ñ ψ ñ D̄. Since pDpS 1 ^ qq is a conjuct in DpS, we
have DpS, q Ñ ψ, C̄ 1 ñ D̄.

‚ q Ñ ψ R C̄ and q P C̄. Since q P C̄, it is not p itself. again, we have

Γ, q, ψ ñ D̄

Γ, q, q Ñ ψ ñ D̄

Define Γ1 “ Γ ´ C̄ and C̄ 1 “ C̄ ´ tqu. Therefore, S “ pΓ1, q Ñ ψ ñq.
Define S 1 “ pΓ1, ψ ñq. Since q is p-free and S 1 is lower than S in the
Dyckhoff’s order, by IH, DpS 1, C̄ 1, q ñ D̄. Hence by pL1 Ñq, we have
C̄ 1, q Ñ DpS 1, q ñ D̄. Since q Ñ DpS 1 is a conjunct in DpS, we have
DpS, C̄ 1, q ñ D̄.

5.2 The Multi-conclusion Case

Finally we will move to the multi-conclusion case to handle the more general
form of semi-analytic rules.

83



Theorem 5.13. Let G and H be two multi-conclusion sequent calculi and
H extends CFLe. Then if H is a terminating sequent calculus axiomatically
extending G with multi-conclusion semi-analytic rules and G has strong H-
uniform interpolation property, so does H.

Proof. For a given sequent S “ pΓ ñ ∆q and an atom p, we define a p-free
formula, denoted by @pS and we will prove that it meets the conditions for
the strong left and right p-interpolants of S, respectively.

If S is the empty sequent define @pS as 0. Otherwise, define @pS as
ł

R
p˚
i

ľ

r

@pSirq _
ł

par

p
ă

i

@pSiq _ pl@pS
1
q _ p l @pS2q _ p@GpSq

where the first disjunction is over all multi-conclusion semi-analytic rules
backward applicable to S in H, which means the result is S and the premises
are Sir. Since H is terminating, there are finitely many of such rules. The
second disjunction is over all non-trivial partitions of S. The third disjunc-
tion is over all semi-analytic modal rules with the result S and the premise
S 1. Moreover, If S is of the form lΓ ñ, then we consider S2 to be Γ ñ and
 l @pS2 must be appeared in the definition of @pS. And finally @GpS is
the strong left p-interpolant of a sequent S in G relative to H.

We define the strong right p-interpolant of S as  @pS and we denote it by
DpS. Note that if we prove @pS is the strong left p-interpolant, it is easy to
show that DpS meets the conditions for the strong right p-interpolant. The
reason is the following: First we have to show that Γ ñ ∆, DpS is provable
in H. But we have Γ, @pS ñ ∆ is provable in H and using the rule p0wq, we
have Γ, @pS ñ ∆, 0 which means Γ ñ ∆, @pS is provable in H.
Secondly, we have to show that if for p-free multisets Σ and Λ, if Γ,Σ ñ Λ,∆
is derivable in G, then DpS,Σ ñ Λ is derivable in H. However, we have
Σ ñ Λ, @pS is derivable in H and using the axiom 0 ñ we can use the rule
pLÑq to get Σ, @pS ñ Λ in H.

Now let us prove that @pS meets all the conditions of a strong left p-
interpolant. The proof is similar to the proofs of the Theorems 5.4 and
5.8. To prove the theorem we use induction on the order of the sequents.
First note that @pS is p-free by construction and since in all the rules the
variables in the premises also occurs in the consequence, we have V p@pSq Ď
V pSaq Y V pSsq. Secondly, we have to show that:
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piq S ¨ p@pS ñq is provable in H.

We have to show that Γ, X ñ ∆ is derivable in H for every disjunct X in
the definition of @pS.

˝ In the case that the disjunct is
Ž

R
p˚
i

Ź

r

@pSirq, we have to show that

for any multi-conclusion semi-analytic rule R with the premises Sir we
have

S ¨ p˚
i

ľ

r

@pSir ñq

where S is of the form pΓ1, ¨ ¨ ¨ ,Γn, φ ñ ∆1, ¨ ¨ ¨ ,∆nq and Sir is of the
form pΓi, φ̄ir ñ ψ̄ir,∆iq. Note that since S 1irs are the premises of the
rule, the order of all of them are less than the order of S and we can
use the induction hypothesis for them. We have for every i and r

Γi, φ̄ir, @pSir ñ ψ̄ir,∆i

Using the rule pL^q we have for every i

Γi, φ̄ir,
ľ

r

@pSir ñ ψ̄ir,∆i

Using Γi,
Ź

r

@pSir as the left context in the original rule (we can do

this, since
Ź

r

@pSir does not depend on r and it only ranges over i), we

have
Γ1, ¨ ¨ ¨ ,Γn, x

ľ

r

@pSiryi, φñ ∆1, ¨ ¨ ¨ ,∆n

and then using the rule pL˚q, we have

Γ1, ¨ ¨ ¨ ,Γn, p˚
i

ľ

r

@pSirq, φñ ∆1, ¨ ¨ ¨ ,∆n.

˝ In the case that the disjunct is
Ž

par

Ř

i

@pSi, we have to show that for any

non-trivial partition S1, ¨ ¨ ¨ , Sn of S we haveS ¨p
Ř

i

@pSi ñq is derivable

in H. Since the order of each Si is less than the order of S, we can use
the induction hypothesis for them and get pΓi, @pSi ñ ∆iq. Using the
rule pL`q we get Γ1, ¨ ¨ ¨ ,Γn, p

Ř

i

@pSiq ñ ∆1, ¨ ¨ ¨ ,∆n.
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˝ The proof of case that the disjunct is l@pS 1 is exactly the same as the
similar case in the proof of the Theorem 5.4.

˝ In the case that the disjunct is  l @pS2, the sequent S must have
been of the form plΓ ñq and S2 is of the form pΓ ñq. Since the order
of S2 is less than the order of S, we can use the induction hypothesis
and get pΓ, @pS2 ñq is derivable in H. Using the rule p0wq and then
the rule pR Ñq we have pΓ ñ  @pS2q. Using the rule pKq we have
plΓ ñ l @pS2q and together with the axiom p0 ñq we can use the
rule pLÑq and we have plΓ, l @pS2 ñq is derivable in H.

˝ The case for @GpS, holds trivially by definition.

Second, we have to show that

piiq For any p-free multisets C̄ and D̄, if S ¨ pC̄ ñ D̄q is derivable in G then
C̄ ñ @pS, D̄ is derivable in H.

We will prove it using induction on the length of the proof and induction on
the order of S. More precisely, first by induction on the order of S and then
inside it, by induction on n, we will show:

‚ For any p-free multisets C̄ and D̄, if S ¨ pC̄ ñ D̄q has a proof in G with
length less than or equal to n, then C̄ ñ @pS, D̄ is derivable in H.

First note that for the empty sequent, we have to show that if C̄ ñ D̄ is
valid in G, then C̄ ñ 0, D̄ is valid in H, which is trivial by the rule p0wq.

For the base of the other induction, note that if n “ 0, it means that
Γ, C̄ ñ D̄,∆ is valid in G. Therefore, by Definition 5.1, C̄ ñ @GpS, D̄ and
hence C̄ ñ @pS, D̄ is valid in H.

For n ‰ 0 we have to consider the following cases:

˝ Consider the case that the last rule used in the proof of S ¨ pC̄ ñ D̄q is
a left multi-conclusion semi-analytic rule and φ P C̄ (which means that
the main formula of the rule, φ, is one of Ci’s). Therefore, S ¨ pC̄ ñ

D̄q “ pΓ, X̄, φ ñ D̄,∆q is the conclusion of the rule and S is of the
form pΓ ñ ∆q and C̄ “ pX̄, φq and we want to prove pX̄, φñ @pS, D̄q.
Hence, we must have had the following instance of the rule:
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xxΓi, X̄i, φ̄ir ñ ψ̄ir, D̄i,∆iyryi

Γ, X̄, φñ D̄,∆

where
Ť

i

Γi “ Γ,
Ť

i

X̄i “ X̄,
Ť

i

D̄i “ D̄ and
Ť

i

∆i “ ∆. Consider

Sir “ pΓi ñ ∆iq. Since Sir’s do not depend on the suffix r, all of them
are equal and we denote it by Si. Therefore, S1, ¨ ¨ ¨ , Sn is a partition
of S. First, consider that it is a non-trivial partition of S. Then the
order of all of them are less than the order of S and since the rule is
semi-analytic and φ is p-free then φ̄ir and ψ̄ir are also p-free, we can
use the induction hypothesis to get for every i and r:

X̄i, φ̄ir ñ ψ̄ir, D̄i, @pSi

If we let X̄i and D̄i, @pSi be the contexts in the left side and right side
in the original rule, respectively, we have the following

X̄, φñ D̄, @pS1, ¨ ¨ ¨ , @pSn

Using the rule pR`q we have

X̄, φñ D̄,
ă

i

@pSi

Since the right side of the sequent is a disjunct in the definition of @pU ,
using the rule pR_q we have C̄, φñ @pS, D̄.

In the case that S1, ¨ ¨ ¨ , Sn is a trivial partition of S, it means that one
of them equals S. W.l.o.g. suppose S1 “ S and all of the others are
the empty sequents. Then we must have had the following instance of
the rule:

xxφ̄ir, X̄i ñ ψ̄ir, D̄iyryi‰1 xΓ, φ̄1r, X̄1 ñ ψ̄1r, D̄1,∆yr

Γ, φ, X̄ ñ D̄,∆

Therefore, S ¨ pφ1r, X̄1 ñ ψ̄1r, D̄1q for every r are premises of S ¨ pC̄ ñ
D̄q, and hence the length of their trees are smaller than the length of
the proof tree of S ¨ pC̄ ñ D̄q and since the rule is semi-analytic and
φ is p-free then φ̄1r and ψ̄1r are also p-free, which means that for all of
them we can use the induction hypothesis (induction on the length of
the proof), and we have pφ1r, X̄1 ñ @pS, ψ̄1r, D̄1q. Substituting tX̄ju

and t@pS, D̄1u as the contexts of the premises in the original rule we
have

87



xxφ̄ir, X̄i ñ ψ̄ir, D̄iyryi‰1 xφ̄1r, X̄1 ñ @pS, ψ̄1r, D̄1yr

X̄, φñ @pS, D̄

which is what we wanted.

˝ Consider the case where the last rule in the proof of S ¨ pC̄ ñ D̄q
is a left multi-conclusion semi-analytic rule and φ R C̄. Therefore,
S ¨ pC̄ ñ D̄q “ pΓ, C̄, φñ D̄,∆q is the conclusion of the rule and S is
of the form Γ, φ ñ ∆ and we want to prove C̄ ñ @pS, D̄. Hence, we
must have had the following instance of the rule:

xxΓi, C̄i, φ̄ir ñ ψ̄ir, D̄i,∆iyryi

Γ, C̄, φñ D̄,∆

where
Ť

i

Γi “ Γ,
Ť

i

C̄i “ C̄,
Ť

i

D̄i “ D̄ and
Ť

i

∆i “ ∆.

Since, C̄i’s and D̄i’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas
as above in the original rule, except that we do not take C̄i’s and D̄i’s
in the contexts. More precisely, we reach the following instance of the
original rule:

xxΓi, φ̄ir ñ ψ̄ir,∆iyryi

Γ, φñ ∆

If we let Sir “ pΓi, φ̄ir ñ ψ̄ir,∆iq, we can claim that this rule is back-
ward applicable to S and Sir’s are the premises of the rule. Hence,
their orders are less than the order of S and we can use the induction
hypothesis for them. Using the induction hypothesis we get for every i
and r

C̄i ñ @pSir, D̄i

Using the rule pR^q we get for every i

C̄i ñ
ľ

r

@pSir, D̄i

and using the rule pR˚q we get

C̄ ñ ˚
i

ľ

r

@pSir, D̄.

Since the right side of the sequent is appeared as one of the disjuncts
in the definition of @pS, using the rule pR_q we have C̄ ñ @pS, D̄.
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˝ Consider the case when the last rule used in the proof of S ¨pC̄ ñ D̄q is a
semi-analytic modal rule. Therefore, S ¨ pC̄ ñ D̄q “ plΓ,lC 1 ñ lD1q
is the conclusion of a semi-analytic modal rule. Hence, there are two
cases to consider.
The first one is the case where S is of the form plΓ ñq and C̄ “ lC 1

and D̄ “ lD1, where |lD1| ď 1 and S2 “ pΓ ñq. We want to prove
pC̄ ñ @pS, D̄q. We must have had the following instance of the rule

Γ, C̄ 1 ñ D̄1

lΓ,lC 1 ñ lD1

Since the order of S2 is less than the order of S and C 1 and D1 are
p-free, we can use the induction hypothesis and get

C̄ 1 ñ @pS2, D̄1

Using the axiom p0 ñq and the rule pLÑq we have

C̄ 1, @pS2 ñ D̄1

Now, using the rule K or D (depending on the cardinality of D̄1) we
have

lC 1,l @pS2 ñ lD1

and using the rule p0wq and pRÑq we get

lC 1 ñ  l @pS2,lD1

since we have  l @pS2 as one of the disjuncts in the definition of
@pS, we conclude C̄ ñ @pS, D̄ using the rule pR_q.

The second case is when S is of the form lΓ ñ lD1, where D1 is a p-
free formula and S 1 is of the form Γ ñ D. We want to prove C̄ ñ @pS.
Then we must have had the following instance of the rule

Γ, C̄ 1 ñ D̄1

lΓ,lC 1 ñ lD1
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Since C̄ 1 is in the context position of the original rule, we can consider
the same substitution of meta-sequents as above in the original rule,
except that we do not take C̄ 1 in the context. More precisely, we reach
the following instance of the original rule:

Γ ñ D̄1

lΓ ñ lD1

Therefore, this rule is backward applicable to S and the order of the
premise, S 1, is less than the order of S and we can use the induction
hypothesis for that to reach C 1 ñ @pS 1. Then we can use the rule K
and we get lC 1 ñ l@pS 1, which is a disjunct in the definition of @pS
and we have C̄ ñ @pS.

˝ The case for the right multi-conclusion semi-analytic rules is similar to
the cases for the left ones disccused in this proof, and the proof of other
two cases are similar to the proof of the same cases in the Theorem 5.4.

Theorem 5.14. Any terminating multi-conclusion sequent calculus H that
extends CFLe and consists of focused axioms and multi-conclusion semi-
analytic rules, has strong H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 5.3 and
Theorem 5.13.

Corollary 5.15. If CFLe Ď L and L has a terminating multi-conclusion se-
quent calculus consisting of focused axioms and multi-conclusion semi-analytic
rules, then L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 5.14 and
Theorem 5.2.

Using the Theorem 5.15, we can extend the results of [1] and [2] to:

Corollary 5.16. The logics CFLe, CFLew and CPC and their K and KD
modal versions have uniform interpolation property.

Proof. For CFLe, CFLew, since all the rules of the usual calculus of these
logics are semi-analytic and their axioms are focused and since in the absence
of the contraction rule the calculus is clearly terminating, by Theorem 5.15,
we can prove the claim. For CPC use the contraction-free calculus for which
the proof goes as the other cases.
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In the negative side we use the negative results in [2], [5] and [6] to
ensure that the following logics do not have uniform interpolation. Then we
will use the Theorems 5.6, 5.10 and 5.15 to the non-existence of terminating
calculus consisting only of semi-analytic and context-sharing semi-analytic
rules together with focused axioms.

Corollary 5.17. The logic K4 does not have a terminating single-conclusion
(multi-conclusion) sequent calculus consisting only of single conclusion (multi-
conclusion) semi-analytic and context-sharing semi-analytic rules plus some
focused axioms.

Corollary 5.18. Except the logics IPC, LC, KC, Bd2, Sm, GSc and
CPC, none of the super-intutionistic logics have a terminating single-conclusion
sequent calculus consisting only of single conclusion semi-analytic rules and
context-sharing semi-analytic rules plus some focused axioms.

Corollary 5.19. Except at most six logics, none of the extensions of S4 have
a terminating single-conclusion (multi-conclusion) sequent calculus consisting
only of single conclusion (multi-conclusion) semi-analytic rules and context-
sharing semi-analytic rules plus some focused axioms.
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